УДК 546.791.3:546.21

ВЗАИМОДЕЙСТВИЕ КИСЛОРОДА С ТРИХЛОРИДОМ УРАНА В РАСПЛАВАХ ХЛОРИДОВ ЩЕЛОЧНЫХ МЕТАЛЛОВ

© 2021 г. В. А. Волкович^{*a*, *}, А. Б. Иванов^{*a*}, А. А. Рыжов^{*a*}, Д. С. Мальцев^{*a*, *b*}, А. В. Щетинский^{*a*}

^аУральский федеральный университет им. Б.Н. Ельцина, Екатеринбург, Россия ^bУниверситет Теннеси, Ноксвилл, США *e-mail: v.a.volkovich@urfu.ru

> Поступила в редакцию 02.12.2020 г. После доработки 19.12.2020 г. Принята к публикации 21.12.2020 г.

Исследованы процессы взаимодействия кислорода и кислородсодержащих газовых смесей (Ar–O₂, O₂–H₂O, Ar–O₂–H₂O различного состава) с хлоридными расплавами, содержащими ионы урана(III). Эксперименты проводили в расплаве LiCl при 750°С и эвтектической смеси LiCl–KCl при 550 и 750°С. Содержание урана в расплавах варьировали в диапазоне 0.3-3.5 мас. %. Исследовано влияние мольного отношения кислорода к урану и состава газовой смеси на степень осаждения урана из расплава и состав образующихся продуктов.

Ключевые слова: уран, кислород, хлоридные расплавы, окисление, отработавшее ядерное топливо

DOI: 10.31857/S0235010621030130

введение

Одним из актуальных вопросов развития современной атомной энергетики является замыкание ядерного топливного цикла, предусматривающее переработку отработавшего ядерного топлива (OЯТ). На сегодняшний день в промышленных масштабах ОЯТ перерабатывается с использованием экстракционного метода (PUREX-процесса). Этот метод подразумевает использование водных и органических сред, которые имеют существенные недостатки: склонность к радиолизу, высокую концентрацию замедлителей нейтронов, образование жидких радиоактивных отходов (PAO), требующих переработки и захоронения. В качестве альтернативы водным методам переработки ОЯТ рассматриваются пирохимические процессы [1, 2]. Одним из таких процессов является переработка в расплавах на основе хлоридов щелочных металлов. Такие среды, по сравнению с водными, устойчивы к радиолизу, позволяют работать с высоким концентрациями делящихся нуклидов, их использование не приводит к образованию жидких РАО. Солевые расплавы также могут быть использованы для производства ядерного топлива (оксидного и металлического).

Пирохимические процессы в солевых расплавах реализуют в инертной атмосфере. Кислород и влага являются распространенными технологическими примесями, которые могут оказывать влияние на ионно-координационное состояние металлов (делящихся элементов и продуктов деления) в солевых расплавах. С другой стороны, обработка расплава кислородсодержащими газами может быть использована для очистки технологических электролитов от примесных элементов. Взаимодействие кислорода с расплавами, содержащими хлориды редкоземельных элементов, приводит к осаждению соответствующих оксихлоридов [3, 4]. Так, в работах [5–7] было исследовано взаимодействие влажного аргона с расплавами LiCl–CaCl₂, содержащими ионы церия, неодима, урана и плутония. Было показано [6], что ионы урана(III) обладают большим сродством к кислороду, чем ионы неодима(III), а совместное осаждение неодима и урана не приводит к образованию смешанных соединений. Расплавы, содержащие трихлорид урана, используют на стадиях электролитического выделения и рафинирования урана. Целью настоящей работы являлось исследование взаимодействия кислорода и кислородсодержащих газовых смесей с расплавами LiCl–UCl₃ при LiCl–KCl–UCl₃.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Эксперименты проводили в расплавах на основе хлорида лития при 750°С и эвтектической смеси хлоридов лития и калия при 550 и 750°С. Индивидуальные хлориды щелочных металлов (LiCl, Panreac, PA-ACS; KCl, х. ч.) предварительно подвергали сушке в вакууме при температуре 300°С в течение нескольких часов, после чего нагревали до температуры плавления. Через расплавленную соль барботировали смесь хлора и хлороводорода, после чего проводили дегазацию путем вакуумирования в течение часа. Эвтектическую смесь LiCl–KCl готовили сплавлением индивидуальных хлоридов лития и калия, подготовленных вышеописанным методом. Солевые смеси, содержащие трихлорид урана, были получены сплавлением необходимого количества UCl₃ с солями-растворителями (LiCl и LiCl–KCl). Концентрация урана в приготовленных расплавах составляла 0.25–3.5 мас. %.

Для определения влияния кислорода на поведение урана(III) через расплавы барботировали кислород и смеси аргон-кислород (с содержанием кислорода 0.966 и 9.62 мол. %, ООО "ПГС-сервис"). Количество пропущенного через расплав кислорода варьировали от 5 до 50 моль на 1 моль UCl₃. Скорость пропускания газа через расплав составляла 15–30 мл/мин. С целью установления возможного влияния влаги кроме сухих газов использовали также влажные – смеси O_2 – H_2O и Ar– O_2 – H_2O . Относительная влажность газов составляла 12 и 78%, что при 25°С соответствовало содержанию воды 0.38 и 2.45 об. % соответственно. В расплавленные соли газовые смеси подавали через кварцевый капилляр с внутренним диаметром 3 мм.

По окончании каждого эксперимента из отстоявшегося расплава отбирали пробу для химического анализа. Для определения фазового состава образующихся осадков, замороженные солевые плавы, содержащие продукты взаимодействия расплавов с кислородом и кислородсодержащими газовыми смесями, размывали водой, осадок отмывали от растворимых солей. Полученные осадки анализировали методом порошковой рентгеновской дифракции (дифрактометер PANalytical X'Pert PRO MPD, излучение Си *К*α, Ni фильтр).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Пропускание кислорода или кислородсодержащих газовых смесей через расплавы, содержащие трихлорид урана, приводило к окислению урана. Об этом свидетельствовало изменение окраски расплава с темной красно-фиолетовой, характерной для расплавов, содержащих уран(III), до желто-оранжевой или желтой, указывающей на присутствие ионов уранила. Замороженные солевые плавы обычно также имели желтый цвет. Только после экспериментов с минимальным количеством кислорода цвет замороженных плавов был зеленым.

В табл. 1 представлены результаты проведенных экспериментов по взаимодействию кислорода и кислородсодержащих газовых смесей с расплавами LiCl–UCl₃ и LiCl– KCl–UCl₃.

Кроме увеличения степени окисления пропускание кислорода через исследованные расплавы приводило к изменению концентрации урана в расплаве и образованию

Расплав (<i>T</i> , °C)	Состав газа	Кол-во кислорода, моль О ₂ / моль UCl ₃	Скорость подачи газа, см ³ /мин	Исх. конц. U в расплаве, мас. %	Степень осаждения урана, %
LiCl-UCl3	O ₂	5	19	2.88	30.2
(750)		15	28	2.88	6.8
		30	17	2.88	65.4
		50	24	2.88	83.1
	$O_2 + H_2O(0.38\%)$	15	28	2.88	12.3
	$O_2 + H_2O(2.45\%)$	15	28	2.88	2.1
	$Ar + O_2 (0.966\%)$	5	20	0.26	76.6
	$Ar + O_2 (9.62\%)$	5	13	1.21	17.3
	$\begin{array}{l} \operatorname{Ar} + \operatorname{O}_2(0.966\%) + \\ + \operatorname{H}_2 O(0.38\%) \end{array}$	5	20	0.24	54.8
LiCl-KCl-	O ₂	5	28	3.49	31.2
UCl ₃ (550)		15	28	3.49	12.9
		30	33	3.49	1.4
		50	47	3.49	25.5
	$O_2 + H_2O(0.38\%)$	15	38	3.49	3.4
	$O_2 + H_2O(2.45\%)$	15	13	2.61	0
	$Ar + O_2 (0.966\%)$	5	30	0.26	8.0
	$Ar + O_2 (9.62\%)$	5	26	1.31	18.3
	$\begin{array}{l} \operatorname{Ar} + \operatorname{O}_2(0.966\%) + \\ + \operatorname{H}_2 O(0.38\%) \end{array}$	5	29	0.26	57.9
LiCl-KCl-	O ₂	5	25	3.49	9.5
UCl ₃ (750)		15	20	3.49	12.0
		30	23	3.49	3.4
		50	17	3.49	45.0
	$O_2 + H_2O(0.38\%)$	15	37	3.49	10.9
	$O_2 + H_2O(2.45\%)$	15	33	2.61	0
	$Ar + O_2 (0.966\%)$	5	19	0.26	12.0
	$Ar + O_2 (9.62\%)$	5	23	1.31	14.5
	$\begin{array}{l} \operatorname{Ar} + \operatorname{O}_2(0.966\%) + \\ + \operatorname{H}_2 O(0.38\%) \end{array}$	5	32	0.26	25.0

Таблица 1. Степень осаждения урана из расплавов LiCl–UCl₃ и LiCl–KCl–UCl₃ при обработке кислородсодержащими газовыми смесями

малорастворимых соединений. Степень осаждения урана, приведенную в табл. 1, рассчитывали по разнице начальной и конечной концентрации урана в солевой фазе. Анализ полученных экспериментальных результатов показывает, что использование сухого кислорода не позволяет количественно осадить уран из расплавов, содержащих уран(III), даже при пропускании 50-кратного молярного избытка кислорода, по отношению к урану. Причиной этого является образование растворимых соединений урана высшей степени окисления (вероятно, хлорида уранила). Следует отметить, что величина мольного отношения пропущенного через расплав кислорода к присутствовавшему урану не оказывала однозначного влияния на степень осаждения урана. При

Расплав (<i>T</i> , °C)	Состав газа-осадителя и мольное отношение (МО) О ₂ : U	Фазовый состав осадка	
LiCl-UCl ₃ (750)	O ₂ , MO = 5	U ₃ O ₈ , UO _{2.86} ·1.5H ₂ O	
	$O_2, MO = 15$	U ₃ O ₈ , UO ₂ (OH) ₂ , UO _{2.86} ·1.5H ₂ O	
	$O_2, MO = 30$	$U_{3}O_{8}, Li_{2}U_{3}O_{10}, (UO_{2})_{8}O_{2}(OH)_{12} \cdot 12H_{2}O$	
	$O_2, MO = 50$	UO ₃ , Li ₂ U ₂ O ₇ , (UO ₂) ₈ O ₂ (OH) ₁₂ ·12H ₂ O	
	$O_2 + H_2O (0.38\%), MO = 15$	U ₃ O ₈ , UO _{2.86} ·1.5H ₂ O	
	$O_2 + H_2O$ (2.45%), MO = 15	U ₃ O ₈ , (UO ₂) ₈ O ₂ (OH) ₁₂ ·12H ₂ O	
	$Ar + O_2 (0.966\%), MO = 5$	UO_2 , $LiUO_3$	
	$Ar + O_2 (9.62\%), MO = 5$	UO ₂	
	Ar + $O_2 (0.966\%) + H_2O$ (0.38%), MO = 5	U ₃ O ₈ , (UO ₂) ₈ O ₂ (OH) ₁₂ ·12H ₂ O	
LiCl-KCl-UCl ₃ (550)	O ₂ , MO = 5	UO ₂ , LiUO ₃ , K ₂ U _{6.4} O _{20.2}	
	$Ar + O_2 (0.966\%), MO = 5$	U_2O_5 , UO_3 , $(UO_2)_8O_2(OH)_{12}$ ·12 H_2O	
	$Ar + O_2 (9.62\%), MO = 5$	UO_2 ; Li UO_3	
	Ar + $O_2 (0.966\%) + H_2O$ (0.38%), MO = 5	$U_{3}O_{7}; K_{2}(UO_{2})_{6}O_{4}(OH)_{6}\cdot 8H_{2}O$	
LiCl-KCl-UCl ₃ (750)	$O_2, MO = 15$	UO ₂ , LiUO ₃ , K ₂ (UO ₂) ₆ O ₄ (OH) ₆ ·8H ₂ O	
	$O_2, MO = 30$	UO ₃ , K ₂ (UO ₂) ₆ O ₄ (OH) ₆ ·8H ₂ O	
	$O_2, MO = 50$	Li ₂ U ₃ O ₁₀ , (UO ₂) ₈ O ₂ (OH) ₁₂ ·12H ₂ O	
	$Ar + O_2 (0.966\%), MO = 5$	$LiUO_3, K_2(UO_2)_6O_4(OH)_6.8H_2O$	
	Ar + $O_2 (0.966\%) + H_2O$ (0.38%), MO = 5	U ₂ O ₅ , K ₂ U _{6.4} O _{20.2}	

Таблица 2. Фазовый состав осадков, полученных при обработке расплавов LiCl–UCl₃ и LiCl– KCl–UCl₃ кислородом и кислородсодержащими газовыми смесями

использовании влажного кислорода степень осаждения урана в большинстве случаев снижалась.

Очевидно, что степень взаимодействия расплавленной соли с кислородом во многом будет определяться площадью контакта фаз. При барботировании газа через расплав большая часть кислорода покидала систему, не вступив в реакцию. Разбавление кислорода инертным газом могло оказать влияние на полноту протекания реакции – при одном и том же количестве пропускаемого кислорода объем пропускаемого газа и, следовательно, продолжительность контакта фаз будет больше при использовании смесей Ar–O₂. Полученные результаты, однако, показали, что только в расплаве LiCl– UCl₃ использование аргон-кислородной смеси с содержанием кислорода около 1% привело к увеличению степени осаждения урана. В остальных случаях степень осаждения урана смесями Ar–O₂ была аналогичной, либо ниже, чем при использовании чистого кислорода. Обработка расплавов тройными смесями Ar–O₂–H₂O в большинстве случаев не показало какого-либо однозначного увеличения степени осаждения урана по сравнению с сухим кислородом или аргон-кислородными смесями.

Замороженные солевые плавы, полученные после экспериментов, размывали водой, осадок отмывали от растворимых солей, высушивали и анализировали методом рентгеновской дифракции. Полученные результаты представлены в табл. 2. В результате взаимодействия расплавов, содержавших хлорид урана(III), с кислородом и кислородсодержащими газовыми смесями образовывался широкий спектр соединений урана высших степеней окисления. В осадках были обнаружены оксиды урана (UO₂, U₂O₅, U₃O₇, U₃O₈, UO₃) и моно- и полиуранаты(V) и (VI) лития и калия (LiUO₃, Li₂U₂O₇, Li₂U₃O₁₀, K₂U_{6.4}O_{20.2}). Кроме того, в пробах осадков было обнаружено присутствие заметных количеств различных гидратированных фаз (K₂(UO₂)₆O₄(OH)₆·8H₂O, (UO₂)₈O₂(OH)₁₂·12H₂O, UO_{2.86}·1.5H₂O, UO₂(OH)₂), которые могли образоваться только в процессе водной обработки солевых плавов. К соединениям урана, подверженным гидролизу, относятся некоторые уранаты щелочных металлов и вероятно, что образовавшиеся гидраты являются продуктами гидролиза полиуранатов.

выводы

Исследовано взаимодействие растворов трихлорида урана с газообразным кислородом (сухим и влажным) и смесями Ar $-O_2$, Ar $-O_2-H_2O$. В результате происходит окисление урана и частичное его осаждение в виде оксидов и уранатов щелочных металлов. В присутствии в кислороде паров воды степень осаждения урана в большинстве случаев снижалась. В идентичных условиях (температура, состав газовой смеси) степень осаждения урана из расплавов на основе LiCl была выше, чем из расплавов на основе эвтектической смеси LiCl-KCl.

Работа была выполнена при поддержке частного учреждения Госкорпорации "Росатом" "Инновационно-технологический центр проекта "Прорыв".

СПИСОК ЛИТЕРАТУРЫ

- Nawada H.P., Fukuda K. // J. Phys. Chem. Solids. 2005. 66. P. 647–651. https://doi.org/10.1016/j.jpcs.2004.07.022
- Lacquement J., Boussier H., Laplace A., Conocar O., Grandjean A. // J. Fluorine Chem. 2009. 130. P. 18–21. https://doi.org/10.1016/j.jfluchem.2008.07.011
- Cho Y.-J., Yang H.-C., Eun H.-C., Kim E.-H., Kim J.-H. Oxidation of lanthanum chloride in a LiCl-KCl eutectic molten salt using oxygen gas sparging method // J. Ind. Eng. Chem. 2005. 11. P. 707-711.
- 4. Eun H.C., Cho Y.Z., Park H.S., Lee T.K., Kim I.T., Park K.I., Lee H.S. // J. Nucl. Mater. 2011. 408. P. 110–115.
- https://doi.org/10.1016/j.jnucmat.2010.11.021
- 5. Vigier J.-F., Renard C., Laplace A., Lacquemen J., Abraham F. // J. Nucl. Mat. 2013. **432**. P. 407–413.
- https://doi.org/10.1016/j.jnucmat.2012.08.039
- Vigier J.-F., Laplace A., Renard C., Miguirditchian M., Abraham F. // J. Nucl. Mat. 2016. 474. P. 19–27. https://doi.org/10.1016/j.jnucmat.2016.03.005
- Vigier J.-F., Laplace A., Renard C., Miguirditchian M., Abraham F. // J. Nucl. Mat. 2018. 499. P. 394–400.
 - https://doi.org/10.1016/j.jnucmat.2017.11.028

REACTION OF OXYGEN WITH URANIUM TRICHLORIDE IN FUSED ALKALI CHLORIDES

V. A. Volkovich¹, A. B. Ivanov¹, A. A. Ryzhov¹, D. S. Maltsev^{1, 2}, A. V. Shchetinskiy¹

¹Ural Federal University, Yekaterinburg, Russia ²University of Tennessee, Knoxville, USA

Reaction of oxygen and oxygen containing gas mixtures (Ar–O₂, O₂–H₂O, Ar–O₂–H₂O of various compositions) with chloride melts containing uranium(III) ions was studied. The experiments were conducted in molten LiCl at 750°C and LiCl–KCl eutectic mixture at 550 and 750°C. Concentration of uranium in the melt varied from 0.3 to 3.5 wt %. The effect of oxygen to uranium molar composition and gas mixture composition on degree of uranium precipitation from the melt and composition of the reaction products was investigated.

Keywords: uranium, oxygen, chloride melts, oxidation, spent nuclear fuel

REFERENCES

- 1. Nawada H.P., Fukuda K. // J. Phys. Chem. Solids. 2005. 66. P. 647-651. https://doi.org/10.1016/j.jpcs.2004.07.022
- 2. Lacquement J., Boussier H., Laplace A., Conocar O., Grandjean A. // J. Fluorine Chem. 2009. **130**. P. 18–21.
- https://doi.org/10.1016/j.jfluchem.2008.07.011
- 3. Cho Y.-J., Yang H.-C., Eun H.-C., Kim E.-H., Kim J.-H. Oxidation of lanthanum chloride in a LiCl-KCl eutectic molten salt using oxygen gas sparging method // J. Ind. Eng. Chem. 2005. 11. P. 707-711.
- 4. Eun H.C., Cho Y.Z., Park H.S., Lee T.K., Kim I.T., Park K.I., Lee H.S. // J. Nucl. Mater. 2011. **408**. P. 110–115. https://doi.org/10.1016/j.jnucmat.2010.11.021
- 5. Vigier J.-F., Renard C., Laplace A., Lacquemen J., Abraham F. // J. Nucl. Mat. 2013. 432. P. 407-413.
- https://doi.org/10.1016/j.jnucmat.2012.08.039 6. Vigier J.-F., Laplace A., Renard C., Miguirditchian M., Abraham F. // J. Nucl. Mat. 2016. 474. P. 19-27. https://doi.org/10.1016/j.jnucmat.2016.03.005
- 7. Vigier J.-F., Laplace A., Renard C., Miguirditchian M., Abraham F. // J. Nucl. Mat. 2018. 499. P. 394-400. https://doi.org/10.1016/j.jnucmat.2017.11.028