УДК [546.791.4'131:546.311'131]:66.048

ЛЕТУЧЕСТИ КОМПОНЕНТОВ НАСЫЩЕННЫХ ПАРОВ РАСТВОРОВ UCl₄ В РАСПЛАВЛЕННОЙ ЭКВИМОЛЬНОЙ СМЕСИ NaCl-KCl

© 2021 г. А. Б. Салюлев^{а, *}, В. Я. Кудяков^а, Н. И. Москаленко^а

^аИнститут высокотемпературной электрохимии УрО РАН, Екатеринбург, Россия *e-mail: salyulev@ihte.uran.ru

> Поступила в редакцию 02.09.2020 г. После доработки 19.09.2020 г. Принята к публикации 02.10.2020 г.

Измерены методом потока летучести компонентов насыщенных паров расплавленных смесей UCl₄–NaCl–KCl, содержащих 2.0, 5.0, 12.2, 25.1, 32.9 и 49.7 мол. % UCl₄ в интервале температур 880–1200 К. Определен химический состав насыщенных паров. Сделан вывод о присутствии в паровой фазе двойных соединений наиболее вероятного состава NaUCl₅ и KUCl₅, вносящих заметный вклад в общее давление паров над расплавленными смесями. Найдено, что исследованные расплавленные смеси проявляют отрицательные отклонения от идеального поведения.

Ключевые слова: испарение, летучесть, состав паров, расплавленные смеси, NaCl-KCl, UCl₄

DOI: 10.31857/S0235010621030117

введение

При организации процессов получения металлического урана высокотемпературными методами и регенерации отработанного ядерного топлива на его основе необходимо знать летучести компонентов насыщенных паров расплавленных солевых смесей, содержащих соединения урана, в частности, его тетрахлорид. Летучесть является одним из важных параметров, определяющих течение различных высокотемпературных процессов. С ней, в частности, связаны возможные потери ценных компонентов солевых расплавов в результате испарения. Однако сведений по летучести тетрахлорида урана из его бинарных, тройных или многокомпонентных высокотемпературных смесей с хлоридами щелочных металлов в доступной литературе практически нет, за исключением наших данных для расплавов UCl₄–CsCl и UCl₄–LiCl [1].

В настоящем сообщении приведены результаты экспериментальных исследований летучести компонентов и химического состава паров растворов UCl₄ в расплавленной эквимольной смеси NaCl-KCl – одной из наиболее интересных солевых систем с практической точки зрения.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В работе использовали хлориды натрия и калия марки "х. ч.". Их сушили при пониженном давлении (~1 Па) в течение 60–80 ч, постепенно повышая температуру до температуры плавления. Безводный тетрахлорид урана синтезировали хлорированием двуокиси урана тетрахлоридом углерода марки "ос. ч." [2–5]. Полученный продукт многократно дистиллировали в вакууме и в токе инертного газа для отделения легколетучих (UCl₅) и возможных труднолетучих примесей. По данным химического анализа атомное отношение Cl/U в полученном продукте составляло 3.95. Приготовленные таким образом соли брали в требуемых соотношениях и сплавляли в кварцевых пробирках в инертной атмосфере. Расплавы быстро охлаждали во избежание ликвации. Взвешивание и загрузку солей и их плавов в кварцевые приборы проводили в сухом боксе с P₂O₅ в атмосфере азота.

Для измерения летучестей компонентов насыщенных паров расплавленных смесей UCl₄—NaCl—KCl нами был использован, как и ранее [1, 6, 7], надежный динамический тензиметрический метод — метод переноса [9]. Его сущность заключается в отборе определенного объема инертного газа-носителя, насыщенного при заданной температуре парами солей, с последующей их конденсацией в условиях практической неизменности состава жидкой солевой фазы.

Методика эксперимента и конструкция измерительного прибора, изготовленного из кварцевого стекла, были подробно описаны ранее [6–8]. Для опытов брали достаточно большие навески плавов солей (по 20-40 г), чтобы свести к минимуму (не более 0.15-0.20%) изменение их состава в результате частичного испарения компонентов. В качестве газа-носителя использовали гелий марки "ос. ч.". Его очищали от примесей кислорода и влаги медленным пропусканием через две колонки с активированным углем, поддерживаемым при температуре кипения жидкого азота, через две емкости с расплавленным металлическим литием и через кварцевую пробирку, заполненную стружкой циркония, нагретой до температуры 1150 К. Скорость газового потока ($2.5 \cdot 10^{-7} - 7 \cdot 10^{-7} \text{ м}^3$ /с) подбирали таким образом, чтобы обеспечить равновесие между расплавленной солевой и паровой фазами и свести к минимуму (не более 0.3-0.5%) вклад диффузионной составляющей в общий перенос паров из испарителя в конденсатор прибора [1, 6-8]. Для этого испаритель и конденсатор были соединены друг с другом кварцевым капилляром диаметром 1 мм и длиной около 20 мм. Количество пропушенного газа-носителя определяли по объему вытесненной воды из газосборника. Ячейки с солями нагревали в электропечи сопротивления, снабженной массивным металлическим блоком. Температуру расплава, фиксируемую Pt/Pt-Rh термопарой, поддерживали постоянной при заданных значениях в пределах ±1 К.

Пары солей конденсировались за капилляром в съемных кварцевых конденсаторах. Их взвешивали до и после опыта на аналитических весах типа АДВ-200М и определяли вес конденсата паров с точностью 0.2 мг. Собранный конденсат смывали бидистиллированной водой и анализировали на содержание урана, натрия и калия. Уран находили весовым или фотоколориметрическим методом с арсеназо III, щелочной металл – по атомно-абсорбционным спектрам на спектрофотометре фирмы Perkin-Elmer, США. Ошибки определения урана и щелочных металлов, в зависимости от их содержания в конденсатах паров и применявшегося метода анализа, составляли от 2 до 10%.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Найдено, что концентрация тетрахлорида урана в насыщенных парах его растворов в расплавленной эквимольной смеси NaCl–KCl возрастает с температурой для всех составов жидкой фазы за исключением расплава с 50 мол. % UCl₄. Для последнего концентрация UCl₄ в парах, в пределах погрешности аналитических определений, остается постоянной (рис. 1).

При неизменной температуре концентрация UCl₄ в газовой фазе возрастает при увеличении его концентрации в расплаве (рис. 1, 2). На рис. 2 приведена также изотерма 4 (1073 K), построенная на основании литературных данных по давлению насыщенных паров над чистыми жидкими NaCl, KCl [10, 11] и UCl₄ [4, 12] в предположении идеального смешения компонентов расплавов UCl₄–NaCl–KCl. Можно видеть,

Рис. 1. Температурная зависимость концентрации UCl₄ в насыщенных парах над его растворами в расплавленной эквимольной смеси NaCl–KCl, содержащей: 1 - 2.0; 2 - 5.0; 3 - 12.2; 4 - 25.1; 5 - 32.9; 6 - 49.7 мол. % UCl₄.

что реальные расплавленные смеси UCl_4 –NaCl–KCl значительно отклоняются от идеального поведения в сторону меньших летучестей UCl_4 , причем тем в большей степени, чем ниже температура. Это свидетельствует о достаточно сильном взаимодействии компонентов в расплаве.

Рассматриваемые расплавленные смеси, содержащие менее 17-27 мол. % UCl₄, в интервале температур 973-1173 К при длительной неизотермической выдержке будут обогащаться тетрахлоридом урана (рис. 2) несмотря на то, что последний является самым легколетучим индивидуальным компонентом. Напротив, более высококонценрированные растворы UCl₄ будут при указанных условиях обедняться тетрахлоридом. Отмеченный факт очень важен с практической точки зрения.

Химический анализ конденсатов не позволяет однозначно судить о молекулярном составе насыщенных паров над расплавленными смесями. В парах реальных солевых систем могут присутствовать кроме мономерных и димерных (полимерных) молекул (NaCl, KCl, Na₂Cl₂, K₂Cl₂ [9–11, 13–15], UCl₄ [4, 5, 12, 15, 16]) также смешанные соединения (NaKCl₂ [9, 11, 13, 15, 17], NaUCl₅, KUCl₅ [14] и др.). Поэтому определение парциальных давлений различных молекулярных форм (которых может быть много) в парах над многокомпонентными расплавленными смесями представляет собой очень сложную задачу [9, 11, 14, 15, 18]. Однако, зная количества возгонов и их элементный состав, по известным соотношениям [6–9] легко можно рассчитать летуче-

Рис. 2. Изменение концентрации UCl₄ в насыщенных парах в зависимости от состава его растворов в расплавленной эквимольной смеси NaCl–KCl при 973 (*I*), 1073 (*2*) и 1173 К (*3*); для идеального поведения смесей при 1073 К (*4*).

сти компонентов в предположении, что в паровую фазу из солевых расплавов UCl_4 , NaCl и KCl переходят только в виде мономерных молекул:

$$f_i = n_i \cdot P / (\sum n_i + N), \tag{1}$$

где f_i – летучесть, n_i – число молей *i*-го компонента, перенесенного в конденсатор; N – число молей пропущенного газа-носителя; P – общее давление в камере насыщения.

Летучести UCl₄, NaCl, KCl меняются с температурой согласно эмпирическим уравнениям вида $\lg f = A - B/T$. Значения постоянных *A* и *B*, определенных из экспериментальных данных методом наименьших квадратов, приведены в табл. 1. Здесь же дан среднеквадратичный разброс экспериментальных точек, Δ .

Рассчитанные таким образом летучести компонентов характеризуют суммарную способность каждого компонента раствора (расплавленных смесей) — хлоридов урана, натрия или калия, переходить в паровую фазу независимо от того, в каких молекулярных формах он испаряется и находится в газовой фазе. Такая характеристика особено полезна на практике, где весьма часто важно количественно оценивать переход вещества из конденсированной фазы в газообразную и относительную улетучиваемость различных компонентов в случае сложных смесей.

Летучесть всех компонентов расплавленных смесей UCl₄–NaCl–KCl увеличивается с ростом температуры (рис. 3). У тетрахлорида урана она возрастает с повышением его содержания в жидкой фазе и при концентрациях свыше 25–31 мол. % начинает превышать летучесть хлоридов щелочных металлов. Летучесть же хлоридов натрия и калия сначала почти не меняется (или слабо уменьшается) с понижением их содержания в расплавах, а затем начинает возрастать. Наибольшая летучесть NaCl и KCl наблюдается из расплавленных смесей с минимальной концентрацией хлоридов щелочных

	<i>Т</i> , К	n*	$\lg f = A - B/T \pm \Delta$, Πa								
[UCl ₄], мол. %			UCl ₄			NaCl			KCl		
			Α	В	Δ	Α	В	Δ	A	В	Δ
2.0	1015-1200	12	9.9	10900	0.02	10.5	9500	0.01	10.5	9500	0.01
5.0	970-1170	14	10.3	10900	0.02	10.3	9200	0.02	10.2	9200	0.02
12.2	945-1160	12	10.6	10900	0.02	10.1	9000	0.02	10.0	9000	0.02
25.1	915-1165	10	11.2	10 600	0.01	8.5	7500	0.04	8.5	7500	0.04
32.9	900-1160	10	11.1	9600	0.01	8.8	7500	0.01	8.7	7500	0.01
49.7	880-1150	9	10.4	7400	0.02	9.6	7400	0.02	9.4	7400	0.02

Таблица 1. Коэффициенты уравнений температурной зависимости летучестей компонентов растворов UCl₄ разных концентраций в расплавленной эквимольной смеси NaCl–KCl

* Количество экспериментальных точек.

металлов (рис. 3). Это однозначно свидетельствует о том, что из расплавленных смесей UCl₄—NaCl—KCl хлориды щелочных металлов испаряются не только в виде мономеров, димеров MCl и M₂Cl₂ и смешанных димеров NaKCl₂ [9–11, 13–15, 17], но и в виде их двойных соединений с более летучим компонентом — тетрахлоридом урана: M_nUCl_{4+n} (M — щелочной металл), из которых, согласно литературным сведениям [14] и результатам наших исследований [1], преобладают комплексы типа MUCl₅. Их вклад в летучесть хлоридов натрия и калия — наибольший у расплавленных смесей с максимальной концентрацией тетрахлорида урана.

Действительно, для реакций равновесия в паровой фазе

$$MUCl_5 = MCl + UCl_4$$
(2)

можно записать уравнения

$$K = P_{\text{MCl}} \cdot P_{\text{UCl}_4} / P_{\text{MUCl}_5} \text{ или } P_{\text{MUCl}_5} / P_{\text{MCl}} = P_{\text{UCl}_4} / K, \tag{3}$$

где K – константа равновесия реакции (2), P – парциальные давления MCl, UCl₄ или MUCl₅, M = Na, K.

При повышении концентрации UCl₄ в расплавленных смесях (и соответствующем понижении концентрации MCl) P_{MCl} должно уменьшаться, а P_{MUCl_5} , согласно уравнению (3) — возрастать симбатно с P_{UCl_4} , внося все больший вклад в суммарный переход в пар, т.е. в летучесть ($P_{MCl} + P_{MUCl_5}$) хлорида каждого щелочного металла, что и наблюдается экспериментально (рис. 3).

Приведенная упрощенная схема (в которой не учтено присутствие в парах частиц Na_2Cl_2 , K_2Cl_2 и $NaKCl_2$) тем не менее позволяет качественно объяснить основные причины "аномального" хода летучести хлорида щелочного металла с его концентрацией в расплавах. Отметим, что аналогичный тип концентрационного изменения летучести хлорида щелочного металла в результате его частичного соиспарения с летучими комплексами $MUCl_5$ и $MThCl_5$ был зафиксирован нами для расплавленных смесей UCl_4 –MCl (M = Cs, Li) [1] и $ThCl_4$ –MCl (M = Cs, Rb, K, Na, Li) [19].

У расплавленных смесей UCl₄—NaCl—KCl менее летучий в индивидуальном состоянии (по сравнению с KCl) хлорид натрия [10, 11] становится более летучим (рис. 3). Различие в летучестях становится наибольшим у расплава с максимальной концентрацией тетрахлорида. Это также может быть следствием совместного испарения хлоридов натрия и калия с UCl₄ в составе газообразных комплексов.

Рис. 3. Изотермы летучестей компонентов из растворов UCl₄ в расплавленной эквимольной смеси NaCl– KCl: *1, 2, 5* – UCl₄, *3, 6, 8* – NaCl, *4, 7, 9* – KCl; *1, 3, 4* – 1173 K, *2, 6, 7* – 1073 K, *5, 8, 9* – 973 K.

Имеющиеся в нашем распоряжении экспериментальные данные для расплавленных смесей UCl₄–NaCl–KCl, UCl₄–CsCl и UCl₄–LiCl [1] позволяют проследить тенденции в изменении летучести тетрахлорида урана в зависимости от температуры, концентрации и природы соли-растворителя (табл. 2).

Летучесть UCl₄ возрастает на 1–2 порядка при увеличении температуры от 973 до 1173 К. При понижении концентрации тетрахлорида в расплавленных смесях с 50 до 2 мол. % $f_{\rm UCl_4}$ уменьшается на несколько порядков своей величины: на 4–5 порядков – для смесей с CsCl, на 3–4 порядка – для смесей с NaCl–KCl и приблизительно на 2 порядка – для смесей с LiCl. При одинаковых температурах летучесть UCl₄ понижается на 1–3 порядка при переходе от смесей UCl₄–LiCl к смесям UCl₄–CsCl (для расплавленных смесей UCl₄–NaCl–KCl $f_{\rm UCl_4}$ имеет промежуточные значения). Наибольшие изменения в летучести тетрахлорида урана для рассматриваемых переходов фиксируются при минимальных температурах и концентрациях UCl₄ в расплавах, а также в случае расплавленных смесей UCl₄–CsCl.

ТК	Концентрация UCl ₄ в расплаве, мол. %									
1, К	2.0	50.0	2.0	50.0	2.0	50.0				
	UCl ₄ -	-LiCl	UCl ₄ -N	aCl–KCl	UCl ₄ –CsCl					
973	$1.28 \cdot 10^1$	$4.22 \cdot 10^{3}$	$4.98 \cdot 10^{-2}$	$6.48 \cdot 10^2$	$3.50 \cdot 10^{-3}$	$6.23 \cdot 10^2$				
1073	$7.17 \cdot 10^1$	$2.06 \cdot 10^{4}$	$5.52 \cdot 10^{-1}$	$3.35 \cdot 10^{3}$	$7.19 \cdot 10^{-2}$	$3.89 \cdot 10^{3}$				
1173	$2.99 \cdot 10^2$	$7.70 \cdot 10^4$	4.05	$1.31 \cdot 10^4$	$8.82 \cdot 10^{-1}$	$1.77 \cdot 10^4$				

Таблица 2. Летучесть тетрахлорида урана (в Па) в насыщенных парах над растворами UCl₄ в расплавленной эквимольной смеси NaCl–KCl

Резкое понижение летучести тетрахлорида урана при замене соли-растворителя в ряду LiCl, NaCl–KCl, CsCl и при понижении концентрации UCl₄ с максимальной до минимальной в расплавах происходит, очевидно, в результате комплексообразования при взаимодействии тетрахлорида урана с хлоридами щелочных металлов в исследованных расплавленных смесях. При невысоких концентрациях UCl₄ образуются комплексные хлоридные анионы UCl₇^{3–}, UCl₆^{2–}, а в концентрированных растворах, кроме того, – полимерные $U_2Cl_{10}^{2–}$, $U_3Cl_{14}^{2–}$, в которых атомы металла связаны между собой мостиковыми атомами хлора [20]. В расплавленных смесях родственных систем ThCl₄–MCl (M = Cs, Rb, K, Na, Li) с помощью спектроскопии KPC зафиксированы комплексные ионы тех же стехиометрических составов [21].

Прочность комплексных анионов четырехвалентного урана возрастает по мере понижения контрполяризующего воздействия щелочных катионов в ряду от Li⁺ к Cs⁺ на анионы хлора, входящие в состав хлорокомплексных группировок. Это приводит к понижению летучести UCl₄ в том же направлении. Наиболее отчетливо рассматриваемая тенденция должна проявляться в области с наиболее сильным комплексообразованием UCl₄ – в его разбавленных растворах (с 2–5 мол. %) в расплавленных смесях, где коэффициенты активности тетрахлорида урана, как и многих других поливалентных хлоридов, близки к постоянной минимальной величине [22].

На рис. 4 представлена летучесть тетрахлорида урана для таких разбавленных растворов при температурах 1173 и 1073К в зависимости от обратных величин эффектив-

Рис. 4. Изотермы летучести UCl₄ из его разбавленных растворов в расплавленных CsCl, LiCl или эквимольной смеси NaCl–KCl, содержащих 2.0 мол. % UCl₄.

ных ионных радиусов щелочных металлов по Шеннону [23]. В случае эквимольной смеси NaCl–KCl в качестве эффективного радиуса катиона соли-растворителя взято среднеарифметическое значение радиусов Na⁺ и K⁺. Наблюдается практически линейное изменение $f_{\rm UCl_4}$ в зависимости от обратного радиуса (ионного момента) щелочных катионов. Подобную зависимость уже наблюдали для различных термодинамических функций галогенидов других поливалентных элементов [19, 22, 24, 25]. Это дает возможность оценивать летучесть тетрахлорида урана из экспериментально еще не исследованных его расплавленных смесей с хлоридами щелочных металлов.

ЗАКЛЮЧЕНИЕ

Измерены впервые летучести компонентов насыщенных паров расплавленных смесей UCl_4 –NaCl–KCl, содержащих от 2 до ~50 мол. % UCl_4 , в широком интервале температур. Определен химический состав насыщенных паров. Сделан вывод о присутствии в них летучих комплексных соединений наиболее вероятного состава NaUCl₅ и KUCl₅.

Экспериментальные факты, установленные ранее и в настоящей работе, свидетельствуют о том, что в среде расплавленных хлоридов щелочных металлов ионы U^{4+} входят в состав комплексных анионных группировок, прочность которых возрастает при понижении концентрации ионов урана в растворах и уменьшении контрполяризующего воздействия на них со стороны щелочных катионов при переходе от LiCl к NaCl– KCl и к CsCl.

Работа (частично) выполнена с использованием оборудования центра коллективного пользования "Состав вещества" ИВТЭ УрО РАН.

СПИСОК ЛИТЕРАТУРЫ

- 1. Смирнов М.В., Кудяков В.Я., Салюлев А.Б., Комаров В.Е., Посохин Ю.В., Афоничкин В.К. Летучести компонентов насыщенных паров расплавленных смесей UCl₄-CsCl и UCl₄-LiCl // Радиохимия. 1979. **21**. № 1. С. 18-21.
- 2. Yoshimura T., Miyake Ch., Imoto Sh. Preparation of anhydrous uranium tetrachloride and measurements on its magnetic susceptibility // J. Nucl. Sci. and Technol. 1971. 8. № 9. P. 498–502.
- 3. Katz J.J., Seaborg G.T., Morss L.R. Chemistry of the actinide elements. London, N.Y.: Chapman and Hall. 1987. 1.
- 4. Katz J.J., Rabinowitch E. The chemistry of uranium: The element, its binary and related compounds. N.Y., London: McGraw-Hill Book Company, Inc. 1951. Part 1.
- 5. Brown D. The halides of the lanthanides and actinides. London, N.Y., Sydney, Tokyo, Mexico: John Wiley and Sons Ltd. 1968.
- 6. Смирнов М.В., Кудяков В.Я., Худоложкин В.Н., Шерстобитова И.А. Летучести компонентов расплавленных смесей KCl–ThCl₄ // Труды Ин-та электрохим. УНЦ АН СССР. 1972. № 18. С. 33–40.
- 7. Смирнов М.В., Худоложкин В.Н., Кудяков В.Я., Шерстобитова И.А. Летучесть и активность ThCl₄ и CsCl в их расплавленных смесях // Труды Ин-та электрохим. УНЦ АН СССР. 1973. № 20. С. 27–32.
- 8. Салюлев А.Б. Давление насыщенных паров и термодинамика растворов тетрахлорида гафния в расплавленных хлоридах щелочных металлов и их бинарных смесях. Дис. ... канд. хим. наук. Свердловск, 1981.
- 9. Суворов А.В. Термодинамическая химия парообразного состояния. Л.: Химия. 1970.
- 10. Roine A. HSC Chemistry 7.0 Thermochemical Database. Finland: Outokumpu Research Oy. 2009.
- Миронов В.Л., Бурылев Б.П. Давление насыщенного пара индивидуальных хлоридов и их бинарных смесей // Успехи термодинамики расплавов: материалы Всесоюзного семинара. Краснодар. 1976. С. 25–84.
- Singh Z., Prasad R., Venugopal V., Sood D.D. The vaporization thermodynamics of uranium tetrachloride // J. Chem. Thermodynamics. 1978. 10. P. 129–124.
- Wang L.L., Wallace T.C. Vacuum evaporation of KCl-NaCl salts: Part I. Thermodinamic modeling of vapor pressures of solid and liquid solutions // Metallurg. and Mater. Trans. 1996. 27B. P. 141-146.

- 14. Шугуров С.М. Термическая устойчивость неорганических ассоциатов в газовой фазе. Дис. ... д-ра хим. наук. Санкт-Петербург, 2018.
- 15. Binnewies M., Schäfer H. Gasförmige Halogenidkomplexe und ihre Stabilität // Z. Anorg. Allg. Chem. 1974. 407. № 3. P. 327–344.
- 16. Arthers S.A., Beattie I.R. The vibrational spectra of some tetrachlorides in rare gas matrices with particular reference to the molecular shapes of ThCI₄ and UCI₄ // J. Chem. Soc., Dalton Trans. 1984. № 23. P. 819–826.
- 17. Zhang Ya., Shibata E., Kasai E., Nakamura T. Vapor pressure measurements for metal chloride systems by the Knudsen effusion method // Materials Trans. 2005. 46. № 6. P. 1348–1353.
- Салюлев А.Б., Москаленко Н.И., Шишкин В.Ю., Зайков Ю.П. Селективное испарение компонентов расплавленных смесей (LiCl–KCl)_{эвт}–BaCl₂–SrCl₂–NdCl₃ при пониженных давлениях // Расплавы. 2020. № 4. С. 363–374.
- 19. Smirnov M.V., Kudyakov V.Ya. The saturation vapor pressure and decomposition potential of ThCl₄ solutions in molten alkali chlorides // Electrochim. Acta. 1984. **29**. № 1. P. 63–68.
- 20. Li B., Dai S., Jiang D. First principles dynamic simulations of UCl_n−NaCl (n = 3, 4) molten salts // ACS Appl. Energy Mater. 2019. **2**. № 3. P. 2122–2128.
- Photiadis G.M., Papatheodorou G.N. Co-ordination of thorium(IV) in molten alkali-metal chlorides and the structure of liquid and glassy thorium(IV) chloride // J. Chem. Soc., Dalton Trans. 1999. № 20. P. 3541–3548.
- 22. Смирнов М.В. Электродные потенциалы в расплавленных хлоридах. М.: Наука. 1973.
- Shannon R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides // Acta Crystallogr. 1976. A32. P. 751–767.
- 24. Salyulev A.B., Smolenski V.V., Moskalenko N.I. Saturated vapor pressure over molten mixtures of GaCl₃ and alkali metal chlorides // Radiochemistry. 2004. 46. № 4. P. 343–347.
- 25. Smirnov M.V., Salyulev A.B., Kudyakov V.Ya. Thermodynamic properties and decomposition potential of HfCl₄ solutions in molten alkali chlorides and their mixtures // Electrochim. Acta. 1984.
 29. № 8. P. 1087–1100.

VOLATILITY OF THE COMPONENTS OF SATURATED VAPORS OF UCl₄ SOLUTIONS IN A MOLTEN EQUIMOLAR NaCl-KCI MIXTURE

A. B. Salyulev¹, V. Ya. Kudyakov¹, N. I. Moskalenko¹

¹Institute of High-Temperature Electrochemistry, Ural Branch of the RAS, Yekaterinburg, Russia

The volatility of saturated vapor components of molten UCl_4 –NaCl–KCl mixtures containing 2.0, 5.0, 12.2, 25.1, 32.9, and 49.7 mol % UCl_4 in the temperature range 880–1200 K was measured using a transpiration technique. The chemical composition of saturated vapors was determined. It is concluded that double compounds of the most probable composition NaUCl₅ and KUCl₅ are present in the vapor phase, making a significant contribution to the total vapor pressure over molten mixtures. It was found that the investigated molten mixtures exhibit negative deviations from the ideal behavior.

Keywords: evaporation, volatility, vapor composition, molten mixtures, NaCl-KCl, UCl₄

REFERENCES

- Smirnov M.V., Kudyakov V.Ya., Salyulev A.B., Komarov V.E., Posokhin Yu.V., Afonichkin V.K. Letuchesti komponentov nasyshchennykh parov rasplavlennykh smesey UCl₄-CsCl i UCl₄-LiCl [Volatility of saturated vapor components of molten mixtures UCl₄-CsCl and UCl₄-LiCl] // Radiokhimiya. 1979. 21. № 1. P. 18-21. [In Russian].
- 2. Yoshimura T., Miyake Ch., Imoto Sh. Preparation of anhydrous uranium tetrachloride and measurements on its magnetic susceptibility // J. Nucl. Sci. and Technol. 1971. **8**. № 9. P. 498–502.
- 3. Katz J.J., Seaborg G.T., Morss L.R. Chemistry of the actinide elements. London, N.Y.: Chapman and Hall. 1987. 1.
- 4. Katz J.J., Rabinowitch E. The chemistry of uranium: The element, its binary and related compounds. N.Y., London: McGraw-Hill Book Company, Inc. 1951. Part 1.
- 5. Brown D. The halides of the lanthanides and actinides. London, N.Y., Sydney, Tokyo, Mexico: John Wiley and Sons Ltd. 1968.
- 6. Smirnov M.V., Kudyakov V.Ya., Khudolozhkin V.N., Sherstobitova I.A. Letuchesti komponentov rasplavlennykh smesey KCl–ThCl₄ [Volatility of the components of molten mixtures KCl–ThCl₄] // Trudy Inst. elektrokhim. Ural Nauchn. Tsentra AN SSSR. 1972. № 18. P. 33–40. [In Russian].

- Smirnov M.V., Khudolozhkin V.N., Kudyakov V.Ya., Sherstobitova I.A. Letuchest' i aktivnost' ThCl₄ i CsCl v ikh rasplavlennykh smesyakh [Volatility and activity of ThCl₄ and CsCl in their molten mixtures] // Trudy Inst. elektrokhim. Ural Nauchn. Tsentra AN SSSR. 1973. № 20. P. 27–32. [In Russian].
- 8. Salyulev A.B. Davleniye nasyshchennykh parov i termodinamika rastvorov tetrakhlorida gafniya v rasplavlennykh khloridakh shchelochnykh metallov i ikh binarnykh smesyakh [Saturated vapor pressure and thermodynamics of hafnium tetrachloride solutions in molten alkali metal chlorides and their binary mixtures]. Dis. ... kand. khim. nauk. Sverdlovsk, 1981. [In Russian].
- Suvorov A.V. Termodinamicheskaya khimiya paroobraznogo sostoyaniya [Thermodynamic chemistry of the vapor state]. L.: Khimiya. 1970. [In Russian].
- 10. Roine A. HSC Chemistry 7.0 Thermochemical Database. Finland: Outokumpu Research Oy. 2009.
- Mironov V.L., Burylev B.P. Davleniye nasyshchennogo para individualnykh khloridov i ikh binarnykh smesey [Saturated vapor pressure of individual chlorides and their binary mixtures] // Uspekhi termodinamiki rasplavov: materialy Vsesoyuznogo seminara. Krasnodar. 1976. P. 25–84. [In Russian].
- Singh Z., Prasad R., Venugopal V., Sood D.D. The vaporization thermodynamics of uranium tetrachloride // J. Chem. Thermodynamics. 1978. 10. P. 129–124.
- Wang L.L., Wallace T.C. Vacuum evaporation of KCl–NaCl salts: Part I. Thermodinamic modeling of vapor pressures of solid and liquid solutions // Metallurg. and Mater. Trans. 1996. 27B. P. 141–146.
- 14. Shugurov S.M. Termicheskaya ustoychivost' neorganicheskikh assotsiatov v gazovoy faze [Thermal stability of inorganic associates in the gas phase]. Dis. ... dokt. khim. nauk. St. Petersburg, 2018. [In Russian].
- Binnewies M., Schäfer H. Gasförmige Halogenidkomplexe und ihre Stabilität // Z. Anorg. Allg. Chem. 1974. 407. № 3. P. 327–344.
- 16. Arthers S.A., Beattie I.R. The vibrational spectra of some tetrachlorides in rare gas matrices with particular reference to the molecular shapes of ThCI₄ and UCI₄ // J. Chem. Soc., Dalton Trans. 1984. № 23. P. 819–826.
- 17. Zhang Ya., Shibata E., Kasai E., Nakamura T. Vapor pressure measurements for metal chloride systems by the Knudsen effusion method // Materials Trans. 2005. 46. № 6. P. 1348–1353.
- 18. Salyulev A.B., Moskalenko N.I., Shishkin V.Yu., Zaikov Yu.P. Selektivnoye ispareniye komponentov rasplavlennykh smesey (LiCl-KCl)_{evt}-BaCl₂-SrCl₂-NdCl₃ pri ponizhennykh davleniyakh [Selective evaporation of the (LiCl-KCl)_{eut}-BaCl₂-SrCl₂-NdCl₃ molten mixtures components at reduced pressures] // Rasplavy. 2020. № 4. P. 363–374. [In Russian].
- 19. Smirnov M.V., Kudyakov V.Ya. The saturation vapor pressure and decomposition potential of ThCl₄ solutions in molten alkali chlorides // Electrochim. Acta. 1984. **29**. № 1. P. 63–68.
- 20. Li B., Dai S., Jiang D. First principles dynamic simulations of UCl_n -NaCl (n = 3, 4) molten salts // ACS Appl. Energy Mater. 2019. **2**. No 3. P. 2122–2128.
- Photiadis G.M., Papatheodorou G.N. Co-ordination of thorium(IV) in molten alkali-metal chlorides and the structure of liquid and glassy thorium(IV) chloride // J. Chem. Soc., Dalton Trans. 1999. № 20. P. 3541–3548.
- 22. Smirnov M.V. Elektrodnye potentsialy v rasplavlennykh khloridakh [Electrode potentials in molten chlorides]. M.: Nauka, 1973. [In Russian].
- Shannon R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides // Acta Crystallogr. 1976. A32. P. 751–767.
- 24. Salyulev A.B., Smolenski V.V., Moskalenko N.I. Saturated vapor pressure over molten mixtures of GaCl₃ and alkali metal chlorides // Radiochemistry. 2004. 46. № 4. P. 343–347.
- 25. Smirnov M.V., Salyulev A.B., Kudyakov V.Ya. Thermodynamic properties and decomposition potential of HfCl₄ solutions in molten alkali chlorides and their mixtures // Electrochim. Acta. 1984.
 29. № 8. P. 1087–1100.