УДК 541.135

ЭЛЕКТРОХИМИЧЕСКОЕ ПОВЕДЕНИЕ РЕДОКС ПАРЫ Ті(IV)/Ті(III) В РАСПЛАВЕ КСІ–КF–К₂ТіF₆ В ПРИСУТСТВИИ КАТИОНОВ ЩЕЛОЧНОЗЕМЕЛЬНЫХ МЕТАЛЛОВ

© 2020 г. Д. А. Ветрова^{а, *}, С. А. Кузнецов^а

^а Институт химии и технологии редких элементов и минерального сырья им. И.В. Тананаева Кольского научного центра РАН, Апатиты, Россия

*e-mail: d.vetrova@ksc.ru

Поступила в редакцию 29.11.2019 г. После доработки 08.12.2019 г. Принята к публикации 16.12.2019 г.

Методом циклической вольтамперометрии определены стандартные константы скорости переноса заряда для редокс пары Ti(IV)/Ti(III) в расплаве KCl–KF(10 мас. %)– K_2TiF_6 . Рассчитана энергия активации процесса переноса заряда. Изучено влияние сильнополяризующих катионов Mg²⁺, Ca²⁺, Sr²⁺ и Ba²⁺ на кинетику переноса заряда в редокс паре Ti(IV)/Ti(III) при введении их в исходный расплав. Установлена прямолинейная зависимость констант скорости переноса заряда от ионного потенциала катионов щелочноземельных металлов.

Ключевые слова: расплавы, редокс пара, комплексы титана, квазиобратимый процесс, циклическая вольтамперометрия, стандартные константы скорости переноса заряда

DOI: 10.31857/S0235010620300015

ВВЕДЕНИЕ

Изучению электрохимического поведения титана в хлоридных и хлоридно-фторидных расплавах посвящены работы [1–9]. В исследованиях [1, 2] было показано, что процесс электровосстановления комплексов Ti(IV) до металла является двухстадийным:

$$Ti(IV) + e^- \rightarrow Ti(III),$$
 (1)

$$Ti(III) + 3e^{-} \rightarrow Ti.$$
⁽²⁾

В работах [1, 2] были определены коэффициенты диффузии комплексов Ti(IV) в расплаве эквимолярной смеси NaCl–KCl при различных температурах. Механизм и кинетика процессов электровосстановления и электроокисления ионов титана при введении K_2 TiF₆ в расплав NaCl–KCl–NaF изучены в исследованиях [4–9]. В работах [8, 9] рассчитаны константы скорости переноса заряда редокс пары Ti(IV)/Ti(III) в расплаве (NaCl–KCl)_{экв}–NaF(10 мас. %)– K_2 TiF₆ и определена энергия активации процесса переноса заряда.

Электрохимические исследования титана в расплаве KCl–KF крайне немногочисленны. Лишь в работах [3, 6, 7] было рассмотрено электрохимическое поведение титана в эвтектической смеси KCl–KF. Однако данные по коэффициентам диффузии комплексов титана и константам скорости переноса заряда редокс пары Ti(IV)/Ti(III) в расплаве KCl–KF отсутствуют.

) 2

Целью данной работы являлось изучение кинетики переноса заряда редокс пары Ti(IV)/Ti(III) в расплаве $KCl-KF(10 \text{ мас. }\%)-K_2TiF_6$, определение области квазиобратимости процесса (1) и расчет стандартных констант скорости переноса заряда (k_s), а также установление влияния добавок катионов щелочноземельных металлов (Mg^{2+} , Ca^{2+} , Sr^{2+} и Ba^{2+}) на константы скорости переноса заряда редокс пары Ti(IV)/Ti(III) в указанном расплаве.

МЕТОДИКА

Исследования проводились в диапазоне температур 1073–1173 К методом циклической вольтамперометрии с помощью динамической электрохимической лаборатории "VoltaLab 40" (программное обеспечение "VoltaMaster 4" (версия 6)). Скорость развертки потенциала изменялась в пределах от 0.1 до 2.0 В \cdot с⁻¹. В качестве контейнера для расплава использовался тигель из стеклоуглерода марки СУ-2000, который одновременно являлся вспомогательным электродом. Вольтамперные кривые регистрировались на электроде из стеклоуглерода марки СУ-2000 диаметром 2.0 мм относительно стеклоуглеродного квази-электрода сравнения.

Хлорид калия квалификации "ч. д. а." перекристаллизовывали, прокаливали в муфельной печи, затем помещали в кварцевую реторту. Реторту вакуумировали при комнатной температуре и ступенчатом нагревании до 873 К. Величина остаточного давления составляла 0.66 Па. Затем реторту заполняли аргоном и расплавляли электролит. Фторид калия (марки "ч") очищали двойной перекристаллизацией из расплава. Соль сушили при температуре 673–773 К в вакууме, затем нагревали до температуры на 50 К выше температуры плавления, выдерживали в течение нескольких часов и затем медленно охлаждали со скоростью 3–4 град/ч до температуры на 50 К ниже точки плавления. После затвердевания соли переносили в перчаточный бокс с контролируемой атмосферой (содержание O_2 и $H_2O \le 2$ ppm) и в боксе механически удаляли загрязнения. Гексафторотитанат калия получали путем перекристаллизации из растворов плавиковой кислоты исходного продукта марки "ч".

Хлорид бария марки "х. ч." сушили в вакуумном шкафу при температуре 433 К в течение 24 ч. Фториды магния ("о. с. ч."), бария ("ч. д. а.") и кальция ("ч.") использовались без дополнительной обработки.

Хлорид стронция марки "ч. д. а." сушили в вакуумном шкафу при температуре 523 К в течение 12 ч. После этого соль перекладывали в стеклянные ампулы и помещали в герметичную реторту, которую вакуумировали при одновременном нагреве со скоростью 100 К/час до температуры 823 К.

Фоновый солевой электролит KCl–KF (10 мас. %) помещали в тигель из стеклоуглерода, загружали его в реторту, повторяли вышеописанные операции вакуумирования — плавления и вводили в расплав K_2 TiF₆.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Типичные циклические вольтамперограммы для редокс пары Ti(IV)/Ti(III), полученные на стеклоуглеродном электроде при различных скоростях поляризации, представлены на рис. 1.

На рис. 2*а* представлена зависимость тока пика от корня квадратного из скорости поляризации. Отклонение экспериментальных точек от прямой, проходящей через начало координат, при скоростях поляризации больше $1.0 \text{ B} \cdot \text{c}^{-1}$ указывает на то, что процесс электровосстановления титана в расплаве KCl–KF(10 мас. %)–K₂TiF₆ при более высоких скоростях поляризации, вероятно, является квазиобратимым [10]. Это предположение подтверждается криволинейной зависимостью потенциала пика от

Рис. 1. Циклические вольтамперограммы расплава KCl–KF(10 мас. %)–K₂TiF₆ (C(K₂TiF₆) = $1.22 \cdot 10^{-4}$ моль · см⁻³), T = 1023 К. Скорости поляризации (B · c⁻¹): 0.75 (внутренняя кривая); 1.0, 1.25, 1.5, 1.75, 2.0 (наружная).

логарифма скорости (рис. 2*б*), тогда как для необратимого процесса характерна линейная зависимость в данных координатах.

Коэффициенты диффузии комплексов Ti(IV) в расплаве KCl–KF (10 мас. %) были определены при $v = 0.1 \text{ B} \cdot \text{c}^{-1}$ по уравнению Рэндлса–Шевчика [11]:

$$I_n = 0.4463 F^{3/2} R^{-1/2} T^{-1/2} n^{3/2} A C D^{1/2} v^{1/2},$$
(3)

где I_n – ток катодного пика, А; A – площадь электрода, см²; C – концентрация электроактивных частиц, моль · см⁻³; D – коэффициент диффузии, см² · с⁻¹; v – скорость поляризации, В · с⁻¹; n – число электронов, участвующих в процессе.

Величины коэффициентов диффузии Ti(IV), полученные по уравнению (3), составили для температуры 1073 К (1.34 ± 0.5) \cdot 10⁻⁵ см² · c⁻¹, для температуры 1123 К – (1.72 ± ± 0.5) \cdot 10⁻⁵ см² · c⁻¹ и для температуры 1173 К (2.5 ± 0.5) \cdot 10⁻⁵ см² · c⁻¹.

Температурная зависимость коэффициентов диффузии, представленная на рис. 3, описывается следующим уравнением:

$$\lg D(T) = -1.62 - 3496/T \pm 0.03.$$
⁽⁴⁾

Рис. 2. Зависимость тока пика (*a*) и потенциала пика (*б*) электровосстановления Ti(IV) до Ti(III) от скорости поляризации в системе KCl–KF(10 мас. %)– K_2 TiF₆ (C(K_2 TiF₆) = 1.22 · 10⁻⁴ моль · см⁻³), *T* = 1073 K.

Рис. 3. Зависимость коэффициентов диффузии *D* от температуры в расплаве KCl–KF(10 мас. %)–K₂TiF₆ ($C(K_2TiF_6) = 1.22 \cdot 10^{-4}$ моль · см⁻³) в логарифмических координатах. Скорость поляризации 0.1 В · с⁻¹.

Используя данную зависимость, была рассчитана энергия активации процесса диффузии по уравнению:

$$-\Delta U/2.303R = \partial \lg D/\partial \left(1/T\right).$$
⁽⁵⁾

Величина энергии активации диффузии в расплаве KCl–KF(10 мас. %)–K₂TiF₆ составила 70 ± 11 кДж · моль⁻¹.

В работе [12] Николсоном была разработана теория определения стандартных констант скорости переноса заряда для квазиобратимых редокс процессов по данным циклической вольтамперометрии. Принимая, что формы *Ох* и *Red* растворимы или в растворе, или в материале электрода и переносятся только путем диффузии, Николсон получил решение, которое не может быть представлено в аналитической форме. В работе [12] установлена корреляция между функцией ψ , связанной с разностью потенциалов катодного и анодного пиков (ΔE_p) и стандартной константой скорости переноса заряда:

$$\Psi_T = \frac{k_{\rm s} \left(D_{\rm ox} / D_{\rm red} \right)^{\alpha/2}}{\sqrt{(\pi D_{\rm ox} n F v) / R T}},\tag{6}$$

Рис. 4. Зависимость $k_{\rm s}$ от скорости поляризации при различных температурах в системе KCl–KF(10 мас. %)– K₂TiF₆ (C(K₂TiF₆) = 1.22 · 10⁻⁴ моль · см⁻³).

где α — коэффициент переноса, *n* — число электронов, участвующих в реакции. В оригинальной работе [12] зависимость между функцией ψ и ΔE_p была установлена для α = = 0.5. Это значение α использовалось и в наших расчетах.

Уравнение (6) может быть упрощено, так как обычно $D_{ox}/D_{red} \approx 1$, тогда выражение принимает вид:

$$\Psi_T = \frac{k_{\rm s}}{\sqrt{(\pi D_{\rm ox} n F v)/RT}}.$$
(7)

Для расчета стандартных констант скорости переноса заряда необходимо данные $\Delta E_{\rm p}$ и ψ , приведенные в работе [12] для температуры 298 К, пересчитать на рабочую температуру. Пересчет производился по уравнениям [13]:

$$(\Delta E_{\rm p})_{298} = \frac{(\Delta E_{\rm p})_T 298}{T},$$
(8)

$$\Psi_T = \Psi_{298} \sqrt{\frac{T}{298}}.$$
(9)

Расчет величин (ΔE_p)₂₉₈ и ψ_T по уравнениям (8, 9) позволял с использованием зависимости (7) и величин коэффициента диффузии Ti(IV) рассчитать стандартные константы скорости переноса заряда.

Стандартные константы скорости переноса заряда (k_s) редокс пары Ti(IV)/Ti(III) при различных температурах и скоростях поляризации представлены на рис. 4. Как

Рис. 5. Зависимость $k_{\rm s}$ от температуры в расплаве KCl–KF(10 мас. %)–K₂TiF₆ (C(K₂TiF₆) = $1.22 \cdot 10^{-4}$ моль · см⁻³) в логарифмических координатах. Скорость поляризации $1.5 \text{ B} \cdot \text{c}^{-1}$.

видно из рисунка, k_s не зависят от скорости поляризации и возрастают с увеличением температуры. Увеличение значений констант с ростом температуры обусловлено возрастанием числа частиц с энергией, достаточной для преодоления потенциального барьера [14].

Температурная зависимость стандартных констант скорости переноса заряда в логарифмических координатах (рис. 5) описывается следующим эмпирическим уравнением:

$$\lg k_{\rm s} = (2.01 \pm 0.40) - (4178 \pm 810)/T \tag{10}$$

с коэффициентом корреляции $R^2 = 0.95$.

Из этого уравнения была рассчитана энергия активации переноса заряда, равная $80 \pm 15 \text{ кДж} \cdot \text{моль}^{-1}$. Полученное значение существенно выше энергии активации, рассчитанной для расплава (NaCl-KCl)_{экв}-NaF(10 мас. %)-K₂TiF₆. [8]

На рис. 6 представлены температурные зависимости стандартных констант скорости переноса заряда редокс пары Ti(IV)/Ti(III), полученные для расплавов (NaCl– KCl)_{экв}–NaF(10 мас. %)–K₂TiF₆ [8] и KCl–KF(10 мас. %)–K₂TiF₆. Как видно из рисунка, значения k_s уменьшаются при переходе от расплава (NaCl–KCl)_{экв}– NaF(10 мас. %) к расплаву KCl–KF (10 мас. %) в виду увеличения прочности комплексов титана из-за присутствия во второй координационной сфере катионов калия.

Рис. 6. Зависимость $k_{\rm S}$ от температуры в расплавах KCl–KF(10 мас. %)–K₂TiF₆ (C(K₂TiF₆) = 1.22 · 10⁻⁴ моль · см⁻³) и (NaCl–KCl)_{ЭКВ}–NaF(10 мас. %)–K₂TiF₆ (C(K₂TiF₆) = 2.872 · 10⁻⁴ моль · см⁻³ в логарифмических координатах. Скорость поляризации 1.5 В · с⁻¹.

Исследование влияния сильнополяризующих катионов Mg²⁺, Ca²⁺, Sr²⁺ и Ba²⁺ на кинетику переноса заряда редокс пары Ti(IV)/Ti(III) в расплаве KCl–KF (10 мас. %) показало, что при введении добавок солей щелочноземельных металлов в исходный расплав наблюдается увеличение k_s , достигающее максимального значения при определенном отношении Me²⁺/Ti(IV) (рис. 7). Возрастание значений k_s связано с вытеснением катионами щелочноземельных металлов катионов натрия и калия из второй координационной сферы комплексов титана и уменьшению прочности фторидных комплексов титана. Дальнейшее уменьшение k_s происходит, по-видимому, из-за увеличения вязкости солевого расплава (так как расплавы галогенидов щелочноземельных металлов) и, как следствие, уменьшения коэффициентов диффузии.

Такие же результаты (в пределах погрешности эксперимента) были получены при использовании в качестве добавок как хлоридов, так и фторидов щелочноземельных металлов (рис. 8).

Рис. 7. Зависимость k_s от отношения мольных долей катионов щелочноземельных металлов к Ti(IV) в расплаве KCl–KF(10 мас. %)–K₂TiF₆: Mg²⁺ (*a*), Ca²⁺ (*b*), Sr²⁺ (*b*) и Ba²⁺ (*c*). Скорость поляризации 1.5 B · c⁻¹, T = 1073 K.

Температурные зависимости максимальных значений стандартных констант скорости переноса заряда с добавками катионов щелочноземельных металлов описываются эмпирическими уравнениями:

$$\lg k_{s(Ma^{2+})} = -(0.19 \pm 0.09) - (1150 \pm 240)/T, \tag{11}$$

$$\lg k_{s(C_{2}^{2+})} = -(0.15 \pm 0.01) - (1367 \pm 280)/T,$$
(12)

$$\lg k_{s(Sr^{2+})} = (0.23 \pm 0.04) - (1483 \pm 300)/T,$$
(13)

$$\lg k_{\mathrm{s(Ba^{2+})}} = (0.19 \pm 0.02) - (1710 \pm 350)/T.$$
 (14)

Расчет энергий активации процесса переноса заряда в расплавах с щелочноземельными металлами показал, что их значения (табл. 1) существенно меньше энергии активации исходной системы. Величины энергий активации для расплавов с добавками щелочноземельных металлов имеют тенденцию к уменьшению при переходе от катионов с меньшим ионным потенциалом к катионам с большим ионным потенциалом.

Рис. 8. Зависимость k_s от отношения мольных долей катионов $Ba^{2+} \kappa Ti(IV)$ в системах KCl–KF(10 мас. %)– K₂TiF₆–BaF₂ (C(K₂TiF₆) = 1.21 · 10⁻⁴ моль · см⁻³) и KCl–KF(10 мас. %)–K₂TiF₆–BaCl₂ (C(K₂TiF₆) = 1.19 · 10⁻⁴ моль · см⁻³). *T* = 1073 K.

На рис. 9 показана зависимость максимального значения k_s от ионного потенциала катионов щелочноземельных металлов для расплавов (NaCl–KCl)_{экв}–NaF(10 мас. %)– K_2TiF_6 и KCl–KF(10 мас. %)– K_2TiF_6 . Как видно из рисунка, константы скорости переноса заряда возрастают с увеличением ионного потенциала, для обоих расплавов зависимость носит прямолинейный характер и значения k_s редокс пары Ti(IV)/Ti(III) в системах с добавками сильнополяризующих катионов имеют большие значения для расплава на основе эквимолярной смеси NaCl–KCl.

Катион	<i>E</i> _a , кДж/моль
Mg^{2+}	22 ± 4
Ca ²⁺	26 ± 5
Sr ²⁺	28 ± 5
Ba ²⁺	33 ± 7

Таблица 1. Энергия активации переноса заряда в расплаве KCl–KF(10 мас. %)–K₂TiF₆ при введении в расплав сильнополяризующих катионов

Рис. 9. Зависимость максимального значения стандартной константы скорости переноса заряда от ионного потенциала щелочноземельных металлов в расплавах $KCl-KF(10 \text{ мас. }\%)-K_2TiF_6$ и $(NaCl-KCl)_{3KB}-NaF(10 \text{ мас. }\%)-K_2TiF_6$. T = 1073 K.

ЗАКЛЮЧЕНИЕ

В работе была изучена кинетика переноса заряда редокс пары Ti(IV)/Ti(III) в расплаве KCl–KF(10 мас. %)– K_2 TiF_{6.} Установлена область квазиобратимости процесса переноса заряда в данной редокс паре. По методу Николсона были рассчитаны стандартные константы скорости переноса заряда (k_s). Показано, что стандартные константы скорости переноса заряда не зависят от скорости поляризации и возрастают с увеличением температуры, что обусловлено повышением тепловой энергии системы и увеличением числа частиц, обладающих энергией, необходимой для преодоления активационного барьера.

Было изучено влияние сильнополяризующих катионов Mg^{2+} , Ca^{2+} , Sr^{2+} и Ba^{2+} на кинетику переноса заряда редокс пары Ti(IV)/Ti(III) в расплаве KCl–KF(10 мас. %)– K_2 TiF₆. Установлено, что величины констант скорости переноса заряда возрастают с увеличением ионного потенциала, достигая максимального значения для комплексов с внешнесферными катионами магния.

Определены энергии активации процесса переноса заряда для фторидных комплексов редокс пары Ti(IV)/Ti(III) в расплаве $KCl-KF(10 \text{ мас. }\%)-K_2TiF_6$ и в системах с щелочноземельными металлами. Величины энергий активации в расплавах с добавками сильнополяризующих катионов существенно ниже энергии активации исходной системы и имеют тенденцию к уменьшению при переходе от катионов с меньшим ионным потенциалом к катионам с большим ионным потенциалом.

Работа выполнена при финансовой поддержке РФФИ (грант № 15-03-02290_а).

СПИСОК ЛИТЕРАТУРЫ

- Polyakova L.P., Stangrit P.T., Polyakov E.G. Electrochemical study of titanium in chloride-fluoride melts // Electrochim. Acta. 1986. 31. P. 159–161.
- Sequeira C.A. Chronopotentiometric study of titanium in molten NaCl + KCl + K₂TiF₆ // J. Electroanal. Chem. 1988. 239. № 1–2. P. 203–208.
- Полякова Л.П., Стогова Т.В. Исследование механизма взаимодействия титана с хлориднофторидными расплавами // ЖПХ. 1985. № 7. С. 1470–1473.
- 4. Polyakova L.P., Taxil P., Polyakov E.G. Electrochemical behaviour and codeposition of titanium and niobium in chloride–fluoride melts // Alloys and Compd. 2003. **359**. P. 244–255.
- Malyshev V., Gab A., Bruskova D.-M., Astrelin I., Popescu A.-M., Constantin V. Electroreduction processes involving titanium and boron species in halide melts. // Revue Roumaine de Chimie. 2009. 54. № 1. P. 5–25.
- Norikawa Y., Yasuda K., Nohira T. Electrochemical behavior of Ti(III) ions in KCl–KF eutectic melt // The Electrochem. Soc. of Japan. 2018. 86. № 2. P. 99–103.
- 7. Norikawa Y., Yasuda K., Nohira T. Electrodeposition of titanium in a water-soluble KCl−KF molten salt // Materials Transactions. 2017. 58. № 3. P. 390–394.
- Ветрова Д.А., Казакова О.С., Кузнецов С.А. Изучение электрохимического поведения редокс-пары Ti(IV)/Ti(III) в расплаве NaCl-KCl-K₂TiF₆ для оптимизации электрорафинирования титана и синтеза сплавов на его основе // ЖПХ. 2014. 87. № 4. С. 446–450.
- Ветрова Д.А., Кузнецов С.А. Влияние сильнополяризующих катионов на кинетику переноса заряда редокс-пары Ti(IV)/Ti(III) в хлоридно-фторидном расплаве // Труды Кольского Научного Центра РАН. Апатиты. 2015. С. 214–217.
- 10. Nicholson R.S., Shain J. Theory of stationary electrode polarography // Anal. Chem. 1964. **36**. № 4. P. 706–723.
- 11. Делахей П. Новые приборы и методы в электрохимии. М.: ИИЛ, 1957.
- 12. Nicholson R.S. Theory and application of cyclic voltammetry for measurement of electrode reaction kinetics // Anal. Chem. 1965. 37. № 11. P. 1351–1355.
- Кузнецов С.А., Кузнецова С.В., Стангрит П.Т. Катодное восстановление тетрахлорида гафния в расплаве эквимольной смеси хлоридов натрия и калия // Электрохимия. 1990. 26. С. 63–68.
- 14. Дамаскин, Б.Б., Петрий, О.А. Введение в электрохимическую кинетику. М.: Высшая школа, 1975.
- Matsuda H., Ayabe Y. Zur Theorie der Randles-Sevcikschen kathodenstrahl-polarographie // Z. Elektrochem. 1955. 59. P. 494–503.

THE REDOX COUPLE Ti(IV)/Ti(III) ELECTROCHEMICAL BEHAVIOUR IN KCI–KF–K₂TiF₆ MELT WITH ADDITION OF ALKALINE EARTH METAL CATIONS

D. A. Vetrova¹, S. A. Kuznetsov¹

¹Institute of Chemistry, Kola science Centre of the Russian Academy of Sciences, Apatity, Russia

The charge transfer kinetic for the redox couple Ti(IV)/Ti(III) in the KCl–KF(10 wt %)– K_2TiF_6 was studied. The standard rate constants of charge transfer (k_s) for the redox couple Ti(IV)/Ti(III) in the KCl–KF(10 wt %)– K_2TiF_6 melt and the activation energies of charge transfer were calculated. Influence of strongly polarizing cations on the charge transfer kinetics was studied. It was determined the linear dependence of k_s on ionic potential of alkali earth metal cation. The activation energies of charge transfer in case of strongly polarizing cations addition were calculated.

Keywords: melt, redox couple, titanium complexes, quasi-reversible process, cyclic voltammetry, standard rate constants of charge transfer

REFERENCES

- Polyakova L.P., Stangrit P.T., Polyakov E.G. Electrochemical study of titanium in chloride-fluoride melts // Electrochim. Acta. 1986. 31. P. 159–161.
- Sequeira C.A. Chronopotentiometric study of titanium in molten NaCl + KCl + K₂TiF₆ // J. Electroanal. Chem. 1988. 239. № 1–2. P. 203–208.
- Polyakova L.P., Stogova T.V. Issledovanie mekhanizma vzaimodeistviya titana s chloridno-ftoridnimy rasplavami. [Study of titanium and chloride fluoride melts interaction mechanism] // J. Prikladnoi Himii. [Russian Journal of Applied Chemistry] 1985. № 7. P. 1470–1473. (In Russian).
- 4. Polyakova L.P., Taxil P., Polyakov E.G. Electrochemical behaviour and codeposition of titanium and niobium in chloride–fluoride melts // Alloys and Compd. 2003. **359**. P. 244–255.
- 5. Malyshev V., Gab A., Bruskova D.-M., Astrelin I., Popescu A.-M., Constantin V. Electroreduction processes involving titanium and boron species in halide melts. // Revue Roumaine de Chimie. 2009. 54. № 1. P. 5–25.
- Norikawa Y., Yasuda K., Nohira T. Electrochemical behavior of Ti(III) ions in KCl–KF eutectic melt // The Electrochem. Soc. of Japan. 2018. 86. № 2. P. 99–103.
- 7. Norikawa Y., Yasuda K., Nohira T. Electrodeposition of titanium in a water-soluble KCl–KF molten salt // Materials Transactions. 2017. 58. № 3. P. 390–394.
- 8. Vetrova D.A., Kazakova O.S., Kuznetsov S.A. Izuchenie elektrohimicheskogo povedeniya redoks pary Ti(IV)/Ti(III) v rasplave NaCl-KCl-K₂TiF₆ dlya optimizatsii elektrorafinirovaniya titana i sinteza splavov na ego osnove [A Study of the Electrochemical Behaviour of the Ti(IV)/Ti(III) Redox Couple in the NaCl-KCl-K₂TiF₆ Melt in Order To Optimize the Electrorefining of Titanium and Synthesis of Alloys Based on This Metal] // Jurnal Prikladnoi Himii. 2014. 87. № 4. P. 446–450. (In Russian).
- Vetrova D.A., Kuznetsov S.A. Vliyanie silnopolyarizuyshchih kationov na kinetiku perenosa zaryada redox pary Ti(IV)/Ti(III) v chloridno-ftoridnom rasplave [Influence of strongly polarizing cations on the redox couple Ti(IV)/Ti(III) charge transfer kinetics in chloride-fluoride melt] // Proceedings of the Kola Science Center RAS. Apatity. 2015. P. 214–217. (In Russian).
- 10. Nicholson R.S., Shain J. Theory of stationary electrode polarography // Anal. Chem. 1964. **36**. № 4. P. 706–723.
- Delahay P. Novie pribory i metody v elektrohimii. [New devices and methods in electrochemistry]. Moscow, 1957. (In Russian).
- 12. Nicholson R.S. Theory and application of cyclic voltammetry for measurement of electrode reaction kinetics // Anal. Chem. 1965. 37. № 11. P. 1351–1355.
- Kuznetsov S.A., Kuznetsova S.V., Stangrit P.T. Katodnoe vosstanovlenie tetrahlorida gafniya v rasplave ekvimol'noj smesi hloridov natriya i kaliya. [Cathodic reduction of hafnium tetrachloride in a melt of an equimolar sodium chloride-potassium chloride mixture] // Elektrohimiya. 1990. 26. P. 63–68. (In Russian).
- 14. Damaskin B.B., Petriy O.A. Vvedenie v elektrohimicheskuyu kinetiku. [Introduction of electrochemical kinetics]. Moscow, Vysshaya Shkola Publ., 1975. (In Russian).
- Matsuda H., Ayabe Y. Zur Theorie der Randles-Sevcikschen kathodenstrahl-polarographie // Z. Elektrochem. 1955. 59. P. 494–503.