МИНЕРАЛЫ И ПАРАГЕНЕЗИСЫ МИНЕРАЛОВ

ВОЗРАСТ МОНАЦИТА ИЗ РУДОПРОЯВЛЕНИЯ ИЧЕТЪЮ, СРЕДНИЙ ТИМАН (СНІМЕ И LA-ICP-MS МЕТОДЫ)

© 2020 г. Д. чл. А. Б. Макеев^{1, *}, д. чл. С. Г. Скублов^{2, 3, **}, А. О. Красоткина², С. Е. Борисовский¹, Т. Б. Томсен⁴, С. Х. Серре⁴

¹Институт геологии рудных месторождений, петрографии, минералогии и геохимии РАН, Старомонетный пер., 35, Москва, 119017 Россия

> ²Институт геологии и геохронологии докембрия РАН, наб. Макарова, 2, Санкт-Петербург, 199034 Россия

³Санкт-Петербургский горный университет, 21 линия, 2, Санкт-Петербург, 199106 Россия

⁴Геологическая служба Дании и Гренландии, Geological Survey of Denmark & Greenland (GEUS), Øster Voldgade 10, DK-1350 Copenhagen K, Denmark

> *e-mail: abmakeev@mail.ru **e-mail: skublov@yandex.ru

Поступила в редакцию 26.11.2019 г. После доработки 07.12.2019 г. Принята к публикации 09.12.2019 г.

Проведенное исследование морфологии, состава и возраста (методами СНІМЕ и LA-ICP-MS) монацита из рудопроявления Ичетью, расположенного на Среднем Тимане, выявило принципиальные различия в типоморфных особенностях и генезисе двух его разновидностей. Обычный монацит желтого цвета представлен монацитом-(Се), в котором содержание примеси La превышает содержание Nd. Время его кристаллизации (перекристаллизации), оцененное методом СНІМЕ, составляет 518 ± 40 млн лет. Время образования разновидности монацита – куларита (глобулярного облика, серовато-коричневого цвета, по составу отвечающего монациту-(Се), в котором содержание Nd превышает содержание La) равно 978 ± 31 млн лет. Часть зерен куларита имеет возраст 520 ± 27 млн лет, что может быть интерпретировано как проявление гидротермального события, приведшего к одновременной перекристаллизации монацита и куларита. Две разновидности монацита образовались в двух разных первоисточниках, а затем были объединены в минеральном парастерезисе. Полученные методом СНІМЕ оценки возраста монацита из рудопроявления Ичетью, относящиеся к двум рубежам (около 500-600 и 960-1000 млн лет), близки или совпадают с возрастами тех же зерен монацита, определенными с помощью метола LA-ICP-MS.

Ключевые слова: рудопроявление Ичетью, Средний Тиман, монацит, куларит, метод CHIME, метод LA-ICP-MS, геохронология

DOI: 10.31857/S0869605520010086

Метод химического электронно-зондового датирования U–Th-содержащих минералов (chemical Th–U–total Pb isochron method, CHIME) был разработан в 1990-х годах (Suzuki, Adachi, 1991; Suzuki et al., 1991; и др.). В последнее время интерес к нему заметно вырос (Williams et al., 2007; Вотяков и др., 2011, 2012; Williams et al., 2017; Ning et al., 2019). С помощью электронного микрозонда можно датировать отдельные фрагменты индивидов монацита, обладающие зонально-секториальным строением, и реконструировать последовательность геологических процессов, в ходе которых происходила кристаллизация и перекристаллизация зерен.

Еще один подход к изучению монацита основан на использовании метода LA-ICP-MS. Будучи менее локальным, этот метод позволяет получить полную изотопно-геохимическую информацию по U–Pb и Th–Pb системам, а также комплементарные данные по распределению редких элементов в исследуемых доменах монацита.

Особый интерес представляет комплексирование двух методов (Ning et al., 2019). В настоящей работе представлены результаты датирования методами CHIME и LA-ICP-MS монацита из полиминерального рудопроявления Ичетью на Среднем Тимане, условия и возраст образования которого остаются предметом острых дискуссий (Калюжный, 1982; Макеев, Вирюс, 2013; Макеев и др., 2017; Скублов и др., 2018).

ГЕОЛОГИЧЕСКАЯ ХАРАКТЕРИСТИКА

Комплексное алмаз-золото-редкоземельно-редкометалльно-титановое рудопроявление Ичетью приурочено к конглобрекчиевому горизонту, залегающему в основании мономинеральных кварцевых песчаников пижемской свиты среднего девона (D₂pz), и привлекает внимание исследователей наличием ювелирных алмазов высокого качества уральско-бразильского типа (Макеев, Дудар, 2001), возможностью попутного комплексного извлечения полезных компонентов, а также нерешенностью вопроса об источниках поступления полезных минералов.

Границы распространения горизонта алмазоносной конглобрекчии рудопроявления Ичетью контролируются площадью развития подстилающих немых отложений малоручейской свиты. Последняя имеет бо́льшую площадь распространения на юге Пижемской депрессии, чем пижемская свита (D₂pz). В связи с этим было высказано предположение, что именно она является промежуточным коллектором и источником полезных минералов для рудоносных конглобрекчий Ичетью (Макеев, Дудар, 2001).

В пределах Пижемской депрессии пижемская свита сложена светло-серыми и коричневато-серыми разнозернистыми песчаниками (SiO₂ 98 мас. %, FeO* 0.3 мас. %) с более мощными (1.5 м) прослоями гравелитов и маломощными (до 0.3–1.0 м) линзами глин серо-коричневато-зеленого цвета (рис. 1). Первоначально считалось, что алмазоносный и золотоносный пласт ("палеороссыпь Ичетью") имеет плащеобразную форму, мощность от 0.3 до 1.5 м, сложен кварцевыми конглобрекчиями и кварцевыми конгломератами и приурочен к основанию разреза пижемской свиты. Однако разведочными работами 1983–1998 гг. было установлено, что пласт имеет не сплошное, а пятнистое распространение и приурочен только к местам выходов верхней малоручейской толщи, сложенной каолинит-кварцевыми мелкозернистыми слабосцементированными песчаниками. Именно подстилающие "мылкие" на ощупь каолиниткварцевые песчаники стали для геологов поисковым признаком на алмазоносные конглобрекчии.

Грубая фракция конглобрекчий состоит из слабоокатанной гальки и обломков песчаников, кварцитов, кремней, жильного кварца, рифейских полосатых глинистых сланцев. Изредка в ней встречаются слабо окатанные кристаллы горного хрусталя размером до 3 см. Кроме того, в пределах горизонта наблюдаются будины мощностью 0.5 м, обломки вмещающих пижемских песчаников, мелкие (2–5 мм) обломки свежих девонских базальтов (Макеев и др., 2017). Наполнителем конглобрекчий Ичетью является кластогенный остроугольный кварц. Текстура горизонта Ичетью брекчиевая.

На рудопроявлении Ичетью диагностировано более 50 минералов: разнообразные минералы титана (ругил, Fe-ругил, брукит, анатаз, псевдоругил, Mn-содержащий ильменит, лейкоксен), редкоземельные (монацит и его разновидность – куларит, ксенотим, флоренсит), редкометалльные (колумбит-(Fe), колумбит-(Mn), Nb-содержащий ругил, циркон, Y-содержащий циркон) фазы, хромшпинелиды (Zn-содержащий хромит,

Рис. 1. Расчистка конглобрекчиевого пласта Ичетью в карьере К-100. Типичное положение продуктивного полиминерального пласта Ичетью в основании пижемской свиты. Длина вешки составляет 2 м. **Fig. 1.** Cleared outcrop of the conglo-breccia strata Ichetju in the open-pit K-100. Typical occurrence of the polymineral bed in the base of the Pizhemskaya formation. Length of the marker is 2 m.

пикрохромит, хромпикотит, субферриалюмохромит, Cr–Ti-содержащий магнетит), гранаты (гроссуляр-андрадитового ряда – 3%, пироп-альмандинового ряда – 8%, альмандин-гроссулярового ряда – 18%, гроссуляр-спессартин-альмандинового ряда – 70%), золото с примесью серебра (со средней пробностью 950 ‰), алмаз, оливин, диопсид, авгит, турмалин, ставролит, кианит, амфибол, калиевый полевой шпат, плагиоклазы, эгирин, эпидот, Ti-содержащий флогопит, каолинит, титанит, фтор-апатит, кальцит, гётит, гематит, торианит, пирит. Выход тяжелой фракции продуктивного пласта Ичетью варьирует в пределах 0.1–2.0 кг/м³. Химический состав и типоморфные особенности всех минералов хорошо изучены (Макеев, 2012; Красоткина, 2018). Некоторые признаки свидетельствуют о термальном воздействии на минералы: цинковые каймы на зернах хромшпинелидов (Макеев, Макеев, 2005), корочки REE-Sr-алюмофосфатов (флоренсита) на монаците (Макеев, Макеев, 2010).

Проведенные исследования подтверждают вывод о большом сходстве минерального парастерезиса и типохимических особенностей рудных и акцессорных минералов Пижемского титанового месторождении (Макеев, 2016), рудопроявления Ичетью и лампрофиров Четласского Камня (Макеев, Брянчанинова, 2009).

С целью изучения минерального состава тяжелой фракции и химического состава индикаторных минералов было проведено опробование конглобрекчиевого пласта рудопроявления Ичетью. В обнажениях по бортам рек и в зачистках мелких карьеров отбирались задирковые пробы методом сплошной объемной борозды вкрест простирания конглобрекчиевого пласта Ичетью. Объем проб везде был одинаков (20 литров рыхлого песчано-гравийного материала или примерно 35—40 кг). Пробы промывались до серого шлиха в поле, а в лаборатории тяжелая фракция отделялась в бромоформе. Для исследования возраста из 4 проб, расположенных в северной части площади распространения проявления Ичетью, были отобраны монацит и куларит. Местонахож-

Рис. 2. Изображение монофракций монацита (*a*) и куларита (δ) из рудопроявления Ичетью. **Fig. 2.** Monazite (*a*) and kularite (δ) from the Ichetju occurrence.

дение проб: 1) обнажение в восточной части скалы "Золотой Камень" в правом борту р. Пижмы — пробы ПЗК-201 и ЗК-4 (64°47.440′ с.ш., 51°28.516′ в.д., абсолютная отметка 146 м), мощность пласта в этом месте 40 см; 2) небольшой карьер Сидоровского участка в левом борту р. Пижмы — пробы ПМС-239 и СУ-1 (64°47.620′ с. ш.; 51°28.502′ в. д.; абс. отм. 136 м), мощность пласта в этом месте 30 см. Сидоровский участок находится примерно в 1 км севернее "Золотого Камня". Из каждой пробы отбирались обломки кристаллов желтого монацита и округлые "окатанные" серо-коричневые зерна куларита (рис. 2 *a*, *б*). Обычно в тяжелой фракции изученных проб куларита в 3 раза больше, чем монацита. Заметим, что в нашей более ранней работе (Макеев, Вирюс, 2013) опробовались для изучения возраста монацита южные выходы конглобрекчиевого пласта Ичетью, расположенные примерно 6 км южнее скалы "Золотой Камень".

МЕТОДЫ ИССЛЕДОВАНИЯ

Предварительное исследование состава монацита, зерна которого были вмонтированы в шайбы из эпоксидной смолы стандартного размера, было проведено на растровом электронном микроскопе JEOL JSM-6510LA с энергодисперсионным спектрометром JED-2200 в ИГГД РАН (аналитик О.Л. Галанкина).

Количественный анализ монацита проведен в лаборатории анализа минерального вещества ИГЕМ РАН (аналитик С.Е. Борисовский) на электронно-зондовом микроанализаторе JEOL JXA-8200, оснащенном 5-ю волновыми спектрометрами. Анализ проводился при ускоряющем напряжении 20 кВ, токе зонда на цилиндре Фарадея 150 нА при диаметре зонда 5 мкм. В табл. 1 для каждого элемента приведены: аналитическая линия, кристалл-анализатор, дифференциальный (dif) или интегральный (int) режим дискриминации импульсов, время набора импульсов, стандарт сравнения, предел обнаружения. Расчет поправок осуществлялся по методу ZAF с использованием программы фирмы JEOL. Влияние линии $YL\gamma_{2,3}$ на завышение концентрации PbO из-за наложения на аналитическую линию PbMα было измерено для кристалл-анализатора PETH на стандарте и составило 0.0085 мас. % PbO на 1 мас. % Y_2O_3 с учетом ZAF коррекции. Измерение фона для аналитической линии UM β с учетом наложения на нее "хвоста" от линии ThM γ было проведено по методу, предложенному в работе (Борисовский, 2014). Выполнено 96 анализов состава 23 зерен монацита (табл. 2, 3) из

Элемент, линия	Кристалл- анализатор	Режим дискрими- нации импульсов	Экспозиция, с	Стандарт	Предел обнаруже- ния (3σ), ppm
Ρ Κα	ТАР	dif	10	Апатит С-141	210
Fe Ka	LIF	int	10	Эгирин С-38	330
Pb Mα	PETH	dif	150	PbCrO ₄	80
$ThM\alpha$	PET	dif	100	ThO ₂	120
La Lα	PET	int	10	LaPO ₄	700
Υ Lα	ТАР	dif	30	YPO ₄	150
Mn Kα	LIF	int	10	Спессартин Abr	330
U Mβ	PETH	dif	100	UO ₂	130
Sm Lβ	LIF	int	60	SmPO ₄	480
Si Ka	ТАР	dif	10	Эгирин С-38	150
Ca Kα	PETH	int	10	Апатит С-141	100
Nd La	LIF	int	50	NdPO ₄	400
S Κα	PETH	dif	10	BaSO ₄	150
Pr Lα	LIF	int	60	PrPO ₄	600

Таблица 1. Условия микрозондового анализа Table 1. Measurement conditions of the microprobe analysis

четырех проб на 15 компонентов: главных (P₂O₅, La₂O₃, Ce₂O₃, Pr₂O₃, Nd₂O₃, Sm₂O₃, Y₂O₃, ThO₂) и примесных (CaO, SiO₂, UO₂, PbO, FeO, MnO, SO₃).

Расчет возраста производился по результатам электронно-зондового рентгеноспектрального определения ThO₂, UO₂, PbO методом CHIME с помощью компьютерной программы, размещенной на сайте Центра хронологических исследований Нагойского университета Японии (http://www.nendai.nagoya-u.ac.jp/gsd/CHIME/). Описание этой программы, принципы и особенности метода CHIME приведены в работе (Kato et al., 1999). Выбор конкретных анализов для построения изохроны осуществлялся в ручном режиме методом перебора. За окончательный вариант расчета принималась изохрона с приемлемой относительной погрешностью возраста (не более 5–10 отн. %), значением СКВО менее 1 и максимальным количеством анализов минерала среди альтернативных выборок.

U-Th-Рb изотопно-геохимическое датирование монацита было выполнено методом лазерной абляции с масс-спектрометрией в индуктивно-связанной плазме (LA-ICP-MS) в лаборатории Геологической службы Дании и Гренландии (GEUS), г. Копенгаген (аналитики Т.Б. Томсен и С.Х. Серре). Система лазерной абляции NWR213 с неодимовым лазером с длиной волны 213 нм на алюмо-иттриевом гранате (Nd:YAG лазер) производителя NewWaveResearch (ESI) со стандартной TV2 ячейкой для образца, которая соединена с одноколлекторным магнитным секторным масс-спектрометром с индуктивно-связанной плазмой Element 2 (FisherScientific). Время вывода лазера в рабочий режим составляло 15-20 мин в начале каждой смены, что обеспечивало стабильную мощность лазера и плоскую геометрию кратеров. Отношения сигнал/шум для диапазона тяжелых масс (от ²⁰²Hg до ²³⁸U), влияющие на ²³⁸U и ²⁰⁶Pb, были максимально увеличены для U-Th-Pb датирования. Одновременно, путем уменьшения ²⁵⁴UO/²³⁸U отношения, соблюдались условия для низкого уровня образования оксидов элементов. Для контроля качества U-Th-Pb датирования образцов в процессе измерения регулярно анализировались: стандартный образец циркона Plesovice (Slama et al., 2008) и стандартные образцы монацита А49H, А276С (персональное сообщение

		locraв	C		1
MnO SO ₃ Cyma T	PbO SiO ₂ FeO	caO ThO ₂ UO ₂	03 Y203	Pr	O ₃ Sm ₂ O ₃ Pr ₂
7 0.015 0.006 98.517 0 2 0.000 0.000 98.653	3 0.006 0.000 0.007 0.000 0.000 0.012	0.021 0.357 0.003 0.017 0.135 0.001	84 0.150 0 35 0.074 0	2.5	00 0.341 2.6 51 0.199 2.5
1 0.007 0.000 99.087 0 7 0 023 0.000 98.745	0.003 0.000 0.001	0.005 0.239 0.000 0.033 0.105 0.000	2 0.063 0	2.78	75 0.262 2.78 57 0.345 2.66
7 0.008 0.017 98.772 0 0 0.039 0.001 97.116 0	0.010 0.000 0.027 0.000	0.011 0.253 0.000 0.114 0.728 0.005	0.115	2.660	89 0.327 2.660 87 2.353 3.533
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 0.011 0.038 0.000 0.020 0.030 0.010	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.314 0.397 0.397	3.512 3.569	243 2.255 3.512 25 2.529 3.569 2.545 2.559
7 0.034 0.010 97.389 0 7 0.031 0.000 97.990 0	0.023 0.055 0.001 0.013 0.000 0.007	0.056 0.880 0.000 0.029 0.552 0.005	0.214 0.156 0	3.503 2.882	49 2.245 3.503 54 0.501 2.882
0 0.009 0.000 97.865 0 2 0.008 0.009 98.025 0	1 0.015 0.000 0.010 0.012 0.000 0.002	0.024 0.454 0.00 0.033 0.570 0.00	0.358	3.045 2.785	83 0.619 3.045 45 0.410 2.785
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0 0.011 0.000 0.001 0.004 0.000 0.014	$0.028 0.483 0.000 \\ 0.032 0.470 0.015 \\ 0.005 \\ 0.00$.153 (2.810 0 2.735 0	84 0.462 2.810 0 75 0.362 2.735 0
4 0.000 0.000 98.556 2 0.036 0.000 98.659 0	2 0.000 0.000 0.004 0.009 0.000 0.002	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$)85 (38 (3.296 0.0 3.095 0.1	00 0.600 3.296 0.0 41 0.523 3.095 0.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.002 0.000 0.013	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	58	3.242 0.1 3.146 0.0	22 0.704 3.242 0.1 77 0.529 3.146 0.0
0 0.021 0.004 98.157 0 9 0.000 0.021 96.869 0	0.011 0.000 0.000	0.027 0.544 0.000 0.055 0.952 0.010	19 (3.098 0.1 2.821 0.1	87 0.523 3.098 0.1 45 0.461 2.821 0.1
0 0.000 0.017 96.828 1 8 0.018 0.017 97.166 1	t 0.025 0.000 0.000	0.067 1.127 0.014	22 0	2.865 0.27 2.906 0.25	34 0.521 2.865 0.27 05 0.510 2.906 0.25
5 0.015 0.010 97.444 1 0.000 0.001 97.444 1		0.062 1.059 0.010 0.062 1.059 0.010	200	2.878 0.20	46 0.510 2.878 0.20
5 0.000 0.004 97.314 0	0.018 0.000 0.016	0.031 0.562 0.007	11	2.818 0.0	25 0.282 2.818 0.0
0 0.000 0.015 97.116 0		0.058 0.776 0.017	9	2.564 0.03	68 0.250 2.564 0.03
0 0.017 0.006 97.827 0	0.022 0.000 0.020	0.066 0.918 0.002	34	2.551 0.0	70 0.256 2.551 0.0
7 0.010 0.023 97.706 0	0.021 0.000 0.007	0.104 0.821 0.000	51	2.493 0.0	81 0.188 2.493 0.0
0 0.003 0.007 97.539 0	0.004 0.000 0.000	0.019 0.309 0.000	130	3.137 0.0	98 0.539 3.137 0.0
0 0.016 0.000 98.093 0	0.001 0.000 0.000	0.030 0.159 0.001	008	2.912 0.0	88 0.344 2.912 0.0
1 0.002 0.013 97.858	0.000 0.000 0.001	0.037 0.173 0.000	022	2.900 0.	09 0.351 2.900 0.
9 0.011 10.009 97.40 00 00 00 00 00 00 00 00 00 00 00 00 0	200.000/00/0000/0005	.014 0.142 0.141 0.00 000 0 144 0 000	033 0	2.09 540.2	21 0.330 2.093 0. 74 0.384 2.613 0.
1 0.035 0.012 97.935	0.000 0.000 0.001	0.018 0.067 0.000	036 (2.368 0	19 0.142 2.368 0
0 0.005 0.000 97.684	0.000 0.000 0.000	0.016 0.019 0.000	0.044 (2.398	05 0.170 2.398

ВОЗРАСТ МОНАЦИТА ИЗ РУДОПРОЯВЛЕНИЯ ИЧЕТЪЮ

		+1	12	35	23	34	30	15
	, t	$\frac{^{208}Pb}{^{232}Th}$	448	006	826	702	809	479
	-MS	+1	I	68	19	63	19	Ι
	A-ICP	²⁰⁷ Pb ²⁰⁶ Pb	1	1147	1008	1446	992	Ι
	Г	+1	I	6	11	72	19	Ι
		²⁰⁶ Pb ²³⁸ U	1	1010	946	1049	932	I
	ME	t 1	490 500 583 553 613 492	862 1018 1018	1809 1090 859 1248	1047 545 1018 891	1014 1027 - 1305 1059	558 345 492 571 528 592 563
	CHI	ThO ₂ *	3.120 5.887 5.887 2.133 3.696 1.568 1.568 4.972	1.338 1.260 1.741	0.103 0.123 0.704 0.365	0.396 0.302 0.592 0.416	1.520 1.707 - 1.678	$\begin{array}{c} 1.893\\ 1.574\\ 1.574\\ 1.482\\ 1.482\\ 1.482\\ 2.004\\ 1.507\\ 7.548\end{array}$
		Сумма	96.425 96.409 96.659 97.232 96.441 96.441 97.625	90.863 98.230 96.038	97.115 97.413 98.087 91.815	97.831 95.748 96.492 95.099	97.218 95.453 96.636 95.026 96.808	97.713 97.588 98.232 97.794 97.736 97.748 97.748
		SO_3	$\begin{array}{c} 0.003\\ 0.029\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000 \end{array}$	$\begin{array}{c} 0.132 \\ 0.047 \\ 0.011 \end{array}$	$\begin{array}{c} 0.015 \\ 0.000 \\ 0.009 \\ 0.008 \end{array}$	0.002 0.006 0.013 0.018	$\begin{array}{c} 0.003\\ 0.007\\ 0.321\\ 0.009\\ 0.008\end{array}$	$\begin{array}{c} 0.000\\ 0.004\\ 0.000\\ 0.006\\ 0.006\\ 0.006\\ 0.0025 \end{array}$
		MnO	$\begin{array}{c} 0.012 \\ 0.038 \\ 0.016 \\ 0.005 \\ 0.032 \\ 0.033 \end{array}$	$\begin{array}{c} 0.050 \\ 0.033 \\ 0.016 \end{array}$	$\begin{array}{c} 0.046 \\ 0.048 \\ 0.043 \\ 0.043 \\ 0.045 \end{array}$	$\begin{array}{c} 0.011\\ 0.046\\ 0.016\\ 0.032\end{array}$	$\begin{array}{c} 0.017 \\ 0.034 \\ 0.032 \\ 0.041 \\ 0.039 \end{array}$	$\begin{array}{c} 0.045\\ 0.061\\ 0.050\\ 0.038\\ 0.001\\ 0.013\\ 0.013\\ 0.049\end{array}$
		FeO	$\begin{array}{c} 0.002\\ 0.000\\ 0.001\\ 0.000\\ 0.000\\ 0.000\\ 0.000\end{array}$	0.255 0.862 0.702	$\begin{array}{c} 0.025\\ 0.014\\ 0.326\\ 0.689\end{array}$	0.005 0.244 0.115 0.130	$\begin{array}{c} 0.109\\ 0.637\\ 0.238\\ 0.090\\ 0.024\end{array}$	$\begin{array}{c} 0.019\\ 0.000\\ 0.000\\ 0.000\\ 0.026\\ 0.011\\ 0.000\\ 0.000 \end{array}$
		SiO ₂	$\begin{array}{c} 0.419\\ 0.324\\ 0.120\\ 0.566\\ 0.165\\ 0.744\end{array}$	1.247 6.839 1.916	0.014 0.031 6.783 16.803	0.028 2.824 2.296 0.484	$\begin{array}{c} 1.303 \\ 0.847 \\ 0.692 \\ 0.223 \\ 0.092 \end{array}$	$\begin{array}{c} 0.356\\ 0.244\\ 0.234\\ 0.232\\ 0.319\\ 0.214\\ 0.491 \end{array}$
		DqQ	$\begin{array}{c} 0.065\\ 0.125\\ 0.053\\ 0.087\\ 0.041\\ 0.041\\ 0.104\end{array}$	$\begin{array}{c} 0.050 \\ 0.056 \\ 0.077 \end{array}$	$\begin{array}{c} 0.009\\ 0.006\\ 0.026\\ 0.020\\ 0.020\end{array}$	0.018 0.007 0.026 0.016	$\begin{array}{c} 0.067 \\ 0.076 \\ 0.002 \\ 0.053 \\ 0.077 \end{array}$	$\begin{array}{c} 0.045\\ 0.023\\ 0.031\\ 0.036\\ 0.045\\ 0.038\\ 0.038\\ 0.181\end{array}$
		UO2	$\begin{array}{c} 0.002\\ 0.023\\ 0.001\\ 0.008\\ 0.000\\ 0.037\end{array}$	0.216 0.155 0.132	$\begin{array}{c} 0.025 \\ 0.031 \\ 0.016 \\ 0.027 \end{array}$	$\begin{array}{c} 0.024 \\ 0.013 \\ 0.014 \\ 0.033 \end{array}$	$\begin{array}{c} 0.123\\ 0.097\\ 0.077\\ 0.117\\ 0.117\\ 0.071\end{array}$	$\begin{array}{c} 0.007\\ 0.006\\ 0.000\\ 0.012\\ 0.009\\ 0.005\\ 0.037\end{array}$
ence	aB	ThO ₂	3.113 5.810 2.130 3.669 1.568 4.849	0.618 0.743 1.301	0.020 0.020 0.651 0.275	0.316 0.259 0.545 0.306	$\begin{array}{c} 1.110\\ 1.384\\ 0.836\\ 0.522\\ 0.522\\ 1.441\end{array}$	$\begin{array}{c} 1.870\\ 1.554\\ 1.554\\ 1.482\\ 1.442\\ 1.974\\ 1.490\\ 7.425\end{array}$
occuri	Coct	CaO	0.179 0.698 0.176 0.160 0.102 0.102 0.218	0.332 0.207 0.205	$\begin{array}{c} 0.110 \\ 0.108 \\ 0.188 \\ 0.182 \\ 0.182 \end{array}$	$\begin{array}{c} 0.072 \\ 0.178 \\ 0.142 \\ 0.178 \end{array}$	0.147 0.225 0.156 0.174 0.206	$\begin{array}{c} 0.016\\ 0.026\\ 0.021\\ 0.030\\ 0.024\\ 0.026\\ 0.026\end{array}$
hetju (Y ₂ O ₃	0.214 0.207 0.218 0.218 0.209 0.202 0.066	0.698 0.625 0.449	$\begin{array}{c} 0.599\\ 0.731\\ 0.527\\ 0.550\\ 0.550\end{array}$	0.446 0.596 0.452 0.627	0.416 0.477 0.426 0.544 0.439	$\begin{array}{c} 0.297\\ 0.220\\ 0.116\\ 0.187\\ 0.188\\ 0.188\\ 0.176\\ 0.176\\ 0.403\end{array}$
the Ic		Pr ₂ O ₃	3.270 3.104 3.255 3.258 3.388 3.293 3.158	4.094 3.932 3.353	4.688 4.590 3.940 3.462	2.602 4.069 3.417 4.390	3.432 4.095 4.373 4.373 4.373 4.332	4.500 4.454 4.566 4.566 4.600 4.496 4.599 4.076
e from		Sm ₂ O ₃	3.057 2.732 2.732 2.789 3.023 3.016 3.016 1.684	5.525 3.111 1.753	3.187 3.641 2.202 5.603	0.713 2.404 1.571 3.648	1.083 2.495 2.834 3.114 2.510	$\begin{array}{c} 1.391\\ 1.346\\ 1.335\\ 1.235\\ 1.324\\ 1.308\\ 1.308\\ 1.251\\ 1.570\end{array}$
kularit		Nd_2O_3	13.104 11.917 12.241 13.470 13.079 11.364	20.182 16.303 12.010	20.087 20.254 15.178 18.086	7.717 15.976 11.857 19.391	11.413 16.007 17.707 17.555 16.774	16.269 16.111 16.658 16.558 15.874 16.374 16.374 15.290
age of		La ₂ O ₃	15.051 14.747 16.448 16.448 15.798 15.798 16.460	6.141 9.198 14.661	8.801 8.610 10.659 4.570	23.449 10.454 15.191 8.469	15.998 9.829 9.229 9.472 9.790	10.089 10.248 9.889 9.863 10.282 9.954 8.676
on and		Ce ₂ O ₃	28.793 27.491 29.457 28.928 28.928 29.573 30.181	23.091 28.228 30.699	29.644 29.015 29.623 18.141	32.395 30.393 32.297 28.301	32.783 30.409 30.372 29.952 31.242	33.671 33.655 34.615 34.317 34.317 34.215 34.513 34.513 34.513 29.404
mpositi		P_2O_5	29.141 29.164 29.754 29.072 29.572 29.572 28.727	28.232 27.891 28.753	29.845 30.314 27.916 23.354	30.033 28.279 28.540 29.076	29.214 28.834 29.341 28.903 29.763	29.138 29.026 29.335 29.149 28.969 29.084 27.895
3. Coi	Локация	N ⁰ точки	100400	27 28 29	33 31 30	34 35 36	86.644 4	53 53 53 53 53 53 53 53 53 53 53 53 53 5
Table		№ Зерна	3-1	4-1	4-2	4-3	4-4	5-4

Таблица 3. Состав и возраст куларита из проявления Ичетью **Table 3.** Composition and age of kularite from the Ichetju occurren

3. Окончание	(Contd.)
Таблица	Table 3.

	+1	33	15	11	22	15	19	21	47	16	
t	$\frac{^{208}\mathrm{Pb}}{^{232}\mathrm{Th}}$	775	787	822	765	716	813	823	728	751	
-MS,	+1	18	25	27	33	27	22	18	39	26	
A-ICP.	²⁰⁷ Pb ²⁰⁶ Pb	1145	1120	1071	1147	1132	1025	1038	1100	1105	
Г	+1	12	10	22	17	23	22	17	36	27	
	²⁰⁶ Pb ²³⁸ U	1075	266	1006	1044	993	1009	1027	696	1087	
ME	t	1018 1180 1105 1105	1100 964 467	$^{-}_{964}$	1213 967	820 806 989	1135 1030 950	1196 1002 1061	1698 900 927	1040 1242 1041	pohbl
CHI	ThO ₂ *	$\begin{array}{c} 1.432 \\ 0.713 \\ 0.797 \\ 1.433 \end{array}$	1.306 2.813 1.265	$\begin{smallmatrix} -\\1.168\\0.858\end{smallmatrix}$	1.302 	0.878 1.561 1.522	$ \begin{array}{c} 1.138 \\ 0.887 \\ 1.503 \end{array} $	1.263 1.212 1.005	$\begin{array}{c} 0.370 \\ 3.624 \\ 0.697 \end{array}$	$1.154 \\ 0.632 \\ 1.170$	й изох
	Cymma	94.312 95.565 95.880 95.234	96.532 93.922 92.372	96.878 94.701 95.365	91.768 94.297 94.537	97.476 95.399 95.841	94.088 95.935 93.224	93.006 94.112 92.142	95.430 95.932 97.057	95.279 96.036 94.082	молодс
	SO ₃	$\begin{array}{c} 0.017 \\ 0.007 \\ 0.009 \\ 0.020 \end{array}$	$\begin{array}{c} 0.010 \\ 0.003 \\ 0.063 \end{array}$	$\begin{array}{c} 1.156 \\ 0.011 \\ 0.000 \end{array}$	$\begin{array}{c} 0.015 \\ 1.114 \\ 0.013 \end{array}$	$\begin{array}{c} 0.001 \\ 0.003 \\ 0.009 \end{array}$	0.008 0.013 0.014	$\begin{array}{c} 0.005 \\ 0.024 \\ 0.000 \end{array}$	$\begin{array}{c} 0.000\\ 0.022\\ 0.003\end{array}$	$\begin{array}{c} 0.000\\ 0.006\\ 0.000\end{array}$	I ВПД –
	MnO	$\begin{array}{c} 0.039\\ 0.018\\ 0.036\\ 0.035\end{array}$	$\begin{array}{c} 0.028 \\ 0.071 \\ 0.030 \end{array}$	$\begin{array}{c} 0.026 \\ 0.031 \\ 0.013 \end{array}$	$\begin{array}{c} 0.054 \\ 0.035 \\ 0.059 \end{array}$	$\begin{array}{c} 0.045 \\ 0.048 \\ 0.040 \end{array}$	$\begin{array}{c} 0.041 \\ 0.041 \\ 0.049 \end{array}$	$\begin{array}{c} 0.082 \\ 0.041 \\ 0.075 \end{array}$	$\begin{array}{c} 0.020 \\ 0.046 \\ 0.016 \end{array}$	$\begin{array}{c} 0.032 \\ 0.035 \\ 0.045 \end{array}$	СИВОМ
	FeO	$\begin{array}{c} 0.087 \\ 0.058 \\ 0.352 \\ 0.352 \\ 0.026 \end{array}$	$\begin{array}{c} 0.083 \\ 0.114 \\ 1.099 \end{array}$	$ \begin{array}{c} 1.548 \\ 0.398 \\ 0.112 \end{array} $	$\frac{1.188}{0.976}$ 0.085	$\begin{array}{c} 0.002 \\ 0.048 \\ 0.016 \end{array}$	0.286 0.016 1.436	$\begin{array}{c} 0.563 \\ 0.310 \\ 0.071 \end{array}$	$\begin{array}{c} 0.120 \\ 0.027 \\ 0.306 \end{array}$	$\begin{array}{c} 0.031 \\ 0.017 \\ 0.020 \end{array}$	но кур
	SiO ₂	$\begin{array}{c} 0.379\\ 0.199\\ 0.453\\ 0.022\end{array}$	0.046 1.945 1.925	$\begin{array}{c} 0.211 \\ 0.739 \\ 8.560 \end{array}$	$3.590 \\ 1.351 \\ 0.653$	$\begin{array}{c} 0.097 \\ 0.103 \\ 0.000 \end{array}$	$\begin{array}{c} 0.878 \\ 0.000 \\ 1.563 \end{array}$	$1.406 \\ 1.057 \\ 0.348$	$\begin{array}{c} 0.065 \\ 0.297 \\ 0.256 \end{array}$	$\begin{array}{c} 0.031 \\ 0.000 \\ 0.024 \end{array}$	ителы
	PbO	$\begin{array}{c} 0.064 \\ 0.038 \\ 0.039 \\ 0.067 \end{array}$	$\begin{array}{c} 0.063 \\ 0.117 \\ 0.025 \end{array}$	$\begin{array}{c} 0.000 \\ 0.053 \\ 0.036 \end{array}$	$\begin{array}{c} 0.070 \\ 0.000 \\ 0.063 \end{array}$	$\begin{array}{c} 0.031 \\ 0.054 \\ 0.065 \end{array}$	$\begin{array}{c} 0.057 \\ 0.040 \\ 0.062 \end{array}$	$\begin{array}{c} 0.067 \\ 0.053 \\ 0.047 \end{array}$	$\begin{array}{c} 0.030 \\ 0.140 \\ 0.028 \end{array}$	$\begin{array}{c} 0.053 \\ 0.035 \\ 0.054 \end{array}$	цопол
	UO ₂	$\begin{array}{c} 0.248 \\ 0.191 \\ 0.149 \\ 0.149 \\ 0.300 \end{array}$	$\begin{array}{c} 0.155 \\ 0.106 \\ 0.145 \end{array}$	$\begin{array}{c} 0.121 \\ 0.103 \\ 0.108 \end{array}$	$\begin{array}{c} 0.182 \\ 0.163 \\ 0.134 \end{array}$	$\begin{array}{c} 0.081 \\ 0.073 \\ 0.057 \end{array}$	$\begin{array}{c} 0.160 \\ 0.120 \\ 0.157 \end{array}$	$\begin{array}{c} 0.187 \\ 0.161 \\ 0.174 \end{array}$	$\begin{array}{c} 0.094 \\ 0.021 \\ 0.067 \end{array}$	$\begin{array}{c} 0.242 \\ 0.101 \\ 0.275 \end{array}$) Hodx
BB	ThO ₂	0.605 0.076 0.300 0.433	0.789 2.460 0.782	$\begin{array}{c} 0.271 \\ 0.825 \\ 0.498 \end{array}$	$\begin{array}{c} 0.695 \\ 0.256 \\ 1.055 \end{array}$	0.608 1.318 1.332	$\begin{array}{c} 0.605 \\ 0.487 \\ 0.980 \end{array}$	$\begin{array}{c} 0.640 \\ 0.675 \\ 0.425 \end{array}$	$\begin{array}{c} 0.057\\ 3.554\\ 0.474\end{array}$	$\begin{array}{c} 0.347 \\ 0.295 \\ 0.253 \end{array}$	ет изо
Cocre	CaO	$\begin{array}{c} 0.180\\ 0.112\\ 0.108\\ 0.134\end{array}$	$\begin{array}{c} 0.113 \\ 0.369 \\ 0.207 \end{array}$	$\begin{array}{c} 0.084 \\ 0.209 \\ 0.166 \end{array}$	$\begin{array}{c} 0.235 \\ 0.165 \\ 0.184 \end{array}$	$\begin{array}{c} 0.090 \\ 0.165 \\ 0.133 \end{array}$	$\begin{array}{c} 0.181 \\ 0.081 \\ 0.282 \end{array}$	$\begin{array}{c} 0.262 \\ 0.275 \\ 0.185 \end{array}$	$\begin{array}{c} 0.101 \\ 0.311 \\ 0.157 \end{array}$	$\begin{array}{c} 0.115 \\ 0.113 \\ 0.123 \end{array}$	в расч
	Y ₂ O ₃	$\begin{array}{c} 0.703 \\ 0.536 \\ 0.458 \\ 0.638 \end{array}$	$0.504 \\ 0.492 \\ 0.514$	0.427 0.497 0.494	0.515 0.486 0.411	$0.396 \\ 0.460 \\ 0.402 $	$\begin{array}{c} 0.584 \\ 0.407 \\ 0.647 \end{array}$	0.702 0.650 0.626	$\begin{array}{c} 0.502 \\ 0.319 \\ 0.495 \end{array}$	$\begin{array}{c} 0.668 \\ 0.470 \\ 0.706 \end{array}$	едшие
	Pr_2O_3	4.319 4.307 4.069 4.498	4.195 4.178 3.972	3.982 4.240 3.875	4.066 4.118 4.079	4.391 3.855 4.194	4.468 4.358 4.259	4.265 4.559 4.389	4.477 3.694 4.044	4.548 4.298 4.664	и, вош
	Sm ₂ O ₃	3.782 3.289 2.209 3.905	2.378 4.773 2.413	1.678 2.832 2.445	4.453 2.763 2.166	2.660 2.049 2.646	4.182 2.757 4.350	8.036 5.511 6.131	2.444 3.031 1.586	3.438 2.585 5.803	ы точк
	Nd_2O_3	18.869 18.179 15.814 19.586	16.488 20.829 15.575	14.278 17.010 15.237	18.854 17.040 15.692	17.460 14.345 16.992	20.456 17.768 19.989	24.174 22.998 23.092	16.998 16.213 13.972	19.586 16.876 24.171	ыделен
	La ₂ O ₃	7.757 9.437 11.436 7.763	10.353 5.791 9.388	12.752 9.476 9.370	6.835 9.060 10.756	10.764 12.819 10.514	7.199 9.378 6.538	4.372 5.603 5.340	9.865 11.299 12.475	7.959 10.000 5.413	фтом в
	Ce ₂ O ₃	28.418 29.766 31.559 28.526	31.870 24.721 29.061	31.718 29.656 27.809	24.946 28.800 30.708	31.260 31.112 30.526	26.716 31.073 25.185	20.177 23.918 23.071	31.902 28.592 33.391	29.156 31.765 23.755	иdш wi
	P ₂ O ₅	28.845 29.352 28.889 29.281	29.457 27.953 27.173	28.626 28.621 26.642	26.070 27.970 28.479	29.590 28.947 28.915	28.267 29.396 27.713	28.068 28.277 28.168	28.755 28.366 29.787	29.073 29.440 28.776	Жирнь
вил	№ точки	69 2 1 2 6 6 7 1 7 6 6	73 74 75	77 77 8	79 80 81	88 83 82	85 86 87	8 8 S	93 93 ⁹¹	5 8	чание.
Лока	N⁰ 3epнa	6-1	6-2	6-3	6-4	6-5	7-1	7-2	7-3	7-4	Приме

ВОЗРАСТ МОНАЦИТА ИЗ РУДОПРОЯВЛЕНИЯ ИЧЕТЪЮ

Y. LaHaye, GTK) и Bananeira (Gonçalves et al., 2016), что обеспечивало погрешность анализов менее 3–5%. Участки для анализа выбирались в свободных от микровключений и чистых доменах зерен монацита. Данные были получены при точечном анализе с кратером 40 мкм при энергии лазера от 10 до 10.6 Дж/см² и частоте импульсов 10 Гц. Длительность проведения индивидуального анализа не превышала 2 мин, включая 30 с измерения фона, сменяемого собственно абляцией в течение 40 и 45 с "промывом" после абляции. Обработка первичных данных осуществлялась стандартными программами, входящими в комплект оборудования. Обработка результатов измерений, расчет изотопных отношений и значений возраста осуществлялись после проведения анализа с помощью программы Iolite v.2.5 (Hellstrom et al., 2008, Paton et al., 2011), с использованием встроенного в Iolite Vizual Age алгоритма обработки данных (Petrus, Kamber, 2012) для U–Th–Pb датирования. Vizual Age алгоритм обработки данных включает схему коррекцию на общий Pb для монацита (Andersen, 2002).

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ

Состав монацита. Практически в каждой пробе было выделено две разновидности монацита (табл. 2 и 3) с размером зерен до 1-2 мм (рис. 2, *a*, *б*). Преобладает непрозрачный серый (бурый, черный) глобулярный монацит-(Се), в котором содержание Nd превышает содержание La. Зерна этого типа часто округлой формы и линзовидные, со следами растворения на внешних границах. В объеме зерен характерно замещение порового пространства кварцем и флоренситом. В отечественной литературе монацит с такими характеристиками называют куларитом (Некрасова, Некрасов, 1983; Кременецкий, 1993; Макеев, Вирюс, 2013), однако, за рубежом этот термин не получил распространения и в настоящее время не используется. В режиме BSE изображения зерна куларита имеют светло-серую окраску и неоднородное строение, в них в большом количестве (иногда до 10–15 об. %) присутствуют включения кварца и флоренсита, заполняющие поровое пространство (рис. 3, зерна 3-1, 4-2, 5-4, 7-1). Светлые пятна и прожилки в этих зернах указывают на неоднородность в химическом составе, а именно на повышенное содержание тория. Содержания главных элементов в краевой и центральной части зерен сильно отличаются (табл. 3). По данным микрозондового анализа отмечена внутризерновая зональность куларита, заключающаяся в повышении к краю зерен содержания La и понижении содержания Nd; содержание Ce при этом или остается неизменным или незначительно повышается (Красоткина, 2018). Аналогичная зональность отмечалась и другими исследователями, например, для куларита из карьера у скалы "Золотой Камень" была установлена зональность, заключающаяся в повышении от центра зерна к краю содержаний La и Ce и понижении содержания Nd (Колонин и др., 2010).

Монацит обычного желтоватого оттенка (рис. 2, δ) по составу является монацитом-(Се), в котором содержание La превышает содержание Nd. Удлиненные кристаллы и их обломки (рис. 3, зерна 5-1 и 5-2) характеризуются однородным внутренним строением, а их относительно хорошая сохранность свидетельствует о близком коренном источнике (Макеев, Вирюс, 2013). По данным микрозондового анализа монацит демонстрирует отсутствие зональности при сравнении состава центральной и краевой частей зерен (Красоткина, 2018), при этом заметен разброс в соотношении содержаний LREE между индивидуальными зернами (табл. 2).

На тройной диаграмме $La_2O_3-Ce_2O_3-Nd_2O_3$ точки составов монацита образуют единый тренд, выгнутый к вершине Се (рис. 4). Большинство зерен обогащено Ce_2O_3 относительно двух других компонентов, причем это характерно в большей степени для желтого монацита. В некоторых зернах куларита содержание Nd_2O_3 превышает

Рис. 3. Изображение в режиме обратно-отраженных электронов проанализированных зерен монацита и куларита. Отмечены точки анализа методом CHIME. Округлые черные пятна являются кратерами от анализа методом LA-ICP-MS.

Fig. 3. Analyzed monazite and kularite grains with marked points of CHIME; rounded black spots correspond cavities from LA-ICP-MS. BSE images.

24 мас. %. В желтом монаците содержание La_2O_3 достигает 26.9 мас. %. Только один анализ попадает в поле монацита-(Nd).

Важным критерием для выяснения генезиса монацита является уровень содержания Th. Для гидротермального монацита типоморфной особенностью является резко

Рис. 4. Тройная диаграмма La₂O₃-Ce₂O₃-Nd₂O₃ для монацита и куларита из рудопроявления Ичетью. **Fig. 4.** Triple diagram La₂O₃-Ce₂O₃-Nd₂O₃ for monazite and kularite from the Ichetju occurrence.

пониженное содержание Th и, соответственно, пониженное Th/U отношение (Schandl, Gorton, 2004; Taylor et al., 2015). Монацит из рудопроявления Ичетью характеризуется крайне низким содержанием Th, для большинства зерен не превышающим 1 мас. %. В желтом монаците содержание Th в целом меньше, чем в куларите, хотя диапазоны содержания Th пересекаются (табл. 2, 3). На диаграмме Th–Th/U (рис. 5) и куларит, и монацит попадают в область составов гидротермального монацита.

На диаграмме UO_2 —ThO₂ в сравнении с монацитом из различных типов пород (Janots et al., 2012), обе разновидности монацита из рудопроявления Ичетью также соответствуют составам гидротермального монацита (рис. 6). Содержание U в желтом монаците экстремально низкое; по данным LA-ICP-MS (Скублов и др., 2018) для большинства зерен оно находится в интервале 0.1—10 ppm, что ниже порога обнаружения микрозондового анализа (табл. 1). В куларите среднее содержание U составляет около 1300 ppm (Скублов и др., 2018). Th/U отношение, по данным LA-ICP-MS, для желтого монацита гораздо выше (минимальное значение составляет 129, максимальное — 62153 ppm), чем для куларита (Th/U отношение варьирует от 0.64 до 26.35 при среднем значении около 5). Эта же закономерность прослеживается и при рассмотрении результатов микрозондового анализа (рис. 6).

Возраст монацита. Результаты датирования куларита и монацита из проявления Ичетью методами CHIME и LA-ICP-MS приведены в табл. 2 и 3.

При расчете возраста монацита методом CHIME были исключены анализы с содержанием PbO ниже порога обнаружения и четыре анализа (12, 14, 64, 68) с завышенными возрастами (древнее 850 млн лет), определенными этим методом (табл. 2). Для остальных 28 анализов была рассчитана эрохрона с возрастом 576 ± 115 млн лет и CKBO = 11.67. Исключение еще 8 анализов позволило получить кондиционную изо-

Fig. 5. Diagram Th-Th/U for monazite and kularite from the Ichetju occurrence. Fields of magmatic (*I*) and hydro-thermal (*2*) monazite from Taylor et al. (2015).

хрону с возрастом 531 ± 59 млн лет и СКВО = 1.59. Уменьшение числа анализов до 18 не изменило принципиально значение возраста и погрешность его определения (518 ± 40 млн лет); при этом СКВО уменьшилось до 0.71 (рис. 7, *a*). Медианное значение индивидуальных возрастов для этой же группы анализов составляет 538 млн лет. Поэтому значение из интервала 520-540 млн лет, определенное методом СНІМЕ, можно рассматривать как возраст кристаллизации монацита из рудопроявления Ичетью.

По данным метода LA-ICP-MS (табл. 2) средневзвешенный 238 U/ 206 Pb возраст для монацита составляет 561 ± 58 млн лет. С учетом погрешности это значение пересекается с данными, полученными методом CHIME. Средневзвешенный 232 Th/ 208 Pb возраст, рассчитанный по 8 определениям, более молодой и составляет 451 ± 19 млн лет.

Анализы куларита можно разделить на две подгруппы по индивидуальным возрастам, рассчитанным методом CHIME (табл. 3). В первую подгруппу попадают анализы (их большинство) с возрастами от 806 до 1809 млн лет. Для них была построена изохрона с возрастом 957 \pm 59 млн лет и CKBO = 2.11. Уменьшение размера выборки до 26 анализов (за счет отбрасывания точек с самыми древними возрастами) принципиально не изменяет результата — возраст изохроны в этом случае составляет 978 \pm 31 млн лет, CKBO = 0.46 (рис. 7, δ). Медианное значение возраста для этой же группы составляет 1018 млн лет.

Возраст, рассчитанный для второй подгруппы анализов куларита, достаточно выдержан. Отбрасывание крайних значений возраста практически не меняет изохрон-

Рис. 6. Диаграмма UO_2 -Th O_2 для куларита и монацита из рудопроявления Ичетью. Показаны поля составов монацита различного генезиса: *1* – из высокометаморфизованных парапород; *2* – умеренно метаморфизованных парапород; *3* – из гранитов и пегматитов; *4* – монацита гидротермального происхождения (Janots et al., 2012).

Fig. 6. Diagram UO_2 -Th O_2 for kularite and monazite from the Ichetju occurrence. There are shown fields of composition for monazite of different genesis: from highly (*1*) and moderately (*2*) metamorphosed rocks, 3 - from granites and pegmatites, 4 - of hydrothermal genesis (Janots et al., 2012).

ный возраст, а лишь понижает величину СКВО. Для 13 анализов была построена изохрона с возрастом 520 ± 27 млн лет и СКВО = 0.93 (рис. 7, *в*). При этом медианное значение возраста для выборки несущественно отличается в большую сторону и составляет 545 млн лет.

Для куларита можно использовать геохронологические определения методом LA-ICP-MS для всех трех изотопных систем (табл. 3). Для подгруппы с более древним возрастом средневзвешенный 238 U/ 206 Pb возраст составляет 1006 ± 26 млн лет, 207 Pb/ 206 Pb возраст – 1069 ± 38 млн лет. Средневзвешенное значение 232 Th/ 208 Pb возраста меньше и составляет 788 ± 27 млн лет. Налицо несоответствие возрастных оценок, соответствующих разным изотопным системам – U–Pb и Th–Pb.

Для подгруппы куларита с возрастом около 520 млн лет, определенным методом CHIME, не удалось определить возраст U–Pb изотопной системы методом LA-ICP-MS. Два значения 232 Th/ 208 Pb возраста (448 ± 12 и 479 ± 15 млн лет) меньше возрастных значений, полученных методом химического датирования этих же зерен куларита.

Рис. 7. Изохроны для монацита (*a*) и куларита (*б*, *в*). ThO_2^* – эффективное содержание радиоактивного компонента в монаците, учитывающее измеренное содержание ThO_2 и пересчитанное на ThO_2 содержание UO_2 (Kato et al., 1999).

Fig. 7. Isochrones for monazite (a) and kularite (δ , θ). ThO₂^{*} – effective content of the radioactive component in monazite, considering the measured ThO₂ content and the UO₂ content recalculated for content of ThO₂ (Kato et al., 1999).

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Сопоставление определений возраста монацита и куларита из проявления Ичетью методами CHIME и LA-ICP-MS продемонстрировало их сходство. Для монацита возраст по результатам химического датирования составляет около 520–540 млн лет и практически совпадает с изотопными данными по U–Pb системе (около 560 млн лет). Изотопный возраст по Th–Pb системе (около 450 млн лет) "отстает" от U–Pb системы более чем на 100 млн лет.

Датирование куларита подтвердило установленное ранее (Макеев, Вирюс, 2013) проявление двух разновозрастных событий. Бо́льшее число зерен куларита по данным химического датирования и метода LA-ICP-MS (U–Pb изотопная система) имеет возраст около 980–1070 млн лет. В то же время 232 Th/ 208 Pb возраст меньше, как минимум, на 200 млн лет и составляет в среднем 780 млн лет.

Меньшая часть зерен куларита по данным химического датирования имеет возраст около 520–540 млн лет, что совпадает с возрастными определениями для монацита. Значение возраста, определенное методом LA-ICP-MS (Th-Pb изотопная система), попадает в интервал 450–480 млн лет, что заметно меньше возраста, полученного с помощью метода CHIME.

Наблюдаемое как для монацита, так и для куларита, омоложение 232 Th/ 208 Pb возраста по сравнению с данными химического датирования и U–Pb изотопным возрастом объяснить достаточно сложно. Если предполагать вынос радиогенного 208 Pb при гидротермальных процессах, то следовало бы ожидать сопоставимый по масштабам вынос 206 Pb, тем более, что Th/U отношение у куларита близко к 1 (рис. 5). Этого не происходит с U–Pb-возрастом у куларита, который устойчиво держится на отметках 1000–1100 млн лет (табл. 3). Можно предположить фракционирование (привнос) Th в результате гидротермальной деятельности. В условиях незначительного содержания

Th в куларите даже относительно небольшой привнос Th может оказать критическое влияние на величину 208 Pb/ 232 Th отношения в ходе последующего радиоактивного распада.

Дисбаланс U–Pb и Th–Pb изотопных систем в монаците отмечался и ранее. Если в ходе развития локальных методов датирования (CHIME, SIMS, LA-ICP-MS) расхождение U–Pb и Th–Pb возрастов зачастую списывали на проблемы методического плана (Harrison et al., 2002), то впоследствии было установлено, что при гидротермальных изменениях монацита только значения 232 Th/ 208 Pb возраста дают точную оценку времени протекания этих процессов, тогда как U–Pb система в монаците испытывает сильнейшее нарушение в результате контаминации общим Pb и фракционирования U относительно Th (Seydoux-Guillaume et al., 2012). Детальное исследование монацита из гранитов, включая независимую оценку баланса изотопов Pb, показало, что при гидротермальных изменениях содержание 206 Pb, как правило, увеличивается, а содержание 208 Pb – уменьшается при ожидаемом уменьшении содержания Th (Poitrasson et al., 2000). Не исключено, что в случае с монацитом из проявления Ичетью расхождение 232 Th/ 208 Pb и 238 U/ 206 Pb возрастов вызвано именно этим типом фракционирования радиогенных изотопов Pb.

Гидротермальное преобразование куларита, приведшее его к теперешнему облику, имеет возраст около 500–600 млн лет. Это событие зафиксировала как Th–Pb изотопная система куларита, так и U–Pb и Th–Pb системы монацита. Остается открытым вопрос, какое событие послужило толчком для активизации гидротермальной деятельности и практически одновременной перекристаллизации монацита и куларита из разных источников, которые затем объединились в рудопроявлении Ичетью. Положение трех проб монацита на общей с куларитом Pb–Pb изохроне (Красоткина, 2018) говорит о присутствии в нем определенной компоненты древнего радиогенного Pb. Можно предположить, что желтый монацит является полностью перекристаллизованным монацитом из пород фундамента, но из иного первоисточника и типа пород, чем в случае с куларитом. Основная масса монацита не могла образоваться по более древнему кулариту. Эти две разновидности одного минерала, из которых каждая имеет собственный первоисточник и свою историю преобразования.

Проведенное исследование особенностей минерального парастерезиса проявления Ичетью (более 50 минеральных фаз), срастаний этих минералов, сингенетических включений, морфологии и типохимических особенностей всех минералов, в том числе двух разновидностей монацита-(Се) (с преобладанием в качестве ведущей примеси либо La, либо Nd) позволило утверждать, что обсуждаемое рудопроявление образовано с участием не менее трех-четырех видов коренных источников рудного вещества, которыми могут быть: 1) лампрофировые дайки, подобные четласским, являющиеся источником алмаза, рутила, монацита, Mn-содержащего ильменита, циркона, титанита, апатита, флогопита и др. (Макеев, Брянчанинова, 2009; Макеев и др., 2009); 2) подстилающее Пижемское титановое месторождение как источник Mn-содержащего ильменита, лейкоксена, железистого рутила, псевдорутила, циркона, монацита и его разновидности – куларита и др. (Макеев, 2016); 3) кварцевые жилы в неопротерозойских кварцито-сланцевых породах фундамента с альбитом, гематитом, Nb-содержащим рутилом, колумбитом, ксенотимом, ругилом, монацитом-(Се) с примесью La (аналог Бобровского и Октябрьского проявления), монацитом-(Се) с примесями La и Th (аналог Новобобровского проявления на Четласском Камне; Удоратина и др., 2015); 4) кварцевые золотоносные жилы в кварцито-сланцевом комплексе пород фундамента.

Датирование методом CHIME высокоториевого монацита из гидротермально-метасоматических пород жильной серии, развитых в пределах Новобобровского участка Четласского Камня на Среднем Тимане, показало, что его возраст составляет 530—550 млн лет (Удоратина и др., 2015). Это значение практически совпадает с полученными в настоящей работе с помощью независимых методов (CHIME и LA-ICP-MS) возрастами гидротермального монацита и перекристаллизованного куларита из проявления Ичетью, попадающими в интервал 500–600 млн лет, а также с возрастом монацита по одной, наиболее молодой, изохроне в предшествующей работе (Макеев, Вирюс, 2013). Такая корреляция возрастов гидротермальных событий на границе венда и фанерозоя, установленных для образцов из двух гряд Среднего Тимана – Вольско-Вымской и Четласской, расположенных на расстоянии 60 км друг от друга, дает основание предполагать единое для Среднего Тимана тектоно-термальное событие, зафиксированное монацитом. Источниками REE в процессе формирования рудопроявления Ичетью и сопряженного с ним Пижемского титанового месторождения могли послужить одно или несколько рудопроявлений (предполагаемых, но не выходящих на современную поверхность), аналогичных Новобобровскому, Бобровскому и Октябрьскому в Четласском Камне, в кварцито-сланцевом неопротерозойском комплексе пород фундамента на севере Вольско-Вымской гряды.

Более древний возраст (около 740 млн лет), полученный нами для куларита методом CHIME ранее (Макеев, Вирюс, 2013), можно соотнести с возрастом четласских лампрофиров, время внедрения которых по данным Rb–Sr метода составляет 819 ± 19 млн лет (Макеев, Брянчанинова, 2009; Макеев и др., 2009). К этому же временному интервалу относится формирование четласских карбонатитов (около 600 млн лет), в которых монацит является одним из наиболее распространенных акцессорных минералов. Эти возрастные данные получены только для куларита, отобранного из проб конглобрекчии в южной части рудопроявления Ичетью. В южной части площади рудопроявления и выходов на поверхность пласта конглобрекчии, в ее тяжелой фракции наиболее ярко проявилась титановая минеральная ассоциация, характерная именно для нижележащего Пижемского месторождения. Вероятным источником куларита здесь могли выступать руды Пижемского месторождения, а зафиксированный возраст куларита около 740 млн лет может соответствовать возрасту формирования самого титанового месторождения.

Возраст самой древней изохроны 978 ± 31 млн лет, рассчитанный для куларита из северной части рудопроявления и близкий к возрасту около 967 млн лет для нескольких проб в южной части проявления Ичетью (Макеев, Вирюс, 2013), отвечает времени первичной кристаллизации куларита и, возможно, указывает на наиболее древний и самый удаленный коренной источник редкометалльно-редкоземельной высокотемпературной гидротермально-метасоматической минерализации в палеопротерозойском кварцито-сланцевом комплексе пород фундамента.

выводы

Проведенные исследования морфологии, состава и возраста монацита рудопроявления Ичетью выявили принципиальные различия в типоморфных особенностях и генезисе двух его разновидностей. Обычный монацит желтого цвета из проявления Ичетью представлен монацитом-(Ce), в котором содержание примеси La превышает содержание Nd. Время его кристаллизации (перекристаллизации) по данным метода CHIME равно 518 \pm 40 млн лет. Время образования второй разновидности монацита – куларита (характеризующейся преобладанием примеси Nd над La) составляет 978 \pm 31 млн лет. Часть зерен куларита имеет возраст 520 \pm 27 млн лет, связанный, предположительно с гидротермальным событием, приведшим к одновременной перекристаллизации монацита и куларита. При этом две рассматриваемые разновидности монацита образовались в совершенно разных первоисточниках, а затем были объединены в минеральном парастерезисе рудопроявления Ичетью.

Полученные методом CHIME оценки возраста монацита из рудопроявления Ичетью, отвечающие двум рубежам (500–600 и 960–1000 млн лет), близки или совпа-

дают с изотопными определениями возраста в этих же зернах монацита, оцененными методом LA-ICP-MS. Проведенное исследование показывает, что для массовых определений возраста монацита можно использовать более локальный и экспрессный метод химического датирования CHIME, результаты которого рекомендуется выборочно заверять более трудоемким и менее локальным изотопным методом LA-ICP-MS.

Исследование монацита методом CHIME выполнено при финансовой поддержке РФФИ в рамках научного проекта № 19-35-60001. Funding: The reported study of monazite by CHIME method was funded by RFBR, project number 19-35-60001. Исследование монацита методом LA-ICP-MS выполнено в рамках тем НИР ИГЕМ РАН № 0136-2018-0020 и ИГГД РАН № 0153-2019-0002.

СПИСОК ЛИТЕРАТУРЫ

Борисовский С.Е. Альтернативный способ измерения фона при наложении аналитических линий / Тез. докл. VIII Всеросс. конф. по рентгеноспектральному анализу. Иркутск: Институт земной коры СО РАН – ИрГТУ, сентябрь 2014. Иркутск, **2014**. С. 20.

Вотяков С.Л., Щапова Ю.В., Хиллер В.Н. Кристаллохимия и физика радиационно-термических эффектов в ряде U-Th-содержащих минералов как основа для их химического микрозондового датирования. Екатеринбург: Институт геологии и геохимии УрО РАН, **2011**. 336 с.

Вотяков С.Л., Хиллер В.Н., Щапова Ю.В. Особенности состава и химическое микрозондовое датирование U-Th-содержащих минералов. Часть I. Монациты ряда геологических объектов Урала и Сибири // ЗРМО. 2012. № 1. С. 45–60.

Калюжный В.А. Геология новых россыпеобразующих метаморфических формаций. М.: Наука, **1982**. 264 с.

Колонин Г.Р., Широносова Г.П., Швецова И.В. О зональном распределении РЗЭ в темных монацитах (куларитах) Тиманского кряжа // Докл. РАН. **2010**. Т. 432. № 4. С. 524–527.

Красоткина А.О. Изотопно-геохимические особенности и возраст акцессорных минералов рудопроявления Ичетъю и Пижемского месторождения (Средний Тиман). Автореф. дисс. ... канд. геол.-мин. наук. СПб.: СПГУ, **2018**. 20 с.

Кременецкий А.А. Новый геолого-промышленный тип редкоземельных россыпей // Разведка и охрана недр. **1993**. № 3. С. 15–19.

Макеев А.Б. Типоморфные особенности минералов титановых руд Пижемского месторождения // Минералогия. **2016**. № 1. С. 24–49.

Макеев А.Б., Андреичев В.Л., Брянчанинова Н.И. Rb–Sr возраст лампрофиров Среднего Тимана // Докл. РАН. **2009**. Т. 426. № 1. С. 94–97.

Макеев А.Б., Брянчанинова Н.И. Лампрофиры Тимана // Региональная геологии и металлогения. **2009**. Т. 37. С. 51–73.

Макеев А.Б., Вирюс А.А. Монацит проявления Ичетью (состав, морфология, возраст) // Изв. высш. учебн. заведений. Геология и разведка. **2013**. № 3. С. 10–15.

Макеев А.Б., Дудар В.А. Минералогия алмазов Тимана. СПб: Наука, 2001. 336 с.

Макеев А.Б., Красоткина А.О., Скублов С.Г. Новые данные об U—Рь возрасте и составе циркона (SHRIMP-II, SIMS) из полиминерального рудопроявления Ичетью (Средний Тиман) // Вестник ИГ Коми НЦ УрО РАН. **2017**. № 11. С. 28–42.

Макеев А.Б., Макеев Б.А. Цинковые хромшпинелиды Среднего Тимана и Приполярного Урала // Докл. РАН. **2005**. Т. 404. № 2. С. 235–240.

Макеев Б.А. Макеев А.Б. Редкоземельные и стронциевые алюмофосфаты Вольско-Вымской гряды (Средний Тиман) // ЗРМО. **2010**. № 3. С. 95–102.

Макеев Б.А. Минеральные ассоциации и индикаторы рудоносности Пижемского титанового и Ичетьюского алмазоносного месторождений Среднего Тимана. Автореф. дисс. ... канд. геол.-мин. наук. Казань: Казанский университет, **2012**. 24 с.

Некрасова Р.А., Некрасов И.Я. Куларит – аутигенная разновидность монацита // Докл. АН СССР. **1983**. Т. 268. № 3. С. 688–693.

Скублов С.Г., Красоткина А.О., Макеев А.Б., Томсен Т.Б., Серре С.Х., Абдрахманов И.А. Геохимия редких элементов (LA-ICP-MS) в монаците из рудопроявления Ичетью, Средний Тиман / Тр. Ферсмановской научн. сессии. Апатиты, 7–10 апреля 2019 г. Апатиты: ГИ КНЦ РАН, **2018**. С. 338–341.

Скублов С.Г., Макеев А.Б., Красоткина А.О., Ризванова Н.Г., Койман Э., Томсен Т.Б., Серре С.Х. Новые данные о возрасте циркона, рутила и монацита из рудопроявления Ичетью, Средний Тиман / Мат. VII Российск. конф. по изотопной геохронологии "Методы и геологические результаты изучения изотопных геохронометрических систем минералов и пород". Москва, 5– 7 июня 2018 г. М.: ИГЕМ РАН, **2018**. С. 326–328. Удоратина О.В., Вирюс А.А., Козырева И.В., Швецова И.В., Капитанова В.А. Возраст монацитов жильной серии четласского комплекса (Средний Тиман): Th–U–Pb-данные // Вестник ИГ Коми НЦ УрО РАН. **2015**. № 3. С. 23–29.

AGE OF MONAZITE FROM THE ICHETJU OCCURRENCE, THE MIDDLE TIMAN (CHIME AND LA-ICP-MS METHODS)

A. B. Makeyev^{*a*}, *, S. G. Skublov^{*b*, *c*}, **, A. O. Krasotkina^{*b*}, S. E. Borisovskiy^{*a*}, T. B. Thomsen^{*d*}, and S. H. Serre^{*d*}

^a Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry RAS, Moscow, Russia ^bInstitute of Precambrian Geology and Geochronolog RAS, Saint Petersburg, Russia ^cSaint-Petersburg Mining University, Saint Petersburg, Russia ^dGeological Survey of Denmark & Greenland (GEUS), Copenhagen, Denmark *e-mail: abmakeev@mail.ru **e-mail: skublov@vandex.ru

The study of morphology, composition, and age (by CHIME and LA-ICP-MS methods) of monazite from the Ichetju ore occurrence, located in the Middle Timan, has revealed some principal differences in typomorphic features and genesis of its two varieties. The common yellow monazite from this occurrence is represented by monazite-(Ce), in which the La content is higher than the Nd content. The time of its crystallization (recrystallization) is estimated by the CHIME method as 518 ± 40 Ma. The time of formation of kularite (grayishbrown oolitic shape variety of monazite in which the Nd content is higher than the La content) is defined as 978 ± 31 Ma. Some of kularite grains show the age of 520 ± 27 Ma, which may be interpreted as the age of a hydrothermal event that led to the simultaneous recrystallization of both monazite and kularite. However, these two varieties of monazites were formed in two completely different sources, and were then combined in the mineral parasteresis of the Ichetju occurrence. Estimated by CHIME ages of monazite from Ichetju occurrence, as related to two intervals (500–600 and 960–1000 Ma), are close or coincide with values of the isotopic age determined by LA-ICP-MS method in the same monazite grains.

Keywords: occurrence Ichetju, Middle Timan, monazite, kularite, CHIME, LA-ICP-MS, geochronology

REFERENCES

Andersen T. Correction of common lead in U–Pb analyses that do not report ²⁰⁴Pb. *Chem. Geol.* **2002**. Vol. 192. P. 59–79.

Borisovskiy S.E. An alternative way to measure the background when applying analytical lines. In: Abs. VIII Russian Conf. on X-ray analysis. Irkutsk, 2014. P. 20. (in Russian).

Gonçalves G.O., Lana C., Scholz R., Buick I.S., Gerdes A., Kamo S.L., Corfu F., Marinho M.M., Chaves A.O., Valeriano C., Nalini Jr. H.A. An assessment of monazite from the Itambé pegmatite district for use as U–Pb isotope reference material for microanalysis and implications for the origin of the "Moacyr" monazite. Chem. Geol. 2016. Vol. 424. P. 30–50.

Harrison T.M., Catlos E.J. Montel J.M. U-Th-Pb dating of phosphate minerals. Rev. Miner. Geochem. 2002. Vol. 48. P. 524–558.

Hellstrom J., Paton C., Woodhead J., Hergt J. Iolite: Software for spatially resolved LA- (quad and MC) ICP MS analysis. In: Laser Ablation ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues. Ed. P. Sylvester. Mineral. Assoc. of Canada, **2008**. P. 343–348.

Janots E., Berger A., Gnos E., Whitehouse M., Lewin E., Pettke T. Constraints on fluid evolution during metamorphism from U-Th-Pb systematics in Alpine hydrothermal monazite. *Chem. Geol.* **2012**. Vol. 326. P. 61–71.

Kalyuzhnyjj V.A. Geology of new placeforming metamorphic formations. Moscow: Nauka, **1982**. 264 p. (*in Russian*).

Kato T., Suzuki K., Adachi M. Computer program for the CHIME age calculation. *J. Earth Planet. Sci.*, **1999**. Vol. 46. P. 49–56.

Kolonin G.R., Shironosova G.P., Shvetsova I.V. Zonal partitioning of REEs in dark monazites (kularites) of the Timan Ridge (Kryazh). Dokl. Earth Sci. 2010. Vol. 432. Pt. 2. P. 759–762. *Krasotkina A.O.* Isotopic-geochemical features and age of accessory minerals of the Ichetju occurrence and Pizhemsky deposit (Middle Timan). PhD syn. thesis. Saint Petersburg: Saint-Petersburg Mining University, **2018**. 20 p. (*in Russian*).

Kremeneckiy A. New geological and industrial type of rare-earth placers. Prospect and protection of mineral resources. **1993**. N 3. P. 15–19 (in Russian).

Makeyev A.B. Typomorphic features of minerals of titanium ores from the Pizhemskoe deposit. *Mineralogy.* **2016**. N 1. P. 24–49 (*in Russian*).

Makeyev A.B., Andreichev V.L., Bryanchaninova N.I. Age of lamprophyres of the Middle Timan: First Rb-Sr date. *Dokl. Earth Sci.* **2009**. Vol. 426. N 4. P. 584–587.

Makeyev A.B., Bryanchaninova N.I. Lamprophyres of Chetlassky Kamen (Middle Timan). *Regional Geol. Metallogeny.* **2009**. N 37. P. 51–73 (*in Russian*).

Makeyev A.B., Dudar V.A. Diamond mineralogy of the Timan. Saint Petersburg: Nauka, **2001**. 336 p. (*in Russian*).

Makeyev A.B., Krasotkina A.O., Skublov S.G. New data on U-Pb-age and geochemistry of zircon (SHRIMP-II, SIMS) from the Ichetju occurrence (Middle Timan). Vestnik IG Komi SC UB RAS. 2017.

N 11. P. 28–42 (*in Russian*).

Makeyev A.B., Makeyev B.A. Zn-chromspinels of Middle Timan and the Near-Polar Urals. *Dokl. Earth Sci.* **2005**. Vol. 404. N 7. P. 1078–1083.

Makeyev A.B., Viryus A.A. Monazite of the Ichetju occurrence (composition, morphology, age). *Proc. Higher Schools. Ser. Geol. Exploration.* **2013**. No 3. P. 10–15 (*in Russian*).

Makeyev B.A. Mineral associations and indicators of ore-bearing of the Pizhemsky titanium and Ichetyu diamond deposits of the Middle Timan. PhD syn. thesis. Kazan: Kazan University, **2012**. 24 p. (*in Russian*).

Makeyev B.A., Makeyev A.B. Rare-earths and strontium alumophosphates of Vol-Vym ridge (Middle Timan). *Geol. Ore Deposits.* **2011**. Vol. 53. N 7. P. 657–662.

Nekrasova R.A., Nekrasov I.J. Kularite – an autigenous variety of monazite. *Dokl. Acad. Sci. USSR.* **1983**. Vol. 268. No 3. P. 688–693 (*in Russian*).

Ning W., Wang J., Xiao D., Li F., Huang B., Fu D. Electron probe microanalysis of monazite and its applications to U-Th-Pb dating of geological sample. *J. Earth Sci.* **2019**. Vol. 30. P. 952–963.

Paton C., Hellstrom J.C., Paul P., Woodhead J.D., Hergt J.M. Iolite: Freeware for the visualisation and processing of mass spectrometric data. J. Analyt. Atomic Spectr. **2011**. Vol. 26. P. 2508–2518.

Paton C., Woodhead J.D., Hellstrom J.C., Hergt J.M., Greig A., Maas R. Improved laser ablation U–Pb zircon geochronology through robust downhole fractionation correction. *Geochem. Geophys. Geosyst.* **2010**. Vol. 11. P. 1–36.

Petrus J.A., Kamber B.S. Vizual Age: A Novel approach to laser ablation ICP-MS U–Pb geochronology data reduction. *Geostand. Geoanalyt. Res.* **2012**. Vol. 36. P. 247–270.

Poitrasson F., Chenery S., Shepherd T.J. Electron microprobe and LA-ICP-MS study of monazite hydrothermal alteration: Implications for U–Th–Pb geochronology and nuclear ceramics. *Geochim. Cosmochim. Acta.* **2000**. Vol. 64. P. 3283–3297.

Schandl E.S., Gorton M.P. A textural and geochemical guide to the identification of hydrothermal monazite: criteria for selection of samples for dating epigenetic hydrothermal ore deposits. *Econ. Geol.* **2004.** Vol. 99. P. 1027–1035.

Seydoux-Guillaume A.M., Montel J.M., Bingen B., Bosse V., De Parseval P., Paquette J.L., Janots E., Wirth R. Low-temperature alteration of monazite: Fluid mediated coupled dissolution-precipitation, irradiation damage, and disturbance of the U-Pb and Th-Pb chronometers. Chem. Geol. **2012.** Vol. 330. P. 140–158.

Skublov S.G., Krasotkina A.O., Makeyev A.B., Tomsen T.B., Serre S.X., Abdrakhmanov I. A. Geochemistry of trace elements (LA-ICP-MS) in the monazite from the Ichetju occurrence, Middle Timan. In: Proc. Fersman Sci. Session. Apatity, 7–10 April, 2019. Apatity: GI KSC RAS, 2018. N 15. P. 338–341 (in Russian).

Skublov S.G., Makeyev A.B., Krasotkina A.O., Rizvanova N.G., Koiman E., Tomsen T.B., Serre S.X. New data on the age of the zircon, rutile and monazite from Ichetju occurrence, Middle Timan. In: Proc. VII Russian Conf. Isotope Geochronology "Methods and geological results of the study of isotopic geochronological systems of minerals and rocks". Moscow: IGEM RAS, **2018**. P. 326–328 (in Russian).

Slama J., Kosler J., Condon D.J., Crowley J.L., Gerdes A., Hanchar J.M., Horstwood M.S.A., Morris G.A., Nasdala L., Norberg N., Schaltegger U., Schoene N., Tubrett M.N., Whitehouse M. Plesovice zircon – a new natural reference material for U–Pb and Hf isotopic microanalysis. Chem. Geol. 2008. Vol. 249. P. 1–35.

Suzuki K., Adachi M. The chemical Th–U-total Pb isochron ages of zircon and monazite from the gray granite of the Hida Terrane, Japan. *J. Earth Planet. Sci.* **1991**. Vol. 38. P. 11–38.

Suzuki K., Adachi M., Tanaka T. Middle Precambrian provenance of Jurassic sandstone in the Mino Terrane, central Japan: Th–U-total Pb evidence from an electron microprobe monazite study. *Sediment. Geol.* **1991**. Vol. 75. P. 141–147.

Taylor R.D., Goldfarb R.J., Monecke T., Fletcher I.R., Cosca M.A., Kelly N.M. Application of U–Th–Pb phosphate geochronology to young orogenic gold deposits: New age constraints on the forma-

tion of the Grass Valley Gold District, Sierra Nevada Foothills Province, California. *Econ. Geol.* **2015**. Vol. 110. P. 1313–1337.

Udoratina O.V., Viryus A., Kozyreva I.V., Shvetsova I.V., Kapitanova V.A. Th-U-Pb-age of monazite vein series of Chetlassky complex (Novobobrovskoe ore field, Middle Timan). Vestnik IG Komi SC UB RAS. 2015. N 3. P. 23–29 (in Russian).

Votyakov S.L., Shchapova Yu.V., Hiller V.V. Crystal chemistry and physics of radiation-thermal effects in a number of U-Th-containing minerals as a basis for their chemical microprobe dating. Yekaterinburg: IGG Urals Branch RAS, **2011**. 336 p. (*in Russian*).

Votyakov S.L., Hiller V.V., Shchapova Yu.V. Peculiarities of composition and chemical microprobe dating of U-Th-bearing minerals. Part I. Monazites of some geological objects of the Urals and Siberia. Zapiski RMO (Proc. Russian Miner. Soc.). 2012. N 1. P. 45–60 (in Russian, English translation: Geol. Ore Deposits. 2012. Vol. 54. P. 625–637).

Williams M.L., Jercinovic M.J., Hetherington C.J. Microprobe monazite geochronology: understanding geologic processes by integrating composition and chronology. *Ann. Rev. Earth Planet. Sci.* **2007**. Vol. 35. P. 137–175.

Williams M.L., Jercinovic M.J., Mahan K.H., Dumond G. Electron microprobe petrochronology. Rev. Miner. Geochem. 2017. Vol. 83. P. 153–182.