РЕСУРСЫ ПОЛЕЗНЫХ РАСТЕНИЙ И РАСТИТЕЛЬНЫХ СООБШЕСТВ

РЕСУРСНЫЕ ХАРАКТЕРИСТИКИ SCUTELLARIA BAICALENSIS (LAMIACEAE) В ПРИРОДНЫХ ПОПУЛЯЦИЯХ И В УСЛОВИЯХ ИНТРОДУКЦИИ

© 2022 г. В. М. Шишмарев^{1, *}, Т. М. Шишмарева¹, Д. Н. Оленников¹

¹Институт общей и экспериментальной биологии СО РАН, г. Улан-Удэ, Россия
*e-mail: shishmarevslava@rambler.ru
Поступила в редакцию 11.03.2021 г.
После доработки 14.07.2021 г.
Принята к публикации 03.12.2021 г.

В работе представлены результаты исследования ресурсных характеристик Scutellaria baicalensis Georgi в природных популяциях на территории Забайкальского края и в условиях культуры в Республике Бурятия. На территории Забайкальского края выявлены заросли дикорастущего S. baicalensis, определены сырьевая фитомасса вида в разных растительных сообществах, биологический и эксплуатационный запасы сырья, проведен сбор посевного и посадочного материала. Приведено обоснование выбора района интродукции. Выявлены биологические особенности S. baicalensis в условиях культуры, охарактеризованы необходимые для роста и развития растений условия внешней среды и сроки заготовки сырья. Установлена величина сырьевой фитомассы надземной и подземной частей Scutellaria baicalensis в условиях культуры в разные годы вегетации. Определено содержание флавоноидов в морфологических группах сырья (листья, стебли, корневища и корни) из Scutellaria baicalensis в природных популяциях и в условиях интродукции.

Ключевые слова: Scutellaria baicalensis, Lamiaceae, Забайкалье, Республика Бурятия, сырьевая фитомасса, биологический запас сырья, эксплуатационный запас сырья, интродукция, флавоноиды

DOI: 10.31857/S0033994622010137

В настоящее время потребности фармацевтической промышленности и здравоохранения в должном объеме не обеспечены отечественным лекарственным растительным сырьем. Существовавшая до 1991 г. в СССР система производства и заготовок лекарственного растительного сырья была разрушена в годы перестройки, значительно сократились площади, на которых выращивались лекарственные растения. В результате этого в нашу страну только в 2001 г. было ввезено 33000 т лекарственного сырья и "натуральных продуктов" на общую сумму 1.5 млрд долларов США, в то время как до 1991 г. в нашей стране ежегодно заготавливалось 45000 т лекарственных растений [1]. Вместе с тем, очевидна устойчивая тенденция повышения спроса на лекарственное растительное сырье, обусловленная расширением ассортимента препаратов из него и резким увеличением числа потребителей.

Для Байкальского региона, в состав которого входят Иркутская область, Республика Бурятия и Забайкальский край (общая площадь 32 млн га) [2] отрасль лекарственного растениеводства является новой и в последние десятилетия привлекает к себе внимание не только отечественных, но

и зарубежных экологов, экономистов, социологов. Это связано с уникальностью оз. Байкал, признанного ЮНЕСКО объектом Всемирного наследия, и необходимостью рационального использования природных ресурсов данной территории.

В настоящее время в аптеках Республики Бурятия широко представлена продукция на основе лекарственных растений ведущих российских производителей. Среди фитопрепаратов, поступающих из Центральной России в Бурятию, многие производятся из растений, заготовка или выращивание которых возможны в Байкальском регионе (например, шлемник байкальский Scutellaria baicalensis Georgi, курильский чай Dasiphora fruticosa (L.) Rydb., панцерина шерстистая Panzerina lanata (L.) Sojak, бадан толстолистный Bergenia crassifolia (L.) Fritsch, астрагал перепончатый *Astragalus membranaceus* (Fisch. ex Link) Bunge). Поскольку объем ввозимой продукции не удовлетворяет спрос, для решения этой проблемы необходимо провести ресурсные изыскательские работы, разработать научные основы выращивания в культуре ценных лекарственных растений и, наконец, создать плантации для их выращивания.

Одним из таких растений является шлемник байкальский Scutellaria baicalensis — многолетнее травянистое растение сем. Lamiaceae, реликт палеогенового периода, корневища и корни которого широко используются в китайской и тибетской медицине. Данный вид обычен в даурских степях, встречается на скалах, по каменистым россыпям, в горных и равнинных степных сообществах [3]. История применения S. baicalensis в официнальной медицине начинается с 40-х гг. XX в., когда данные экспериментальных исследований [4-10] послужили основанием для введения его в медицинскую практику в качестве гипотензивного средства [11]. В дальнейшем, сведения о применении S. baicalensis в традиционных медицинских системах Востока [12-15], анализ сложных по составу рецептов [16–18] показали, что он издавна используется в медицине и входит в "элитную" группу растений, для которых установлена адаптогенная активность. Дальнейшие углубленные экспериментальные исследования позволили сделать вывод, что S. baicalensis (подземная и надземная части) обладает широким спектром фармакотерапевтической активности [19-27] и поэтому создание устойчивой сырьевой базы для производства препаратов из этого растения является актуальным.

Фармакопейным сырьем являются корневища и корни S. baicalensis. В природных популяциях для получения этого вида растительного сырья, соответствующего требованиям нормативных документов, и с соблюдением рекомендаций по рациональному использованию и сохранению растительных ресурсов, необходимо 10-12 лет. Поэтому уже в 80-е гг. прошлого столетия настойка из корневища и корней S. baicalensis была исключена из Государственной фармакопеи [28] из-за отсутствия сырьевой базы. Проведенные фармакологические исследования показали, что трава S. baicalensis может применяться для лечения гипертонии [29] и стоматологических заболеваний [30], экстракт из листьев обладает противоопухолевой активностью [31] и психотропным действием [32, 33]. Гексановая, хлороформная, этилацетатная и спиртовая фракции из надземной части S. baicalensis содержат комплекс биологически активных веществ, который проявляет антиоксидантную активность [27].

В настоящее время в Институте общей и экспериментальной биологии (г. Улан-Удэ) проводится изучение природных ценопопуляций *S. baicalensis* для выявления наиболее продуктивных и перспективных для введения в культуру [34—37].

Целью настоящей работы является исследование природных популяций в Забайкальском крае и интродукция многолетнего лекарственного растения *Scutellaria baicalensis* на коллекционном участке в условиях Республики Бурятия.

МАТЕРИАЛ И МЕТОДЫ

Ценопопуляции (СР) S. baicalensis изучали на территории Забайкальского края: в Нерчинском районе в окрестностях станции Приисковая (СР-1, СР-2), в окрестностях сел Савватеево (СР-3, СР-4) и Умыкей (СР-5); в Агинском районе — в окрестностях поселков Орловский (СР-6), Ново-Орловский (СР-7, СР-8), сел Амитхаша (СР-9) и Булактуй (СР-10); в Шилкинском районе в окрестностях поселка Первомайский в июле 2005 г. (СР-1-СР-5), 2006 г. (СР-6, СР-7) и 2019 г. (СР-8-СР-11). В каждом сообществе через равные промежутки (10 и 20 м) закладывали учетные площадки, в количестве 10-20 шт., размер которых составлял 1 м². Фитоценотическая характеристика сообществ дана на основании геоботанических описаний, проводившихся по общепринятой методике [38, 39]. Обилие видов определяли по шкале Друде [40]. Латинские названия растений даны согласно базе данных The Plant List.

Сырьевую фитомассу определяли на учетных площадках. Площадь заросли S. baicalensis определяли, рассматривая ее как геометрическую фигуру и измеряя параметры, необходимые для расчета ее площади [41—43]. Биологический запас растительного сырья рассчитывали как произведение площади заросли $S_{\rm зар}$ на величину сырьевой фитомассы \overline{x} ; эксплуатационный запас растительного сырья — как произведение площади заросли $S_{\rm зар}$ на нижний предел величины сырьевой фитомассы ($\overline{x}-2S_{\overline{x}}$) [41—43].

Посадочный материал S. baicalensis — растения и семена, были взяты из ценопопуляции СР-6 (2015), для которой характерен наибольший процент всхожести семян и выживаемости проростков. Образцы были высажены, а семена посеяны на коллекционном участке в с. Иволга Иволгинского района Республики Бурятия. В последующие годы пользовались семенами собственной репродукции.

Так как у *S. baicalensis* фазы развития растянуты, для определения удельной сырьевой фитомассы надземных органов в условиях культуры сбор проводили в фазу полного цветения. Перед уборкой площадки очищали от сорняков. Надземную часть срезали, взвешивали, высушивали, определяли потери в массе при высушивании, которые в среднем составляли 40%. Для определения удельной сырьевой фитомассы корневища и корней *S. baicalensis* в условиях культуры их выкапывали осенью (после обсеменения). Перед этим растения скашивали и удаляли надземную часть. Сырье сразу же взвешивали, высушивали, определяли потери в массе при высушивании (в среднем 46%).

Условия анализа флавоноидов методом микроколоночной ВЭЖХ-УФ. Количественный анализ флавоноидов в органах S. baicalensis проводили, как описано ранее [44] с применением микроколоночного жидкостного хроматографа Милихром A-02 (Эконова, Новосибирск, Россия), снабженного колонкой ProntoSIL-120-5-C18 AQ (2 × 75 мм, d 5 мкм; Metrohm AG, Herisau, Switzerland), автосемплером и УФ-детектором (λ 270 нм). Хроматографического разделение осуществляли в градиентном режиме с использованием в качестве подвижных фаз A и B 0.2 M LiClO₄ в 0.006 M HClO₄ и ацетонитрила соответственно, по следующей программе градиента — 0—16 мин 15—60% B, 16—20 мин 60—15% B, при скорости подвижной фазы 150 мкл/мин и температуре колонки 35 °C.

Пробоподготовка. Точную навеску измельченного растительного сырья (400 мг) помещали в емкость для экстракции (5 мл) с завинчивающейся крышкой, добавляли 2 мл 70% этанола, закрывали крышку и экстрагировали в ультразвуковой ванне (100 Вт, 35 кГц) при 50 °C в течение 40 мин. Полученную пробу центрифугировали при 3000 д в течение 15 мин и супернатант переносили в мерную колбу вместимостью 5 мл. Экстракцию повторяли в тех же условиях еще раз. Объем объединенного экстракта доводили до метки 70% этанолом, фильтровали через PTFE фильтр (0.22 мкм) и использовали для анализа методом ВЭЖХ без предварительного разбавления. Расчет содержания флавоноидов проводили на основе градуировочных графиков, построенных с использованием растворов сравнения известных флавоноидов. Все анализы осуществляли в трехкратной повторности, результаты представлены в виде среднего значения (мг/г) \pm стандартное отклонение (SD).

Приготовление растворов сравнения. В работе использованы коммерческие образцы веществ сравнения — скутелларин (скутеллареин 7-0-глюкуронид), байкалин (байкалеин 7-О-глюкуронид), ороксилозид (ороксилин А 7-О-глюкуронид), норвогонозид (норвогонин 7-O-глюкуронид), вогонозид (вогонин 7-О-глюкуронид) (все чистотой ≥95%; Sigma-Aldrich, St. Louis, MO, USA), а также флавоноиды, выделенные нами ранее, в том числе дигидроскутелларин (дигидроскутеллареин 7-О-глюкуронид), дигидроизоскутелларин (дигидроизоскутеллареин 7-О-глюкуронид), дигидробайкалин (дигидробайкалеин 7-0-глюкуронид), изоскутелларин (изоскутеллареин 7-О-глюкуронид), изоскутеллареин 8-O-глюкуронид, апигенин 7-O-глюкуронид, хризин 7-O-глюкуронид, все с чистотой не менее 93% [45]. Точную навеску флавоноида (10 мг) предварительно высушенного, переносили в мерную колбу вместимостью 10 мл, растворяли в 70% этаноле и доводили объем раствора до метки тем же растворителем.

Полученные данные обработаны статистически [46] при помощи пакета программ MS Excel.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Scutellaria baicalensis в природных популяциях. В естественных условиях S. baicalensis произрастает на степных и лесостепных сообществах. Изученные ценопопуляции S. baicalensis входят в состав гмелиновополынно-осоково-разнотравного, нителистниково-чиевого, осоково-пионового, осоково-полынно-разнотравноого, чиево-холоднополынного сообществ, а также в состав злаково-гмелиновополынно-разнотравных степных сообществ с ильмом и гмелиновополынных сообществ с пятилистником. Наибольшая встречаемость вида отмечена в полынно-осоково-разнотравном сообществе.

Из злаков и осок в сообществах с участием S. baicalensis эдификаторами выступают Achnatherum sibiricum (L.) Keng ex Tzvelev, Agropyron cristatum (L.) Beauv., Carex korshinskyi Kom., Cleistogenes squarrosa (Trin.) Keng, Koeleria cristata (L.) Pers. s. str. и Poa botryoides (Trin. ex Griseb.) Roshev., реже – Carex pediformis C.A. Meyer, Festuca litvinovii (Tzvelev) E.B. Alexeev, Poa attenuata Trin. и Spodiopogon sibiricus Trin. Кустарники, полукустарники и полукустарнички имеют меньшее значение в сообществах; часто встречается Artemisia gmelinii Web. ex Stechm., несколько реже — Betula fusca Pallas ex Georgi, Pentaphylloides fruticosa (L.) O. Schwarz, Rosa acicularis Lindley и R. davurica Pallas, Spiraea aquilegifolia Pallas и S. pubescens Turcz., Thymus dahuricus Serg. и T. serpyllum L., а также Ulmus macrocarpa Hance. Обилие S. baicalensis в изученных сообществах по шкале Друде колеблется от sol.-sp. до sp.

Проективное покрытие травяного яруса от 25% в сообществе, относящемся к осоково-полынно-разнотравной ассоциации до 85% в злако-во-гмелиновополынно-разнотравном сообществе с ильмом. Максимальная высота травяного яруса — от 40 см в чиево-холоднополынном сообществе до 95 см в осоково-полынно-разнотравном, средняя высота травяного яруса — от 25 см в чиево-холоднополынном сообществе до 40 см в осоковополынно-разнотравном.

В травяном покрове выделяются 3 подъяруса. Верхний слагается Achnatherum sibiricum, Phlojodicarpus sibiricus (Fischer ex Sprengel) Koso-Pol., Thalictrum kemense Fr. W.D.J. Koch и др. Второй подъярус образуют: Allium neriniflorum (Herb.) G. Don, Bupleurum scorzonerifolium Willd., Filifolium sibiricum (L.) Kitam., Scutellaria baicalensis и др.; третий — Artemisia frigida Willd., Carex korshinskyi и С. pediformis, Potentilla acervata Sojak, P. leucophylla Pall. и P. tanacetifolia Willd. ex Schlecht., Thymus dahuricus и Т. serpyllum.

Удельная сырьевая фитомасса (возд.-сух. сырье) надземной части S. baicalensis в разных растительных сообществах варьирует от 12.0 ± 2.3 до 37.3 ± 5.7 г/м², подземной — от 11.4 ± 1.5 до 99.6 ± 25.2 г/м² (табл. 1). В изученных ценопопуляциях

Таблица 1. Удельная сырьевая фитомасса надземной и подземной частей *Scutellaria baicalensis* в изученных ценопопуляциях на территории Забайкалья (Γ/M^2 , возд.-сух. сырье)

Table 1. Herb and root phytomass of *Scutellaria baicalensis* in the studied coenopopulations in Transbaikalia (g/m², airdry weight)

Ценопопуляции Coenopopulations	Macca надземной части \pm S.D. Aerial parts weight \pm S.D.		Macca подземной части \pm S.D. Underground parts weight \pm S.D.		
	общая, г/м² total, g/m²	одной особи, г single specimen, g	общая, г/м² total, g/m²	одной особи, г single specimen, g	
CP-1	15.5 ± 3.0	2.5 ± 0.4	18.7 ± 4.4	3.0 ± 0.7	
CP-2	12.0 ± 2.3	4.0 ± 0.4	15.3 ± 3.1	5.1 ± 1.1	
CP-3	26.9 ± 4.4	3.3 ± 0.3	28.6 ± 3.7	3.5 ± 0.5	
CP-4	21.3 ± 2.7	3.7 ± 0.4	29.4 ± 0.4	5.1 ± 1.0	
CP-5	14.0 ± 4.8	5.4 ± 0.7	13.8 ± 4.4	5.3 ± 1.6	
CP-6	12.5 ± 5.7	2.1 ± 0.7	53.8 ± 24.7	7.9 ± 2.4	
CP-7	18.2 ± 3.3	2.1 ± 0.5	99.6 ± 25.2	10.1 ± 1.6	
CP-8	18.1 ± 2.6	3.5 ± 0.4	50.7 ± 7.1	6.9 ± 1.2	
CP-9	15.3 ± 2.0	4.1 ± 0.5	11.4 ± 1.5	6.4 ± 1.4	
CP-10	16.7 ± 2.6	6.1 ± 0.8	41.6 ± 5.9	8.6 ± 2.5	
CP-11	37.3 ± 5.7	3.3 ± 0.4	68.1 ± 10.6	6.0 ± 1.5	

Таблица 2. Запасы *S. baicalensis* в изученных ценопопуляциях на территории Забайкалья (кг, возд.-сух. сырье) **Table 2.** Resources of *S. baicalensis* in the studied coenopopulations in Transbaikalia (kg, air-dry weight)

Ценопопуляции Coenopopulations	Площадь, м ² Area, m ²	Запас надземной части Stock of the aboveground parts		Запас подземной части Stock of the belowground parts		
		биологический biological	эксплуатационный exploitable	биологический biological	эксплуатационный exploitable	
CP-1	1251	19.4	12.0	23.3	12.3	
CP-2	1575	18.8	11.6	24.2	14.4	
CP-3	7500	201.5	136.0	214.4	159.6	
CP-4	525	11.2	8.3	15.4	15.0	
CP-5	998	14.0	4.4	13.8	5.1	
CP-6	1002	12.5	1.1	53.8	4.5	
CP-7	450	8.2	5.3	44.8	22.2	
CP-8	380	6.4	4.4	15.8	11.3	
CP-9	768	13.9	9.9	39.0	28.0	
CP-10	588	9.0	6.6	6.7	4.9	
CP-11	1302	48.5	33.7	88.7	61.1	
Итого	16339	363.4	233.3	539.9	338.4	
Total						

средняя масса надземной части 1 особи S. baicalensis составляет от 2.1 до 6.1 г, подземной части — от 3.0 до 10.1 г (табл. 1).

Данные по запасам сырья S. baicalensis представлены в табл. 2. Общий биологический запас (возд.-сух. сырье) надземной части S. baicalensis на исследованной территории равен 363.4 кг, подземной части -539.9 кг. Общий эксплуатационный запас надземной части составил 233.3 кг, подземной части -338.4 кг.

Таким образом, в Забайкальском крае выделено 11 растительных сообществ со *S. baicalensis*. В половине из этих сообществ в травяном покрове заметную роль играют злаки (чий сибирский *Achnatherum sibiricum*, тонконог гребенчатый *Koeleria cristata*, житняк гребенчатый *Agropyron cristatum*, змеевка растопыренная *Cleistogenes squarrosa*, мятлик кистевидный *Poa botryoides*). Растительные сообщества со *S. baicalensis* относятся к стенотопным: степень увлажнения и богатство

Таблица 3. Основные климатические характеристики Республики Бурятия и Забайкальского края **Table 3.** The main climatic characteristics of the Republic of Buryatia Republic and Trans-Baikal Territory

Климатические характеристики Climatic characteristics	Забайкальский край Trans-Baikal Territory	Республика Бурятия Republic of Buryatia	
1. Продолжительность солнечного сияния, ч/год Duration of sunshine, hour/year	2400-2600	2400—2700	
2. Продолжительность светового дня: Duration of daylight, hours:			
в теплый период года, ч in warm season, h	14–16	14—17	
в холодный период года, ч in cold season, h	8-14	8-14	
3. Годовая амплитуда температур воздуха, °C Annual air temperature range, °C	90–100	85–90	
средних годовых, °C annual average, °C	0.5–11.3	-0.5-8.7	
средних месячных, °С monthly average, °С	40-50	45–50	
средних суточных, °C daily average, °C	18–20	14—16	
4. Продолжительность безморозного периода, дни Duration of the frost-free period, days	115—130	110—150	
5. Осадки, мм Precipitation, mm	250-350	250-450	
6. Толщина снежного покрова, см Depth of snow cover, cm	15–25	5-50	
7. Температура: Temperature:			
января, °C January, °C	от —19 до —37	от −19 до −28	
июля, °C July, °C	17—21	14–20	
сумма температур выше 10 °C, °C sum of temperatures above 10 °C, °C	1100—2100	1200—1800	
8. Продолжительность вегетационного периода, дни Duration of the growing season, days	120—160	120-150	

почв варьируют слабо. Это растение в основном приурочено к местообитаниям открытых степных склонов сопок южной экспозиции или их вершин, встречается на мелко-щебнистых и каменисто-щебнистых почвах, то есть приспособлено к засушливым условиям, неустойчивому водному режиму.

Обоснование выбора района интродукции. При переносе растений в условия культуры необходи-

мо учитывать природно-климатические условия района интродукции (Республика Бурятия) и района естественного произрастания (Забайкальский край).

Климат Республики Бурятия и Забайкальского края в основном является сходным (табл. 3). Главными факторами, определяющими своеобразие климата являются характер общей циркуляции атмосферы и физико-географические условия —

удаленность от океанов, большая протяженность с севера на юг и сложность орографии. Основная черта климата – резкая континентальность. Циркуляция атмосферы над Забайкальем типична для континентальных территорий умеренных широт: преобладание переноса воздушных масс с запада на восток. В холодный период года над территорией Забайкалья располагается мощный сибирский антициклон. Антициклон поддерживается за счет холодного воздуха из северных, северо-западных и, в меньшей степени, северо-восточных районов Арктики. Перемещаясь над Сибирью, арктический воздух превращается в более или менее однородную, сильно выхоложенную континентальную воздушную массу с низкой абсолютной влажностью. Зима на территории Бурятии и Забайкальского края морозная, безветренная, малоснежная, с большим числом солнечных дней, количество осадков не превышает 10— 20% годовой суммы. Зима начинается в третьей декаде октября-начале ноября. Самый холодный месяц зимы – январь. В среднем температура января изменяется от -19 до -28 °C в Бурятии и от -19 до -37 °C в Забайкальском крае. Продолжительность дня в холодный период года одинакова для Республики Бурятия и Забайкальского края и составляет 8–14 ч (табл. 3).

Распределение снежного покрова крайне неравномерно. Высота снежного покрова значительно уменьшается к югу. В долине реки Селенги он наименьший (5—10 см) и, отчасти сдувается ветром, отчасти испаряется вследствие большой сухости воздуха задолго до оттаивания почвы. Толщина снежного покрова в Бурятии и Забайкальском крае в среднем одинакова и составляет 15—25 см, но в Бурятии она может достигать 50 см (табл. 3).

Весной начинает развиваться зональная циркуляция. Смещение циклонов в Забайкалье приводит к значительному усилению скорости ветра, повышению температуры и интенсивности инсоляции. Осадков выпадает мало. На большей части территории Бурятии весна устанавливается в апреле, на северном побережье Байкала — в начале мая. В начале весны наблюдаются отрицательные среднесуточные температуры воздуха, в дальнейшем при повышении средних температур сохраняются резко выраженные перепады. Наступление среднесуточной температуры 5 °C отмечается в дельте реки Селенги в первой декаде, в котловине оз. Байкал — в третьей декаде мая. К этому времени почва прогревается на глубину 0.5 м до 5-7 °C (время посева зерновых культур). То же наблюдается на территории Забайкальского края.

Летом вся континентальная область Сибири находится под воздействием теплого воздуха умеренных широт, формирующегося над прогретой поверхностью Евроазиатского континента, в ос-

новном из морского воздуха атлантического происхождения. Во второй половине лета, с развитием муссонной циркуляции на Дальнем Востоке и усилением полярно-фронтовых процессов в районе Маньчжурской депрессии, возможно поступление на территорию Забайкалья морского тропического воздуха. Несмотря на Яблоновый хребет, восточная ветвь муссона достигает в Бурятии Витимского плоскогорья, где вызывает выпадение значительного количества осадков. Продолжительность дня в теплый период года одинаковая для Республики Бурятия и Забайкальского края и составляет 14-16 ч. Средняя температура июля изменяется от 14 до 20 °C в Бурятии и от 17 до 21 °C в Забайкальском крае (табл. 3). Лето в Забайкалье короткое, но в большинстве районов теплое и даже жаркое. В первой половине лета осадков мало, что приводит к развитию большой сухости воздуха. Во второй половине лета количество осадков и температура воздуха увеличиваются. В отдельные дни максимальные температуры достигают 35-40 °C. Только в узкой полосе, примыкающей к Байкалу, лето умеренно прохладное и более влажное.

Окончание летнего периода на территории Бурятии почти повсеместно наблюдается в первой декаде сентября. Над Забайкальем располагаются хорошо выраженные антициклональные образования, обеспечивающие ясную и малооблачную погоду без осадков, но с резкими ночными заморозками.

Продолжительность вегетационного периода в Бурятии и Забайкальском крае почти одинакова — соответственно 120—150 и 120—160 дней (табл. 3). Сумма осадков в степных районах — 250—300 мм. Окончание вегетации всех сельскохозяйственных культур почти повсеместно приходиться на вторую половину сентября. Первый снежный покров появляется сравнительно поздно — в середине ноября [47—49].

Сравнение продолжительности солнечного сияния и безморозного периода, годовой амплитуды температур воздуха, количества осадков, приводит к заключению, что годовые климатические характеристики Республики Бурятия и Забайкальского края имеют большое сходство (табл. 3). Бурятия и Забайкальский край характеризуются резко континентальным климатом, сходством общей циркуляции атмосферы и физико-географических условий. Это позволило предположить, что эксперимент по культивированию *S. baicalensis* в Бурятии будет удачным.

Scutellaria baicalensis в условиях культуры. В настоящее время S. baicalensis из семян Агинской популяции (Забайкальский край) возделывается в условиях культуры на площади 0.3 га. Семена перед посевом смешивали с песком в соотношении 1:20, посев производили сеялкой. Высевали

Рис. 1. Корневые системы *Scutellaria baicalensis* в разных условиях. **Fig. 1.** *Scutellaria baicalensis* root systems under different conditions.

семена в почву до второй декады мая. В первые дни, до появления всходов и пока они не окрепли, проводили регулярный полив -2-3 раза в неделю, потом 1 раз в неделю в зависимости от погодных условий. В течение вегетационного периода обрабатывали посевы культиватором 2-3 раза. После того, как всходы окрепли, проредили посевы.

S. baicalensis предпочитает места, хорошо прогреваемые солнцем, с достаточной площадью питания: в загущенных посадках у шлемника появляются слабые надземные побеги, с небольшим числом узких листьев и генеративных органов. семена мелкие и не всегда вызревают. В условиях загущенного посева корни S. baicalensis стержневые, длиной -15-20 см, весом -4-10 г (свежее сырье) (рис. 1а); при посадке растений на расстоянии 30-40 см друг от друга развивается система придаточных корней длиной — 18—20 см, весом — 15-25 г (свежее сырье) (рис. 1b). S. baicalensis отрицательно относится к переувлажнению. Корневая система становится более разветвленной, что связано с частичным отмиранием корневища. Такие растения в скором времени выпадают из травостоя. Оптимальным вариантом для посадки являются почвы легкого механического состава, расстояние между особями 20-25 см, между рядами 50-60 см.

Удельная сырьевая фитомасса надземной части S. baicalensis (возд.-сух. сырье) в первый год вегетации достигает 58.4 ± 6.3 г/м², на второй год увеличивается в 2 раза и составляет 125.4 ± 13.2 г/м². На третий год вегетации в связи с развитием генеративных побегов величина фитомассы надземной части возрастает до 281.1 ± 31.2 г/м². В первый год жизни удельная сырьевая фитомасса подземной части S. baicalensis (возд.-сух. сырье) составляет 79.7 ± 8.7 г/м², на второй год -157.9 ± 14.9 г/м², на третий год -311.5 ± 29.2 г/м².

Сырье большинства лекарственных культур убирают в сухую солнечную погоду, в период максимального накопления действующих веществ. Сбор надземной части (травы) S. baicalensis следует проводить в фазу массового цветения, подземных органов (корневищ и корней) — в конце сентября, после сбора семян, на 3—4-й год жизни. Собранное сырье (траву, корневища и корни) сущат в тени, разложив тонким слоем и регулярно переворачивают, стараясь при этом не увеличивать степень измельчения.

Содержание флавоноидов в образцах Scutellaria baicalensis. В морфологических группах сырья (листья, стебли, корневища и корни), полученного из S. baicalensis, произраставшего в природных популяциях и в условиях интродукции, установлено высокое содержание суммы флавоноидов (табл. 4). В обоих случаях в сырье были идентифицированы одни и те же флавоноиды: дигидроскутелларин, дигидроизоскутелларин, дигидробайкалин, скутелларин, байкалин, ороксилозид, изоскутелларин, изоскутеллареин 8-О-глюкуронид, норвогонозид, вогонозид, апигенин 7-О-глюкуронид и хризин 7-О-глюкуронид. Количественное определение флавоноидов показало, что больше всего в листьях S. baicalensis содержится дигидроскутелларина (56.9 мг/г в природном сырье и 103.6 – в сырье, полученном в условиях интродукции), скутелларина (соответственно 28.5 и 25.2 мг/г) и хризин 7-О-глюкуронида (соответственно 22.2 и 18.4 мг/г). В стеблях S. baicalensis наиболее высоким содержанием отличается дигидроскутелларин (15.2 мг/г в природном сырье и 17.3 — в сырье, полученном в условиях интродукции), в корневищах и корнях байкалин (соответственно 158.0 и 145.6 мг/г) и вогонозид (42.9 и 37.0 мг/г).

Общее содержание флавоноидов в надземной части (листья и стебли) *S. baicalensis*, произрас-

Таблица 4. Содержание флавоноидов в надземной и подземной части растений *S. baicalensis*, мг/г массы воздушно-сухого сырья \pm *S.D.* **Table 4.** Flavonoid content in the aboveground and belowground parts of *S. baicalensis*, mg/g air-dry weight \pm *S.D.*

Соединение	В природных условиях In nature		В условиях интродукции Under cultivation			
Compound	листья leaves	стебли stems	корни roots	листья leaves	стебли stems	корни roots
Дигидроскутелларин Dihydroscutellarin	56.9 ± 1.1	15.2 ± 0.3	4.0 ± 0.1	103.6 ± 2.1	17.3 ± 0.3	3.7 ± 0.1
Дигидроизоскутелларин Dihydroisoscutellarin	30.7 ± 0.6	4.1 ± 0.1	2.6 ± 0.1	2.9 ± 0.1	1.5 ± 0.1	2.2 ± 0.1
Дигидробайкалин Dihydrobaicalin	4.9 ± 0.1	0.7 ± 0.1	7.1 ± 0.1	3.3 ± 0.1	1.1 ± 0.1	6.1 ± 0.1
Скутелларин Scutellarin	28.5 ± 0.5	7.4 ± 0.1	_	25.2 ± 0.5	8.5 ± 0.2	2.4 ± 0.1
Байкалин Baicalin	3.4 ± 0.1	0.5 ± 0.1	158.0 ± 3.2	2.4 ± 0.1	0.4 ± 0.1	145.6 ± 2.9
Ороксилозид Oroxyloside	_	_	8.2 ± 0.2	_	_	9.8 ± 0.2
Изоскутелларин Isoscutellarin	6.1 ± 0.1	3.6 ± 0.1	_	2.8 ± 0.1	2.3 ± 0.1	_
Изоскутеллареин 8- <i>О</i> -глюкуронид Isoscutellarein 8- <i>O</i> -glucuronide	4.6 ± 0.1	2.9 ± 0.1	_	2.2 ± 0.1	2.6 ± 0.1	_
Норвогонозид Norwogonoside	1.9 ± 0.1	_	3.5 ± 0.1	1.4 ± 0.1	_	3.4 ± 0.1
Вогонозид Wogonoside	1.3 ± 0.1	_	42.9 ± 0.9	0.9 ± 0.1	_	37.0 ± 0.8
Апигенин 7- <i>О</i> -глюкуронид Apigenin 8- <i>O</i> -glucuronide	11.5 ± 0.2	1.9 ± 0.1	_	10.9 ± 0.2	1.6 ± 0.1	_
Хризин 7- <i>O</i> -глюкуронид Chrisin 8- <i>O</i> -glucuronide	22.2 ± 0.5	0.3 ± 0.1	_	18.4 ± 0.4	_	_
Сумма флавоноидов,	172.0	36.6		174.0	35.3	
Total flavonoids B T.4. including	208.6		226.3	209.3		210.2
флаваноны flavanones	92.5	20.0	13.7	109.8	19.9	12.0
6-оксифлавоны 6-hydroxyflavones	31.9	8.0	166.2	27.6	8.9	157.8
8-оксифлавоны 8-hydroxyflavones	13.9	6.4	46.4	7.3	4.9	40.4
гликозиды апигенина и хризина glycosides of apigenin and chrisin	33.7	2.2		29.3	1.6	_

тавшего в природных условиях и в условиях интродукции составляет 208.6 и 209.3 мг/г соответственно; в подземной части (корневища и корни) — 226.3 и 210.2 мг/г.

Таким образом, выращенный в культуре в условиях Республики Бурятия шлемник байкальский (Scutellaria baicalensis) проходит полный цикл развития с образованием полноценных семян с первого года вегетации. Удельная сырьевая фитомасса надземной и подземной части образцов S. baicalensis в условиях интродукции больше таковой в природных условиях. Общее содержание флавоноидов в морфологических группах сырья из растений, произрастающих в природных условиях и в условиях интродукции высокое, соответствует нормативным документам.

ЗАКЛЮЧЕНИЕ

Развитие лекарственного растениеводства является важным для Байкальского региона. Назрела необходимость создания устойчивой сырьевой базы ценных в хозяйственном отношении видов, произрастающих на этой территории и разработки научных основ их выращивания в культуре. В настоящее время в Республике Бурятия принят закон о развитии биофармацевтического производства (Закон Республики Бурятия от 08.12.2017 № 2742-V), который послужит толчком для проведения актуальных исследований и мероприятий, связанных с лекарственным растениеводством.

Выполненное исследование позволило оценить возможность интродукции многолетнего лекарственного растения *Scutellaria baicalensis*, произрастающего в природных условиях на территории Забайкальского края, в Республике Бурятия. *Scutellaria baicalensis* используется в традиционных медицинах Востока, где входит в группу

растений, для которых установлена адаптогенная активность.

Республика Бурятия и Забайкальский край расположены в умеренных широтах северного полушария в юго-восточной части Сибири и обладают схожими природно-климатическими условиями. Это позволило предположить, что эксперимент по культивированию данного вида будет удачным.

В результате проведенного исследования установлено, что в природных популяциях на территории Забайкалья удельная сырьевая фитомасса (возд.-сух. сырье) надземной части S. baicalensis варьирует от 12.0 ± 2.3 до 37.3 ± 5.7 г/м², подземной — от 11.4 ± 1.5 до 99.6 ± 25.2 г/м². Общий биологический запас (возд.-сух. сырье) надземной части S. baicalensis на исследованной территории равен 363.4 кг, подземной части — 539.9 кг. Общий эксплуатационный запас надземной части составляет 233.3 кг, подземной части — 338.4 кг.

Выращенный в культуре в условиях Республики Бурятия S. baicalensis проходит полный цикл развития с образованием полноценных семян с первого года вегетации. Удельная сырьевая фитомасса (возд.-сух. сырье) надземной части S. baicalensis на третий год вегетации составляет $281.1 \pm 31.2 \text{ г/m}^2$, подземной части $-311.5 \pm 29.2 \text{ г/m}^2$. Общее содержание флавоноидов в надземной (209 мг/г) и подземной (226 и 210 мг/г) части S. baicalensis, произрастающего в природных популяциях и в условиях интродукции сходно и соответствует нормативным документам.

БЛАГОДАРНОСТИ

Исследование выполнено при поддержке Министерства науки и высшего образования Российской Федерации в рамках научного проекта № 121030100227-7.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Галамбози Б, Киракосян Г.М., Лужанин В.Г., Флисюк Е.В., Макаров В.Г., Пожарицкая О.Н., Шиков А.Н.* 2018. Выращивание эфиромасличных и лекарственных растений в условиях Севера. 2018. Санкт-Петербург. 318 с.
- 2. *Байкальский* регион в двадцать первом веке: модель устойчивого развития или непрерывная деградация? Комплексная программа политики землепользования для российской территории бассейна озера Байкал. 1993. Улан-Удэ. 112 с.
- 3. Флора Сибири. 1997. Т. 11: Pyrolaceae Lamiaceae (Labiatae). Новосибирск. 296 с.
- 4. Воронова А.М., Толокнова Е.А. 1944. Шлемник байкальский как новое гипотензивное средство. В сб.: Тезисы и рефераты докладов 4-ой конференции молодых ученых Новосибирской области. Томск. С. 79-80.
- 5. Вершинин Н.В., Яблоков Д.Д. 1946. Фармакология и клиника сибирских растений с седативным и гипотензивным действием. В сб.: Новые лекарственные растения Сибири и их лечебные препараты: Томск. Вып. 2. С. 10—16.
- 6. *Воронова А.М., Толокнова Е.А.* 1946. Шлемник байкальский как гипотензивное средство. В сб.: Новые лекарственные растения Сибири и их лечебные препараты. Томск. Вып. 2. С. 41—45.
- 7. Думенова Е.М. 1946. К вопросу о седативном действии чистеца и шлемника байкальских и пустырника при остром хроническом стрихниновом отравлении. В сб.: Новые лекарственные растения Сибири и их лечебные препараты. Томск. Вып. 2. С. 28—31.

- 8. Яблоков Д.Д., Воронова А.М. 1949. Клинические наблюдения байкальского шлемника при гипертонической болезни. В сб.: Новые лекарственные растения Сибири, их лечебные препараты и применение. Новосибирск. Вып. 3. С. 201—210.
- 9. *Яблоков Д.Д.* 1951. Новые сердечные средства из сибирской лекарственной флоры. Труды Томского государственного университета. Томск. 116: 117—124.
- 10. *Воронова А.М.* 1953. Изменение электрокардиограммы у больных гипертонической болезнью при лечении байкальским шлемником. В сб.: Новые лекарственные растения Сибири, их лечебные препараты и применение. Томск. Вып. 4. С. 39—46.
- 11. *Информационное* письмо № 4/12/ГАПУ Министерства здравоохранения СССР. Инструкция по применению настойки шлемника байкальского. 1956. Москва. 77 с.
- 12. Хайдав Ц., Меньшикова Т.А. 1978. Лекарственные растения в монгольской медицине. Улан-Батор. 191 с.
- 13. *Хайдав Б., Алтанчимэг, Варламова Т.С.* 1985. Лекарственные растения в монгольской медицине. Улан-Батор. 67 с.
- 14. *Ибрагимова В.С.* 1994. Китайская медицина. Методы диагностики и лечения. Лекарственные средства. Чжень-цзю терапия. Москва. С. 426—429.
- 15. Дэсрид Санчжай-чжамцо. 2014. Вайдурья-онбо (Гирлянда голубого берилла): комментарий к "Чжуд-ши" украшению учения Царя медицины. Москва. 1286 с.
- 16. *Гриневич М.А.*, *Брехман И.И*. 1970. Исследование сложных рецептов восточной медицины и их составляющих с помощью электронно-вычислительной машины. Сообщение 2. Три десятка наиболее часто используемых лекарственных растений традиционной медицины стран Юго-Восточной Азии. Растит. ресурсы. 6(2): 153—157.
- 17. *Гриневич М.А., Брехман И.И.* 1971. Исследование сложных рецептов восточной медицины и их компонентов с помощью электронно-вычислительной машины. Сообщение 4. Анализ рецептов для лечения некоторых заболеваний. Растит. ресурсы. 7(4): 500—502.
- 18. *Гриневич М.А., Брехман И.И., Ким Б.К.* 1977. Исследование сложных рецептов восточной медицины и их компонентов с помощью электронно-вычислительной машины. Сообщение 5. Наиболее часто используемые лекарственные растения традиционной медицины Японии и Китая. Растит. ресурсы. 13(2): 261—267.
- 19. *Вичканова С.А., Рубинчик М.А.* 1961. Поиски антимикробных веществ растений Сибири и Дальнего Востока. В сб.: Материалы 2-го совещания по использованию лекарственных растений Сибири и Дальнего Востока. Томск. С. 25—26.
- 20. *Kimura Y., Kubo M., Tani D., Arichi S., Okuda H.* 1981. Studies on *Scutellaria* radix. IV. Effect on lipid peroxidation in rat liver. Chem. Pharm. Bull. 29(9): 2610–2617. https://doi.org/10.1248/cpb.29.2610
- 21. *Kimura Y., Kubo M., Kusaka K., Tani D., Higashino M., Arichi S., Okuda H.* 1982. Studies on *Scutellaria* radix. V. Effects on ethanol-induced hyperlipidemia and lipolysis in isolated flat cells. Chem. Pharm. Bull. 30(1): 219—222. https://doi.org/10.1248/cpb.30.219
- 22. *Kimura Y., Okuda H., Arichi S.* 1985. Studies on *Scutellaria* radix. XIII. Effect on various flavonoids in arachidonate metabolism in leukocytes. Pl. Med. 51(2): 132–136. https://doi.org/10.1055/s-2007-969427
- 23. *Kubo M., Matsuda H., Tani T., Arichi S., Kimura Y., Okuda H.* 1985. Studies on *Scutellaria* radix. XII. Anti-thrombic actions of various flavonoids from *Scutellaria* radix. Chem. Pharm. Bull. 33(6): 2411—2415. https://doi.org/10.1248/cpb.33.2411
- 24. *Takayuki N., Haruki Y., Yasuo O.* 1989. Inhibition of mouse liver sialidase by the root of *Scutellaria baicalensis*. Planta Med. 55(1): 27—29. https://doi.org/10.1055/s-2006-961769
- Wagner H. 1989. Search for new plant constituents with potential antiphlogistic and antiallergic activity. Planta Med. 55(3): 235–241. https://doi.org/10.1055/s-2006-961992
- 26. Ажунова Т.А. 1991. Повреждение печени и их фармакотерапия. Улан-Удэ. 99 с.
- 27. Чирикова Н.К. 2007. Фармакогностическое исследование надземной части шлемника байкальского (Scutellaria baicalensis Georgi): Автореф. дис. ... канд. фармацев. наук. Улан-Удэ. 22 с. https://www.dissercat.com/content/farmakognosticheskoe-issledovanie-nadzemnoi-chasti-shlemnika-baikalskogo-scutellaria-baicale/read
- 28. *Государственная* фармакопея СССР: Общие методы анализа. Лекарственное растительное сырье. 1989. Москва. 400 с.
- 29. *Желнович Л.И.*, *Марина Т.Ф.* 1959. Влияние шлемника байкальского на аппарат кровообращения. В сб.: Новые лекарственные растения Сибири, их лечебные препараты и применение. Томск. Вып. 5. С. 98—100.

- 30. *Tsao T.-F., Neuman M.G., Kwok Y.-Y., Horikoshi A.K.* 1982. Effect of Chinese and Western antimicrobial agents on selected oral bacteria. J. Dent. Res. 61(9): 1103–1106. https://doi.org/10.1177/00220345820610091501
- 31. *Разина Т.Г., Удинцев С.Н., Прищеп Т.П., Яременко К.В.* 1987. Повышение избирательности действия цитостатиков циклофосфана и 5-фторурацила с помощью экстракта шлемника байкальского в эксперименте. Вопросы онкологии. 33(2): 80–84.
- 32. *Суслов Н.И.*, *Ратахина Л.В.*, *Першина О.В.*, *Поветьева Т.Н.*, *Литвиненко В.И.*, *Попова Т.П.* 1994. О влиянии экстракта из корней *Scutellaria baicalensis* Georgi на общие показатели поведения экспериментальных животных. Растит. ресурсы. 30(3): С. 75—79.
- 33. *Першина О.В., Суслов Н.И., Пашина В.Г., Литвиненко В.И., Попова Т.П.* 1998. Некоторые фармакологические свойства препаратов из надземной части *Scutellaria baicalensis* Georgi. Растит. ресурсы. 34(3): 83–87.
- 34. *Бухашеева Т.Г.* 2000. Эколого-биологические особенности *Scutellaria baicalensis* в Забайкалье: Автореф. дис. ... канд. биол. наук. Улан-Удэ. 18 с. https://www.dissercat.com/content/ekologo-biologicheskie-osobennosti-scutellaria-baicalensis-georgi-v-zabaikale/read
- 35. *Бухашеева Т.Г., Санданов Д.В., Асеева Т.А., Чирикова Н.К., Шишмарев В.М.* 2007. Возрастная структура цено-популяций и сырьевая фитомасса *Scutellaria baicalensis* (*Lamiaceae*) в Восточном Забайкалье. Растит. ресур-
- популяций и сырьевая фитомасса *Scutellaria baicalensis* (*Lamiaceae*) в Восточном Забайкалье. Растит. ресурсы. 43(4): 23—32. https://www.elibrary.ru/item.asp?id=9916109

 36. *Шишмарев В.М.* 2012. Эколого-биологическая оценка популяций *Scutellaria baicalensis* Georgi и *Pteridium aqui*-
- 36. Шишмарев В.М. 2012. Эколого-биологическая оценка популяций Scutellaria baicalensis Georgi и Pteridium aquilinum (L.) Kuhn в Забайкалье: Автореф. дис. ... канд. биол. наук. Улан-Удэ. 20 с. https://www.dissercat.com/content/ekologo-biologicheskaya-otsenka-populyatsii-scutellaria-baicalensis-georgi-i-pteridium-aquil
- 37. *Шишмарев В.М., Санданов Д.В., Шишмарева Т.М., Асеева Т.А.* 2014. Создание устойчивой сырьевой базы ценных в хозяйственном отношении растений Забайкалья. Вестник БНЦ СО РАН. 1(13): 30—40. https://www.elibrary.ru/item.asp?id=22475413
- 38. Понятовская В.М. 1964. Учет обилия и особенности размещения видов в естественных растительных сообществах. Полевая геоботаника. 3: 209—299.
- 39. *Корчагин А.А.* 1964. Видовой (флористический) состав растительных сообществ и методы его изучения. Полевая геоботаника. 3: 39—62.
- 40. Drude O. 1913. Die Ökologie der Pflanzen. Braunschweig. 308 p.
- 41. *Методика* определения запасов лекарственных растений. 1986. Москва. 51 с. https://docs.cntd.ru/document/9032337
- 42. Положий А.В., Некратова Н.А., Тимошок Е.Е. 1988. Методические указания по изучению ресурсов лекарственных растений Сибири Абакан. 93 с.
- 43. Буданцев А.Л., Харитонова Н.П. 2006. Ресурсоведение лекарственных растений. Санкт-Петербург. 84 с.
- 44. *Olennikov D.N., Kashchenko N.I., Chirikova N.K.* 2014. A novel HPLC-assisted method for investigation of the Fe²⁺-chelating activity of flavonoids and plant extracts. Molecules. 19(11): 18296–18316. https://doi.org/10.3390/molecules191118296
- 45. *Olennikov D.N.*, *Chirikova N.K.* 2013. Phenolic compounds and cinnamamide from *Scutellaria scordiifolia*. Chem. Nat. Compd. 49(1): 124–126. https://doi.org/10.1007/s10600-013-0528-x
- 46. Зайцев Г.Н. 1990. Математика в экспериментальной ботанике. Москва. 296 с.
- 47. *Жуков В.М.* 1960. Климат Бурятской АССР. Улан-Удэ. 188 с.
- 48. Агроклиматические ресурсы Читинской области. 1973. Ленинград. 162 с.
- 49. Агроклиматические ресурсы Бурятской АССР. 1974. Ленинград. 167 с.

Scutellaria baicalensis (Lamiaceae) in Natural Populations and under Cultivation

V. M. Shishmarev^a, *, T. M. Shishmareva^a, D. N. Olennikov^a

^aInstitute of General and Experimental Biology SB RAS, Ulan-Ude, Russia *e-mail: shishmarevslava@rambler.ru

Abstract—The paper presents the study of natural populations of *Scutellaria baicalensis* Georgi in the Trans-Baikal Territory and its cultivation in the Republic of Buryatia. The authors collected seed and planting material, identified thickets of wild-growing *S. baicalensis*, determined the phytomass in different plant communities, biological and exploitable resources of raw materials. The rationale for selection of the introduction area is given. The *S. baicalensis* biological properties under cultivation, the favourable for growth environ-

mental conditions and recommended harvest time of plant raw materials have been established. The phytomass of grass and roots of cultivated *Scutellaria baicalensis* was determined over different years of growth. The content of flavonoids in morphological groups (leaves, stems, roots) of natural and introduced samples of *Scutellaria baicalensis* was studied.

Keywords: Scutellaria baicalensis, Lamiaceae, Buryatia, phytomass, biological resources of raw materials, exploitation resources of raw materials, introduction, flavonoids, HPLC

ACKNOWLEGEMENTS

The present study was carried out with the support of the Ministry of Science and Higher Education of the Russian Federation within the framework of scientific project No. 121030100227-7.

REFERENCES

- 1. *Galambosi B., Kirakosyan G.M., Luzhanin V.G., Flisyuk E.V., Makarov V.G., Pozharitskaya, O.N., Shikov A.N.* 2018. [Cultivation of aromatic and medicinal plants in the North]. St. Petersburg. 318 p. (In Russian)
- 2. [*The Lake* Baikal region in the twenty-first century: a model of sustainable development or continuous degradation?: a comprehensive program of land use policies for the Russian portion of the Lake Baikal region]. 1993. Ulan-Ude. 112 p. (In Russian)
- 3. [Flora of Siberia. V. 11: Pyrolaceae Lamiaceae (Labiatae)]. 1997. Novosibirsk. 296 p. (In Russian)
- 4. Voronova A.M., Toloknova E.A. 1944. [Scutellaria baicalensis as a new antihypertensive agent]. In: [Proceedings and abstracts of the 4th conference of young scientists of the Novosibirsk region]. Tomsk. P. 79–80. (In Russian)
- 5. *Vershinin N.V., Yablokov D.D.* 1946. [Pharmacology and clinical use of Siberian plants with sedative and hypotensive effects]. In: [New medicinal plants of Siberia and their medicinal preparations]. Tomsk. V. 2. P. 10–16. (In Russian)
- 6. *Voronova A.M.*, *Toloknova E.A.* 1946. [*Scutellaria baicalensis* as an antihypertensive agent]. In: [New medicinal plants of Siberia and their medicinal preparations]. Tomsk. V. 2. P. 41—45. (In Russian)
- 7. Dumenova E.M. 1946. [On of the sedative effect of Stachys aspera, Scutellaria baicalensis and Leonurus cardiaca in acute chronic strychnine poisoning]. In: [New medicinal plants of Siberia and their medicinal preparations]. Tomsk. V. 2. P. 28—31. (In Russian)
- 8. *Yablokov D.D., Voronova A.M.* 1949. [Clinical observations of *Scutellaria baicalensis* in hypertension]. In: [New medicinal plants of Siberia, their medicinal preparations and application]. Novosibirsk. V. 3. P. 201–210. (In Russian)
- 9. *Yablokov D.D.* 1951. [New cardiovascular drugs from Siberian medicinal plants]. Trudy Tomskogo gosudarstvennogo universiteta. 116: 117–124. (In Russian)
- 10. *Voronova A.M.* 1953. [Changes in the electrocardiogram in hypertensive patients treated by *Scutellaria baicalensis*]. In: [New medicinal plants of Siberia, their medicinal preparations and application]. V. 4. Tomsk. P. 39–46. (In Russian)
- 11. [*Information* letter No. 4/12/GAPU of the Ministry of Health of the USSR. Instructions for the application of *Scutellaria baicalensis* tincture]. 1956. Moscow. 77 p. (In Russian)
- 12. Khaidav Ts., Menshikova T.A. 1978. [Medicinal plants in Mongolian medicine]. Ulan Bator. 191 p. (In Russian)
- 13. Khaidav B., Altanchimeg, Varlamova T.S. 1985. [Medicinal plants in Mongolian medicine]. Ulan Bator. 67 p. (In Russian)
- 14. *Ibragimova V.S.* 1994. [Traditional Chinese Medicine. Diagnostic and treatment methods. Medicines. Zhen-Chiu therapy]. Moscow. P. 426–429. (In Russian)
- 15. *Desi Sangye Gyatso*. 2014. Vaidūrya ngonpo (The Garland of Blue Beryl): The Commentary to Gyushi the Decoration of the King of Medicine's Teaching]. Transl. from Tibetan. Moscow. 1286 p. (In Russian)
- 16. *Grinevich M.A.*, *Brekhman I.I.* 1970. [Computer-assisted study of complex recipes of oriental medicine and their components. Communication 2. Three dozen of the most commonly used medicinal plants of traditional medicine in Southeast Asia]. Rastitelnye resursy. 6(2): 153–157. (In Russian)
- 17. *Grinevich M.A.*, *Brekhman I.I.* 1971. [Computer-assisted study of complex recipes of oriental medicine and their components. Communication 4. Analysis of recipes for the treatment of certain diseases]. Rastitelnye resursy. 7(4): 500—502. (In Russian)
- 18. *Grinevich M.A.*, *Brekhman I.I.*, *Kim B.K.* 1977. [Computer-assisted study of complex recipes of oriental medicine and their components. Communication 5. The most commonly used medicinal plants of traditional medicine in Japan and China]. Rastitelnye resursy. 13(2): 261–267. (In Russian)
- 19. *Vichkanova S.A.*, *Rubinchik M.A.* 1961. [Search for antimicrobial substances in plants from Siberia and the Far East]. In: [Proceedings of the 2nd conference on the use of Siberian and Far Eastern medicinal plants]. Tomsk. P. 25—26. (InRussian)

- Kimura Y., Kubo M., Tani D., Arichi S., Okuda H. 1981. Studies on Scutellaria radix. IV. Effect on lipid peroxidation in rat liver. – Chem. Pharm. Bull. 29(9): 2610–2617. https://doi.org/10.1248/cpb.29.2610
- 21. *Kimura Y., Kubo M., Kusaka K., Tani D., Higashino M., Arichi S., Okuda H.* 1982. Studies on *Scutellaria* radix. V. Effects on ethanol-induced hyperlipidemia and lipolysis in isolated flat cells. Chem. Pharm. Bull. 30(1): 219—222. https://doi.org/10.1248/cpb.30.219
- 22. *Kimura Y., Okuda H., Arichi S.* 1985. Studies on *Scutellaria* radix. XIII. Effect on various flavonoids in arachidonate metabolism in leukocytes. Pl. Med. 51(2): 132–136. https://doi.org/10.1055/s-2007-969427
- 23. *Kubo M., Matsuda H., Tani T., Arichi S., Kimura Y., Okuda H.* 1985. Studies on *Scutellaria* radix. XII. Anti-thrombic actions of various flavonoids from *Scutellaria* radix. Chem. Pharm. Bull. 33(6): 2411—2415. https://doi.org/10.1248/cpb.33.2411
- 24. *Takayuki N., Haruki Y., Yasuo O.* 1989. Inhibition of mouse liver sialidase by the root of *Scutellaria baicalensis*. Pl. Med. 55(1): 27—29. https://doi.org/10.1055/s-2006-961769
- 25. *Wagner H*. 1989. Search for new plant constituents with potential antiphlogistic and antiallergic activity. Pl. Med. 55(3): 235–241. https://doi.org/10.1055/s-2006-961992
- 26. Azhunova T.A. 1991. [Liver damage and pharmacotherapy]. Ulan-Ude. 99 p. (In Russian)
- 27. Chirikova N.K. 2007. [Pharmacognostic study of the aerial part of Scutellaria baicalensis Georgi: Abstr. ... Dis. Cand. (Pharmacy) Sci.]. Ulan-Ude. 22 p. (In Russian) https://www.dissercat.com/content/farmakognosticheskoe-issledovanie-nadzemnoi-chasti-shlemnika-baikalskogo-scutellaria-baicale/read
- 28. [State Pharmacopoeia of the USSR: General methods of analysis. Medicinal plant raw materials]. 1989. Moscow. 400 p. (In Russian)
- 29. *Zhelnovich L.I.*, *Marina T.F.* 1959. [Effect of *Scutellaria baicalensis* on the circulatory system]. In: [New medicinal plants of Siberia, their medicinal preparations and application]. Vol. 5. Tomsk. P. 98–100. (In Russian)
- Tsao T.-F., Neuman M.G., Kwok Y.-Y., Horikoshi A.K. 1982. Effect of Chinese and Western antimicrobial agents on selected oral bacteria. J. Dent. Res. 61(9): 1103–1106. https://doi.org/10.1177/00220345820610091501
- 31. *Razina T.G.*, *Udintsev S.N.*, *Prishchep T.P.*, *Yaremenko K.V.* 1987. [Increasing the selectivity of the action of cytostatics cyclophosphamide and 5-fluorouracil using *Scutellaria baicalensis* extract in experiment]. Problems in oncology (Voprosy onkologii). 33(2): 80–84. (In Russian)
- 32. Suslov N.I., Ratakhina L.V., Pershina O.V., Povetyeva T.N., Litvinenko V.I., Popova T.P. 1994. [On the effect of Scutellaria baicalensis Georgi root extract on the general behavoural indicators of experimental animals]. Rastitelnye resursy. 30(3): 75–79. (In Russian)
- 33. *Pershina O.V., Suslov N.I., Pashina V.G., Litvinenko V.I., Popova T.P.* 1998. [Some pharmacological properties of preparations from the aerial part of *Scutellaria baicalensis* Georgi]. Rastitelnye resursy. 34(3): 83—87. (In Russian)
- 34. *Bukhasheeva T.G.* 2000. [Ecological and biological features of *Scutellaria baicalensis* in Transbaikalia: Abstr. ... Dis. Cand. (Biology). Sci.]. Ulan-Ude. 18 p. (In Russian) https://www.dissercat.com/content/ekologo-biologicheskie-osobennosti-scutellaria-baicalensis-georgi-v-zabaikale/read
- 35. *Bukhasheeva T.G., Sandanov D.V., Aseeva T.A., Chirikova N.K., Shishmarev V.M.* 2007. Coenopopulations age structure and raw material phytomass of *Scutellaria baicalensis* (Lamiaceae) in Eastern Zabaikalye. Rastitelnye resursy. 43(4): 23–32. (In Russian) https://www.elibrary.ru/item.asp?id=9916109
- 36. Shishmarev V.M. 2012. [Ecological and biological assessment of populations of Scutellaria baicalensis Georgi and Pteridium aquilinum (L.) Kuhn in Transbaikalia: Abstr. ... Dis. Cand. (Biology) Sci.]. Ulan-Ude. 20 p. (In Russian) https://www.dissercat.com/content/ekologo-biologicheskaya-otsenka-populyatsii-scutellaria-baicalensis-georgi-i-pteridium-aquil/read
- 37. Shishmarev V.M., Sandanov D.V., Shishmareva T.M., Aseeva T.A. 2014. The creation of a sustainable resource base of economically valuable plants in Transbaikalia. Bulletin of the Buryat Scientific Center SB RAS. 1(13): 30—40. (In Russian) https://www.elibrary.ru/item.asp?id=22475413
- 38. *Poniatovskaya V.M.* 1964. [Recording the abundance and features of species distribution in natural plant communities]. Polevaya geobotanika. 3: 209–299. (In Russian)
- 39. *Korchagin A.A.* 1964. [Species (floristic) composition of plant communities and methods of its study]. Polevaya geobotanika. 3: 39–62. (In Russian)
- 40. Drude O. 1913. Die Ökologie der Pflanzen. Braunschweig. 308 p.

- 41. [*Methodology* for determining stocks of medicinal plants]. 1986. Moscow. 51 p. (In Russian) https://docs.cntd.ru/document/9032337
- 42. *Plozhij A.V.*, *Nekratova N.A.*, *Timoshok E.E.* 1988. [Guidelines for the study of Siberian medicinal plant resources]. Abakan. 93 p. (In Russian)
- 43. Budantsev A.L., Kharitonova N.P. 2006. [Resource studies of medicinal plants]. St. Petersburg. 84 p. (In Russian)
- 44. Olennikov D.N., Kashchenko N.I., Chirikova N.K. 2014. A novel HPLC-assisted method for investigation of the Fe²⁺-chelating activity of flavonoids and plant extracts. Molecules. 19(11): 18296—18316. https://doi.org/10.3390/molecules191118296
- 45. *Olennikov D.N.*, *Chirikova N.K.* 2013. Phenolic compounds and cinnamamide from *Scutellaria scordiifolia*. Chem. Nat. Compd. 49(1): 124—126. https://doi.org/10.1007/s10600-013-0528-x
- 46. Zaitsev G.N. 1990. [Mathematics in experimental botany]. Moscow. 296 p. (In Russian)
- 47. Zhukov V.M. 1960. [Climate of the Buryat ASSR]. Ulan-Ude. 188 p. (In Russian)
- 48. [Agroclimatic resources of the Chita region]. 1973. Leningrad. 162 p. (In Russian)
- 49. [Agroclimatic resources of the Buryat ASSR]. 1974. Leningrad. 167 p. (In Russian)