УДК 538.915,544.112,544.182.22

ВЛИЯНИЕ УЧЕТА НЕДИАГОНАЛЬНЫХ *d*-*d*-ЭЛЕКТРОННЫХ ПЕРЕКРЫТИЙ НА ЭФФЕКТИВНОЕ ПАРНОЕ ВЗАИМОДЕЙСТВИЕ В ЭКВИАТОМНОМ РАСПЛАВЕ Сu-Ag

© 2019 г. Н. Э. Дубинин^{а, b, *}

^аИнститут металлургии УрО РАН, Екатеринбург, Россия ^bУральский федеральный университет, Екатеринбург, Россия *e-mail: ned67@mail.ru Поступила в редакцию 10.08.2018 После доработки 18.08.2018 Принята к публикации 11.09.2018

В рамках модели Виллса–Харрисона изучено влияние учета недиагональных по магнитному квантовому числу *d*-электронных перекрытий между двумя соседними атомами на эффективное парное взаимодействие в эквиатомном расплаве Cu–Ag вблизи температуры плавления. Найдено, что увеличение доли недиагональных перекрытий приводит к увеличению глубины первого минимума и к смещению его координаты в сторону меньших значений межатомного расстояния для всех трех парциальных парных потенциалов.

Ключевые слова: расплавы переходных металлов, модель Виллса–Харрисона, модельный псевдопотенциал Бретоннета–Силберта, *d*–*d*-электронные перекрытия, эффективное парное взаимодействие.

DOI: 10.1134/S0235010619040030

Различные теоретические методы изучения расплавов переходных металлов активно развиваются в настоящее время [1–12]. Среди них, метод Виллса–Харрисона (WH) [13], основанный на совместном использовании модели Харрисона–Фройена [14] для *d*-электронных состояний и приближения почти свободных электронов [15] для *s*-электронных состояний, является одним из наиболее успешных.

В работе [16] мы предложили коррекцию WH модели, учитывающую недиагональные по магнитному квантовому числу, *m*, перекрытия между *d* состояниями в переходных металлах и применили данную коррекцию к изучению эффективного парного взаимодействия в чистых жидких Fe, Co и Ni [16] и в эквиатомных расплавах Co–Ni [17] и Fe–Co [18]. В настоящей работе аналогичный анализ проведен для эквиатомного расплава Cu–Ag.

Эффективный парциальный парный потенциал Виллса—Харрисона бинарной системы, $\phi_{iiWH}(r)$, записывается следующим образом [13]:

$$\varphi_{ijWH}(r) = \varphi_{sij}(r) + \varphi_{dij}(r), \tag{1}$$

где $\varphi_{sij}(r)$ и $\varphi_{dij}(r)$ – вклады, обусловленные *s*- и *d*-электронными состояниями, соответственно; *i*, *j* = 1, 2.

Вклад $\varphi_{sij}(r)$ рассчитывается в рамках второго порядка теории возмущений по псевдопотенциалу (здесь и далее все величины приводятся в атомных единицах (a. e.)):

$$\varphi_{sij}(r) = \frac{z_{si}z_{sj}}{r} + \frac{\Omega}{\pi^2} \int_0^\infty F_{ij}(q) \frac{\sin(qr)}{qr} q^2 \mathrm{d}q, \qquad (2)$$

где z_{si} – эффективная валентность *s* электронов в чистом металле *i*-го сорта; Ω – средний атомный объем сплава; $F_{ij}(q)$ – парциальная характеристическая функция:

$$F_{ij}(q) = -\frac{\Omega q^2 \omega_i(q) \omega_j(q)}{8\pi [(\varepsilon_{\rm H}(q) - 1)^{-1} + 1 - f(q)]}.$$
(3)

Здесь $\varepsilon_{\rm H}(q)$ – диэлектрическая проницаемость Хартри; f(q) – обменно-корреляционная поправка к $\varepsilon_{\rm H}(q)$, которая в данной работе рассчитывается в приближении Вашишты–Сингви [19]; $\omega_i(q)$ – форм-фактор псевдопотенциала неэкранированного иона *i*-го сорта, $\omega_i(r)$:

$$\omega_i(q) = \frac{4\pi}{\Omega} \int_0^\infty \omega_i(r) \frac{\sin(qr)}{qr} r^2 \mathrm{d}r.$$
(4)

В настоящей работе, как было предложено в [20], используется локальный модельный псевдопотенциал Бретоннета—Силберта (BS) [21], обобщенный на бинарные расплавы [22]:

$$\omega_{iBS}(r) = \begin{cases} \sum_{n=1}^{2} B_{ni} \exp\left(\frac{r}{na_{i}}\right), & r \le R_{Ci} \\ -z_{si}/r, & r \ge R_{Ci} \end{cases}$$
(5)

$$\omega_{iBS}(q) = 4\pi\rho a_i^3 \left[\frac{B_{1i}J_{1i}(q)}{\left(1 + a_i^2 q^2\right)^2} + \frac{8B_{2i}J_{2i}(q)}{\left(1 + 4a_i^2 q^2\right)^2} \right] - \left(4\pi\rho z_{si}/q^2\right)\cos(qR_{Ci}),\tag{6}$$

где

$$B_{\rm li} = (z_{si}/R_{\rm Ci})[1 - 2a_i/R_{\rm Ci}]\exp(R_{\rm Ci}/a_i), \tag{7}$$

$$B_{2i} = (2z_{si}/R_{Ci})[a_i/R_{Ci} - 1]\exp(0.5R_{Ci}/a_i),$$
(8)

$$J_{1i}(q) = 2 - \exp\left(-\frac{R_{Ci}}{a_i}\right) \left\{ \left[R_{Ci} \frac{1 + a_i^2 q^2}{a_i} + 1 - a_i^2 q^2 \right] \frac{\sin(qR_{Ci})}{a_i q} + \left[2 + \frac{R_{Ci}(1 + a_i^2 q^2)}{\cos(qR_{Ci})} \right] \cos(qR_{Ci}) \right\}$$
(9)

$$+\left\lfloor 2+\frac{K_{Ci}(1+a_i\,q_j)}{a_i}\right\rfloor\cos(qR_{Ci})\Big\},$$

$$J_{2i}(q) = 2 - \exp\left(-\frac{R_{Ci}}{2a_i}\right) \left\{ \left[R_{Ci} \frac{1 + 4a_i^2 q^2}{2a_i} + 1 - 4a_i^2 q^2 \right] \frac{\sin(qR_{Ci})}{2a_i q} + \left[2 + \frac{R_{Ci}(1 + 4a_i^2 q^2)}{2a_i} \right] \cos(qR_{Ci}) \right\},$$
(10)

a_i и *R*_{Ci} – параметры потенциала BS в чистом металле *i*-го сорта.

Вклад $\varphi_{dij}(r)$ в парциальное парное взаимодействие определяется как сумма двух членов:

$$\varphi_{dij}(r) = \varphi_{bij}(r) + \varphi_{cij}(r), \tag{11}$$

Таблица 1

Значения параметров, используемые для расчета

	<i>r_{di}</i> , a. e. [24]	<i>R</i> _{C<i>i</i>} , a. e. [25]	<i>a_i</i> , a. e. [25]	z _{si} [25]	Z _{di}
Cu	1.267	0.81	0.142	1.4	9.6
Ag	1.682	1.04	0.195	1.4	9.6

где $\varphi_{bij}(r)$ — вклад, обусловленный наличием в металле *d* зоны (band); $\varphi_{cij}(r)$ — вклад, возникающий из-за смещения центра (center) *d* зоны, вызванного неортогональностью *d* состояний в металле [13]:

$$\varphi_{bij}(r) = -z_d \left(\frac{10 - z_d}{10}\right) \left(\frac{12}{v_{ij}}\right)^{1/2} \frac{\left(r_{di}r_{dj}\right)^{3/2}}{r^5} K_b,$$
(12)

$$\varphi_{cij}(r) = z_d \, \frac{(r_{di} r_{dj})^3}{r^8} \, K_c. \tag{13}$$

Здесь $z_d = c_1 z_{d1} + c_2 z_{d2}$; c_i – концентрация *i*-го компонента в сплаве; $z_{di} = z_i - z_{si}$; z_i – общее количество валентных электронов на атом *i*-го сорта; r_{di} – радиус *d* состояния свободного атома *i*-го сорта; v_{ij} – парциальное координационное число; K_b и K_c – зависящие от орбитального квантового числа, *l*, безразмерные коэффициенты, которые при l = 2 предложено рассчитывать по следующим формулам [16]:

$$K_{b} = \left[\frac{1}{5}\left(\left(1 - \frac{4p}{5}\right)y_{0}^{2} + \left(2 - \frac{6p}{5}\right)\left(y_{2}^{2} + y_{1}^{2}\right) + \frac{4p}{5}y_{0}(y_{1} + y_{2}) + \frac{8p}{5}y_{1}y_{2}\right)\right]^{\frac{1}{2}},$$
(14)

$$K_{c} = -\frac{2}{5} \left[\left(1 - \frac{4p}{5} \right) y_{0} x_{0} + \left(2 - \frac{6p}{5} \right) (y_{1} x_{1} + y_{2} x_{2}) + \frac{2p}{5} (y_{0} (x_{1} + x_{2}) + x_{0} (y_{1} + y_{2})) + \frac{4p}{5} (y_{1} x_{2} + y_{2} x_{1}) \right],$$

$$(15)$$

где p — вероятность реализации в металле всех 25-ти возможных d-d перекрытий между двумя атомами; (1 - p) — вероятность реализации только 5-ти диагоналоных d-d перекрытий; $y_m = y_{|m|}$ и $x_m = x_{|m|}$ следующие:

$$y_m = -\frac{(-1)^{|m|} 180}{\pi (2+|m|)!(2-|m|)!},$$
(16)

$$x_m = -\frac{1}{8} \left(1 + \frac{4m^2 - 1}{9} \right) y_m,\tag{17}$$

m = -2; -1; 0; 1; 2.

При T = 1475 К для различных значений p рассчитаны эффективные парциальные парные потенциалы Виллса—Харрисона эквиатомного расплава Cu—Ag, значение среднего атомного объема которого (114.6 а. е.) взято из эксперимента [23]. Следуя работе [24], где значения координационных чисел для обоих составляющих расплав металлов в чистом виде считаются равными 12, такое же значение используется в настоящей работе для парциальных координационных чисел. Значения параметра r_{di} взяты из работы [24], а параметров z_{si} , a_i и R_{Ci} — из [25] (табл. 1).

Рис. 1. Эффективные парциальные парные WH потенциалы $\phi_{Cu-Cu}(r)$ (а. е.) в эквиатомном расплаве Cu–Ag при T = 1475 K (сплошная линия: p = 0; пунктирная: p = 0.5; штрих-пунктирная: p = 1).

Рис. 2. Эффективные парциальные парные потенциалы $\varphi_{12WH}(r)$ (а. е.) в эквиатомном расплаве Cu–Ag при T = 1475 K (сплошная линия: p = 0; пунктирная: p = 0.5; штрих-пунктирная: p = 1).

Из рис. 1—3 видно, что для всех трех парциальных парных потенциалов увеличение p от 0 до 1 приводит к увеличению глубины первого минимума и к смещению его координаты в сторону меньших r. Данная закономерность в наибольшей степени проявляется для взаимодействия Ag—Ag (рис. 3) и в наименьшей — для взаимодействия

Рис. 3. Эффективные парциальные парные WH потенциалы $\varphi_{Ag-Ag}(r)$ (а. е.) в эквиатомном расплаве Cu–Ag при T = 1475 K (сплошная линия: p = 0; пунктирная: p = 0.5; штрих-пунктирная: p = 1).

Cu—Cu, где при изменении p от 0.5 до 1 даже нарушается тенденция увеличения глубины первого минимума (рис. 1).

Работа выполнена по Государственному заданию ИМЕТ УрО РАН.

СПИСОК ЛИТЕРАТУРЫ

1. Son L.D., Ryltcev R.E., Sidorov V.E., Sordelet D. Structural transformations in liquid metallic glassformers // Mat. Sci. Eng. A. 2007. **582**. P. 449–451.

2. Shubin A.B., Shunyaev K.Yu. Thermodynamic properties of liquid Sc–Al aloys: model calculations and experimental data // J. Phys.: Conf. Ser. 2008. **98**. 032017.

3. Shubin A.B., Shunyaev K.Yu. // Russian Metallurgy (Metally). 2010. № 8. P. 672–677.

https://doi.org/10.1134/S0036029510080021

4. Shubin A.B., Shunyaev K.Yu.// Russian Metallurgy (Metally). 2011. № 2. P. 109–113.

https://doi.org/10.1134/S003602951102011X

5. Qi Y., Wang L., Fang T. Demixing behavior in binary Cu–Co melt // Phys. Chem. Liq., 2013. **51**. P. 687–694.

6. Dubinin N.E., Vatolin N.A., Filippov V.V. Thermodynamic perturbation theory in studies of metal melts // Rus. Chem. Rev. 2014. 83. P. 987–1002.

7. Povodator A. M., Tsepelev V. S. Generalized characterization of metallic liquid alloys' properties // Proc. of 2-nd International Conference on Simulation and Modeling: Methodologies, Technologies and Applications (Paris, 09. 08–10. 08. 2015), Destech. Publicat. Inc., 2015. P. 464–467.

8. Ryltsev R.E., Klumov B.A., Chtchelkatchev N.M., Shunyaev K.Yu. // J. Chem. Phys. 2016. 145. 034506.

https://doi.org/10.1063/1.4958631

9. Liu Y., Wang J., Qin J., Schumacher G. // Phys. Chem. Liq. 2016. 54. P. 98-109.

https://doi.org/10.1080/00319104.2015.1084880

10. Son L.D., Sidorov V.E., Katkov N. Statistics and thermodynamics of Fe-Cu alloys at high temperatures // EPJ Web of Conferences. 2017. **151**. UNSP 05003.

11. Klumov B.A., Ryltsev R.E., Chtchelkatchev N.M.//J. Chem. Phys. 2018. 149. 134501.

https://doi.org/10.1063/1.5041325

12. Ryltsev R.E., Klumov B.A., Chtchelkatchev N.M., Shunyaev K.Yu.// J. Chem. Phys. 2018. **149**. 164502.

https://doi.org/10.1063/1.5054631

13. Wills J. M., Harrison W. A. Interionic interactions in transition metals // Phys. Rev. B. 1983. 28. P. 4363–4373.

14. Harrison W.A., Froyen S. Uniersal linear-combination-of-atomic-orbitals parameters for *d*-state solids // Phys. Rev. B. 1980. **21**. P. 3214–3221.

15. Z i m a n J. M. A theory of the electrical properties of liquid metals. I: the monovalent metals // Phil. Mag. 1961. 6. P. 1013-1034.

16. Dubinin N.E. Account of non-diagonal coupling between d electrons at describing the transition-metal pair potentials // J. Phys.: Conf. Series. 2012. **338**. 012004.

17. Dubinin N.E. // Russian Metallurgy (Metally). 2013. № 2. P. 157–160.

https://doi.org/10.1134/S0036029513020158

18. Dubinin N.E., Vatolin N.A. // Doklady Physics. 2016. 61. P. 527-530.

https://doi.org/10.1134/S1028335816110033

19. Vashishta P., Singwi K. Electron correlation at metallic densities // Phys. Rev. B. 1972. 6. P. 875–887.

20. Dubinin N.E., Son L.D., Vatolin N.A. The Wills-Harrison approach to the thermodynamics of binary liquid transition-metal alloys // J. Phys. Condens. Matter. 2008. **20**. 114111.

21. Bretonnet J.L., Silbert M. Interionic interactions in transition metals. Application to vanadium // Phys. Chem. Liq. 1992. 24. P. 169–176.

22. Dubinin N.E., Son L.D., Vatolin N.A. Thermodynamic properties of liquid binary transition-metal alloys in the Bretonnet–Silbert model // Defect Diffus. Forum. 2007. 263. P. 105–110.

23. F i m a P., S o b c z a k N. Thermophysical properties of Ag and Ag–Cu liquid alloys at 1098 to 1573 K // Int. J. Thermophys. 2010. **31**. P. 1165–1174.

24. Bretonnet J.L., Derouiche A. Variational thermodynamic calculations for liquid transition metals // Phys. Rev. B. 1991. **43**. P. 8924–8929.

25. Gosh R.C., Amin M.R., Ziauddin Ahmed A.Z., Syed I.M., Bhuiyan G.M.//Appl. Surf. Science. 2012. 258. P. 5527–5532.

https://doi.org/10.1016/j.apsusc.2011.11.118

Influence of Accounting of Non-Diagonal d-d-Electron Couplings on the Effective Pair Interaction in the Equatomonic Cu–Ag Alloy

N. E. Dubinin^{1, 2}

¹Institute of Metallurgy UB RAS, Yekaterinburg, Russia ²Ural Federal University named after the first President B.N. Yeltsin, Yekaterinburg, Russia

Within the framework of the Wills-Harrison model, the effect of taking into account *d*-electron overlaps between two neighboring atoms off-diagonal in terms of the magnetic quantum number on the effective pair interaction in an equiatomic Cu-Ag melt near the melting point has been studied. It was found that an increase in the share of off-diagonal overlaps leads to an increase in the depth of the first minimum and to a shift of its coordinate towards smaller values of the interatomic distance for all three partial pair potentials.

Keywords: transition-metal melts, Wills–Harrison model, model Bretonnet–Silbert pseudopotential, d-d electron overlap, effective pair interaction

REFERENCES

1. Son L.D., Ryltcev R.E., Sidorov V.E., Sordelet D. Structural transformations in liquid metallic glassformers // Mat. Sci. Eng. A. 2007. **582**. P. 449–451.

2. Shubin A.B., Shunyaev K.Yu. Thermodynamic properties of liquid Sc–Al aloys: model calculations and experimental data // J. Phys.: Conf. Ser. 2008. **98**. 032017.

3. Shubin A.B., Shunyaev K.Yu. // Russian Metallurgy (Metally). 2010. № 8. P. 672–677. https://doi.org/10.1134/S0036029510080021

4. Shubin A.B., Shunyaev K.Yu. // Russian Metallurgy (Metally). 2011. №. 2. P. 109–113.

https://doi.org/10.1134/S003602951102011X

5. Qi Y., Wang L., Fang T. Demixing behavior in binary Cu–Co melt // Phys. Chem. Liq., 2013. 51. P. 687–694.

6. Dubinin N.E., Vatolin N.A., Filippov V.V. Thermodynamic perturbation theory in studies of metal melts // Rus. Chem. Rev. 2014. 83. P. 987–1002.

7. Povodator A.M., Tsepelev V.S. Generalized characterization of metallic liquid alloys' properties // Proc. of 2-nd International Conference on Simulation and Modeling: Methodologies, Technologies and Applications (Paris, 09. 08–10. 08. 2015), Destech. Publicat. Inc., 2015. P. 464–467.

8. Ryltsev R.E., Klumov B.A., Chtchelkatchev N.M., Shunyaev K.Yu. // J. Chem. Phys. 2016. 145. 034506.

https://doi.org/10.1063/1.4958631

9. Liu Y., Wang J., Qin J., Schumacher G. // Phys. Chem. Liq. 2016. 54. P. 98-109.

https://doi.org/10.1080/00319104.2015.1084880

10. Son L.D., Sidorov V.E., Katkov N. Statistics and thermodynamics of Fe-Cu alloys at high temperatures // EPJ Web of Conferences. 2017. **151**. UNSP 05003.

11. Klumov B.A., Ryltsev R.E., Chtchelkatchev N.M. // J. Chem. Phys. 2018. **149**. 134501. https://doi.org/10.1063/1.5041325

12. Ryltsev R.E., Klumov B.A., Chtchelkatchev N.M., Shunyaev K.Yu. // J. Chem. Phys. 2018. 149. 164502.

https://doi.org/10.1063/1.5054631

13. Wills J.M., Harrison W.A. Interionic interactions in transition metals // Phys. Rev. B. 1983. 28. P. 4363–4373.

14. Harrison W.A., Froyen S. Uniersal linear-combination-of-atomic-orbitals parameters for *d*-state solids // Phys. Rev. B. 1980. **21**. P. 3214–3221.

15. Ziman J.M. A theory of the electrical properties of liquid metals. I: the monovalent metals // Phil. Mag. 1961. 6. P. 1013-1034.

16. Dubinin N.E. Account of non-diagonal coupling between *d* electrons at describing the transition-metal pair potentials // J. Phys.: Conf. Series. 2012. **338**. 012004.

17. Dubinin N.E. // Russian Metallurgy (Metally). 2013. № 2. P. 157–160.

https://doi.org/10.1134/S0036029513020158

18. Dubinin N.E., Vatolin N.A. // Doklady Physics. 2016. 61. P. 527-530.

https://doi.org/10.1134/S1028335816110033

19. Vashishta P., Singwi K. Electron correlation at metallic densities // Phys. Rev. B. 1972. 6. P. 875–887.

20. Dubinin N.E., Son L.D., Vatolin N.A. The Wills–Harrison approach to the thermodynamics of binary liquid transition-metal alloys // J. Phys. Condens. Matter. 2008. **20**. 114111.

21. Bretonnet J.L., Silbert M. Interionic interactions in transition metals. Application to vanadium // Phys. Chem. Liq. 1992. 24. P. 169–176.

22. Dubinin N.E., Son L.D., Vatolin N.A. Thermodynamic properties of liquid binary transitionmetal alloys in the Bretonnet-Silbert model // Defect Diffus. Forum. 2007. **263**. P. 105–110.

23. Fima P., Sobczak N. Thermophysical properties of Ag and Ag–Cu liquid alloys at 1098 K to 1573 K // Int. J. Thermophys. 2010. **31**. P. 1165–1174.

24. Bretonnet J.L., Derouiche A. Variational thermodynamic calculations for liquid transition metals // Phys. Rev. B. 1991. **43**. P. 8924–8929.

25. Gosh R.C., Amin M.R., Ziauddin Ahmed A.Z., Syed I.M., Bhuiyan G.M. // Appl. Surf. Science. 2012. **258**. P. 5527–5532.

https://doi.org/10.1016/j.apsusc.2011.11.118