# МИНЕРАЛЫ И ПАРАГЕНЕЗИСЫ МИНЕРАЛОВ

# ХИББИНГИТ И ЕГО МАРГАНЦОВИСТАЯ РАЗНОВИДНОСТЬ ИЗ МЕТАМОРФИЗОВАННЫХ ПЕНТЛАНДИТ-ПУТОРАНИТОВЫХ РУД ГЛУБОКИХ ГОРИЗОНТОВ ОКТЯБРЬСКОГО МЕСТОРОЖДЕНИЯ НОРИЛЬСКОГО РУДНОГО ПОЛЯ

© 2020 г. д. чл. Э. М. Спиридонов<sup>1, \*</sup>, С. Н. Беляков<sup>1</sup>, Ю. А. Иванова<sup>1</sup>, К. В. Егоров<sup>1</sup>, Н. Н. Коротаева<sup>1</sup>, Д. И. Наумов<sup>1</sup>, В. О. Япаскурт<sup>1</sup>

<sup>1</sup> Московский государственный университет, геологический факультет, Воробьевы Горы, Москва, 119991 Россия \*e-mail: emstspiridon@gmail.com

> Поступила в редакцию 23.09.2020 г. После доработки 28.09.2020 г. Принята к публикации 07.10.2020 г.

На глубоких горизонтах Октябрьского месторождения Норильского рудного поля (Красноярский край) в тектонизированных и метаморфизованных пентландит-путоранитовых рудах с магнетитом развиты хиббингит, сидерит и их марганцовистые разновидности, замещающие магнетит и тесно ассоциирующие с ними сульфиды. Агрегаты хиббингита образованы срастаниями пластинчатых кристаллов. Хиббин-

гит Fe<sup>2+</sup><sub>2</sub>(OH)<sub>3</sub>Cl содержит от 2 до 38 мол. % минала кемпита  $Mn_2^{2+}$ (OH)<sub>3</sub>Cl. Распространен хиббингит с 7–13% минала кемпита. Хиббингит, заместивший магнетит и путоранит, обогащен медью: он содержит до 2.6 мас. % Cu, т.е. до 4% минала атакамита Cu<sup>2+</sup><sub>2</sub>(OH)<sub>3</sub>Cl. Хиббингит, заместивший магнетит и пентландит, обогащен никелем (до 1.5 мас. % Ni). В зональных кристаллах сидерита ядра слагает содержащий мало примесей сидерит, а внешние зоны обогащены Mn (до 23 мол. % родохрозитового минала) и Cu (до 4.5 мас. % CuO). С хиббингитом и сидеритом ассоциируют самородное серебро и обогащенный кадмием сфалерит. Это низкотемпературные метаморфогенно-гидротермальные образования, которые возникли в условиях цеолитовой фации. Процесс замещения магнетита хиббингитом и сидеритом – это процесс восстановления, который, по-видимому, протекал в кислотной–углекис-

лотной среде, возможно, при участии углеводородов или водорода. Вероятная реак-

ция:  $\mathrm{Fe}^{2+}\mathrm{Fe}_2^{3+}\mathrm{O}_4 + \mathrm{HCl} + \mathrm{CO}_2 + \mathrm{H}_2 \rightarrow \mathrm{Fe}_2^{2+}(\mathrm{OH})_3\mathrm{Cl} + \mathrm{Fe}^{2+}[\mathrm{CO}_3].$ 

*Ключевые слова:* метаморфогенно-гидротермальный хиббингит, марганцовистый хибингит, Норильское рудное поле

DOI: 10.31857/S0869605520060143

#### введение

По нашим данным, минеральный состав горных пород и руд Норильского рудного поля (Красноярский край) сформирован в два этапа: 1 этап — синтрапповая магматогенная минерализация с пневматолитовым продолжением, 2 этап — посттрапповая эпигенетичная метаморфогенно-гидротермальная минерализация (Спиридонов и др., 2000; Спиридонов, Гриценко, 2009; Спиридонов, 2010, 2019, 2021; Spiridonov et al., 2016). Ранее образования 2 этапа рассматривали как связанные с трапповой формацией (Годлевский, Шумская, 1960; Золотухин и др., 1967; Золотухин, 1970; Рябов, 1975; Генкин и др., 1981; Степанов, Туровцев, 1988) или как продукты региональной гидротермальной деятельности (Горяинов, Аплонов, 1980). В статье описано одно из поздних и низкотемпературных образований 2 этапа – гидроксихлорид Fe<sup>2+</sup> и Mn<sup>2+</sup> – хиббингит, даны многочисленные электронно-зондовые анализы этого редкого минерала, приведены вероятные реакции его образования.

## НОРИЛЬСКОЕ РУДНОЕ ПОЛЕ

Норильское рудное поле размещено в северо-западном углу дорифейской Восточно-Сибирской платформы, в области краевых дислокаций (Маслов, 1963; Люлько и др., 1987). Магматогенные Ag–Au–Pt–Pd–Co–Ni–Cu месторождения сопряжены с интрузивами норильского типа, одними из наиболее поздних производных грандиозной Сибирской трапповой формации (Годлевский, 1959; Маслов, 1963; Степанов, Туровцев, 1988). Норильские руды – продукты кристаллизации сульфидных расплавов – слагают залежи и жилы, вкрапленность в интрузивных породах и роговиках рамы интрузивов. Первичные руды сложены продуктами субсолидусных превращений высокотемпературных сульфидных твердых растворов – это пирротин, троилит, кубанит, пентландит, халькопирит, талнахит, моихукит, путоранит (Годлевский, 1959; Генкин и др., 1981; Степанов, Туровцев, 1988).

## ПРОЯВЛЕНИЯ ЭПИГЕНЕТИЧЕСКОГО МЕТАМОРФИЗМА В НОРИЛЬСКОМ РУДНОМ ПОЛЕ

Участки Восточно-Сибирской платформы, покрытые толщей платобазальтов мощностью до 5 км и насыщенные интрузивами габбро-долеритов, испытали послетрапповое погружение. Низы трапповой формации и подтрапповые толщи были захвачены эпигенетичным метаморфизмом в условиях цеолитовой, затем — пренит-пумпеллиитовой, далее — снова цеолитовой фаций. Фации метаморфизма определены по минеральным ассоциациям по аналогии с данными (Philpotts, Ague, 2009). Rb/Sr возраст процессов метаморфизма: первая дата — 232 млн лет, последняя — 122 млн лет; максимальные параметры метаморфизма — 2.5 кбар и 330 °C; эпигенетические образования моложе трапповой формации на 20–130 млн лет (Spiridonov et al., 2016).

В Норильском рудном поле эффузивные траппы, интрузивные траппы и сопряженные сульфидные Co-Ni-Cu руды метаморфизованы синхронно и однотипно (Спиридонов и др., 2000; Спиридонов, Гриценко, 2009; Spiridonov et al., 2016). В первичных сульфидных рудах вдоль трещин и зон дробления развиты пирит, Ni-содержащий пирит, магнетит и халькопирит (без структур распада), миллерит, валлериит, макинавит, низкие борнит и халькозин, гизингерит, хизлевудит, годлевскит, полидимит, гематит, игольчатый кубанит, сфалерит, вюртцит, галенит, кобальтпентландит, купропентландит, аргентопентландит, паркерит, точилинит, самородные серебро, мышьяк и висмут, сульфоарсениды, арсениды, сульфоантимониды и антимониды Fe–Ni–Co, клаусталит, касситерит (Годлевский, Шумская, 1960; Будько и др., 1966; Золотухин и др., 1967; Кулагов и др., 1967, 1969; Золотухин, 1970; Рябов, 1975; Горяинов, Аплонов, 1980; Генкин и др., 1981; Спиридонов, Гриценко, 2009; Спиридонов, 2010, 2019, 2021; Spiridonov et al., 2016). С ними ассоциируют ангидрит, кальцит, доломит, анкерит, хлорит, кварц, пренит, гидрогранаты, серпентины, брусит, ксонотлит, стильпномелан, пектолит, тоберморит, датолит, апофиллит, ильваит, бабингтонит, халцедон, цеолиты (ломонтит, стильбит и др.), окенит, тальк, минералы группы гидроталькита, барит, таумасит, хиббингит, айоваит, антраксолит, нефтяные битумы, парафины в виде вкрапленности, гнезд и жил.

Изотопный состав Pb галенита метаморфогенно-гидротермальных жил среди метаморфизованных норильских руд — коровый. Изотопный состав Pb первичных руд существенно мантийный. Это свидетельствует о независимости от траппов источника вещества норильских метаморфогенно-гидротермальных жил (Спиридонов и др., 2010).

Эти образования возникли при воздействии умеренно- и малосоленых углекисло-хлоридных флюидов с изменчивыми  $fO_2$  и щелочностью. Это растворы NaCl–MgCl<sub>2</sub> с соленостью от 15 до 0.4 мас. % экв. NaCl (две трети включений) и растворы NaCl–CaCl<sub>2</sub> ±  $\pm$  NaHCO<sub>3</sub> с соленостью от 23 до 6.5 мас. % экв. NaCl (одна треть включений) с температурами от 270 °C, обычно от 250–216 до 140–120 °C, и давлениями от 1.2 до 0.3 кбар (Спиридонов, Гриценко, 2009).

## МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

Изучена коллекция руд глубоких горизонтов северо-восточного фланга Октябрьского месторождения. Электронные фотографии и химический анализ минералов выполнен с помощью аналитического комплекса с комбинированной системой микроанализа на базе СЭМ Jeol JSM-6480 LV в Лаборатории локальных методов исследований кафедры петрологии геологического факультета МГУ; аналитики — исследователи H.H. Коротаева и В.О. Япаскурт. В качестве эталонов использованы чистые металлы Ru, Os, Ir, Rh, Pt, Pd, Au, Ag, Bi, Sb, Cr, Ni, Co, Cu, Zn, пирит FeS<sub>2</sub> (S), алтаит PbTe (Pb, Te), котуннит PbCl<sub>2</sub> (Pb, Cl), синтетические InAs (As) и CdSe (Cd, Se). В тексте статьи и на рисунках единая сквозная нумерация химических анализов минералов.

## СУЛЬФИДНЫЕ РУДЫ ГЛУБОКИХ ГОРИЗОНТОВ ОКТЯБРЬСКОГО МЕСТОРОЖДЕНИЯ С ХИББИНГИТОМ

Эти сплошные сульфидные Co–Ni–Cu руды слагают крупно-среднезернистые агрегаты путоранита с тонкими пластинчатыми ламеллями моихукита и пентландит, часто перекристаллизованные. Размер кристаллов путоранита и пентландита до 25 мм в поперечнике. Размер зерен перекристаллизованных сульфидов обычно менее 0.5 мм. Сульфидные агрегаты содержат включения силикатов, овальных и таблитчатых кристаллов магнетита длиной до 0.7 мм.

Первичные сульфидные руды глубоких горизонтов Октябрьского месторождения неравномерно тектонизированы и захвачены многостадийным низкоградным метаморфизмом. Широко распространены ранние околотрещинные и гнездовые зернистые агрегаты борнита и магнетита (± хлорит), замещающие путоранит, моихукит и отчасти пентландит. Ассоциация метаморфогенных борнита и магнетита широко развита в Норильском рудном поле (Spiridonov et al., 2016). Наибольший интерес представляют более поздние низкотемпературные образования, возникшие после дополнительных импульсов тектонизации (рис. 1). Это агрегаты хиббингита и сидерита с включениями беспримесного серебра, частично или полностью заместившие магнетит и прилегающие сульфиды Cu–Fe–Ni.

# ХИББИНГИТ И МАРГАНЦОВИСТЫЙ ХИББИНГИТ

Хиббингит — хлорид-гидроксид двухвалентного железа —  $Fe_2^{2+}(OH)_3Cl$  — редкий продукт выветривания железных метеоритов и древних изделий из железа (Buchwald, Koch, 1995). В последние годы был описан эндогенный хиббингит среди поздних низкотемпературных образований Pt-Pd руд Дулута в Миннесоте, США (Saini-Eidukat et al., 1994), затем и Норильска (Saini-Eidukat et al., 1998; Zubkova et al., 2019), а также среди скарновых Fe руд Коршуновского месторождения в Иркутской области (Saini-Eidukat et al., 1998). В метаморфизованных норильских рудах развит не только хиббин-



**Рис. 1.** Несколько тектонизированные и метаморфизованные руды с наложенным хиббингитом. *а*. Магнетит-путоранитовые руды. Метасомы и микропрожилки хиббингита (темно-серый). *б*. Крупнокристаллические пентландит-путоранитовые руды с магнетитом. Метасомы и прожилки хиббингита и сидерита (темносерые) среди сульфидов и по контактам магнетита. *а* и *б* – в отраженном свете при 1 николе. *в*. Крупнокристаллические путоранитовые руды с магнетитом. Овальной формы псевдоморфозы хиббингита по магнетиту. Прожилки хиббингита в сульфидах. *е*. Перекристаллизованные пентландит-путоранитовые руды. Овальной формы псевдоморфозы хиббингита (черный) по магнетиту, прожилки хиббингита в сульфидах. Белое – самородное серебро. *в* и *е* – изображения в отраженных электронах.

Fig. 1. Marginally tectonized and metamorphosed ores with superimposed hibbingite.

гит, но и богатый марганцем хиббингит, член изоморфного ряда хиббингит—кемпит  $Mn_2^{2+}(OH)_3Cl$  (Saini-Eidukat et al., 1998).

В метаморфизованных сульфидных рудах глубоких горизонтов (глубже 1750 м) северо-восточного фланга Октябрьского месторождения хиббингит слагает частичные и полные псевдоморфозы по магнетиту, замещает минералы группы халькопирита, а чаще пентландит, нередко вдоль трещин его отдельности, слагает среди них прожилки (рис. 1, 2, 3). Вероятная причина широкого развития псевдоморфоз хиббингита по магнетиту в том, что магнетит — наиболее хрупкий минерал тектонизированных сульфидных руд. Хиббингит часто развит вдоль контактов магнетита с путоранитом и пентландитом. Размеры агрегатов хиббингита не превышают 0.7 × 0.2 мм. Они образованы срастаниями пластинчатых кристаллов размерами от 5 до 40 мкм (рис. 3).

Состав изученного хиббингита заметно варьирует по соотношению изоморфных железа и марганца, содержание марганцовистого компонента — минала кемпита  $Mn_2^{2+}(OH)_3Cl$  колеблется от 2 до 38 мол. % (табл. 1–3, ан. 1–24). Наиболее распростра-



**Рис. 2.** *а*. Брекчированный магнетит (серый) вдоль трещин и на контактах с путоранитом замещен хиббингитом (черный, ан. *1, 2*). Ширина снимка 550 мкм. *б*. Брекчированные кристаллы магнетита (темно-серые) частично замещены хиббингитом (черные, ан. *5, 7*). *в*. Псевдоморфоза хиббингита (черный, ан. *9, 11, 15*) по магнетиту в матрице путоранита. Белое – серебро. *г*. Псевдоморфоза хиббингита (черный, ан. *16, 17, 18*) в матрице пентландита. Белое – самородное серебро. В отраженных электронах. Цифрами показаны места и номера анализов.

Fig. 2. *a*. Brecciated magnetite (gray) replaced by hibbingite (black, an. *I*, *2*) along fractures and on contacts with putoranite. Width of picture is 550  $\mu$ m.

нен хиббингит, содержащий 7—13% минала кемпита (16 анализов из 24). Более марганцовистый хиббингит окружает обособления менее марганцовистой разновидности этого минерала. Характерная особенность данного хиббингита — наличие примесей Cu, Zn, Ni и Co, изоморфно замещающих Fe, и S, вероятно, изоморфно замещающей Cl. Примесь кобальта (до 0.5 мас. %) обнаружена почти во всех кристаллах хиббингита. Хиббингит, заместивший магнетит и путоранит, содержит до 2.6 мас. % меди (ан. 2, 15, 23, рис. 2, *a*, *b*, рис. 3). Наличие меди в составе хиббингита неудивительно, поскольку с минералами ряда хиббингит–кемпит изоструктурен атакамит  $Cu_2^{2+}(OH)_3Cl$ 

(Zubkova et al., 2019). Содержание минала атакамита в изученном хиббингите достигает 4 мол. %. Хиббингит, заместивший магнетит и пентландит, содержит до 1.5 мас. % Ni (ан. 18, рис. 2,  $\epsilon$ ). Отдельные образцы хиббингита содержат до 0.7 мас. % Zn (ан. 1, 2, 11). Цинком несколько обогащен хиббингит, бедный марганцем.



**Рис. 3.** Срастание пластинчатых кристаллов марганцовистого хиббингита (серый различных оттенков, ан. 22, 23, 24) – поликристаллическая псевдоморфоза по магнетиту в матрице путоранита. Наиболее темная пластина – марганцовистый хиббингит (ан. 24). Черная кайма на контакте хиббингита и путоранита – наложенный гизингерит. Изображение в отраженных электронах.

Fig. 3. Intergrowing lamellar-shaped crystals of manganic hibbingite.

| Таблица 1. | . Химический состав    | (мас. %) хибингита,  | бедного марганцем,    | из метаморфизованных       |
|------------|------------------------|----------------------|-----------------------|----------------------------|
| сульфидни  | ых руд глубоких гориз  | онтов Октябрьского   | месторождения         |                            |
| Table 1 Cl | nemical composition (w | t %) of Mn_noor hibb | vingite from metamorn | bozed sulfide ores at deen |

| Компонент                                       | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     |
|-------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|
| Fe                                              | 55.01 | 50.83 | 52.45 | 51.34 | 51.08 | 50.55 | 50.77 | 49.92 |
| Mn                                              | 0.83  | 1.38  | 3.63  | 4.16  | 4.14  | 4.67  | 4.99  | 5.00  |
| Cu                                              | нпо   | 2.54  | нпо   | нпо   | 0.33  | нпо   | нпо   | 0.64  |
| Zn                                              | 0.66  | 0.67  | нпо   | нпо   | нпо   | нпо   | нпо   | нпо   |
| Ni                                              | нпо   | 0.29  | нпо   | нпо   | нпо   | 0.30  | нпо   | 0.59  |
| Co                                              | 0.30  | 0.29  | 0.28  | 0.30  | 0.29  | 0.31  | 0.30  | 0.30  |
| Cl                                              | 17.10 | 17.22 | 18.17 | 18.08 | 17.99 | 17.71 | 18.07 | 18.06 |
| S                                               | 0.32  | 0.48  | нпо   | 0.17  | нпо   | 0.16  | нпо   | 0.18  |
| Сумма                                           | 74.22 | 73.70 | 74.54 | 74.05 | 73.53 | 73.70 | 74.13 | 74.10 |
| Коэффициенты в формуле, рассчитанные на 2 атома |       |       |       |       |       |       |       |       |
| Fe                                              | 1.96  | 1.82  | 1.85  | 1.82  | 1.82  | 1.81  | 1.80  | 1.77  |
| Mn                                              | 0.03  | 0.05  | 0.13  | 0.15  | 0.15  | 0.17  | 0.18  | 0.18  |
| Cu                                              | -     | 0.08  | -     | -     | 0.01  | -     | -     | 0.02  |
| Zn                                              | 0.02  | 0.02  | —     | —     | —     | —     | —     | —     |
| Ni                                              | —     | 0.01  | —     | —     | —     | 0.01  | —     | —     |
| Co                                              | 0.01  | 0.01  | 0.01  | 0.01  | 0.01  | 0.01  | 0.01  | 0.01  |
| Сумма                                           | 2.02  | 2.00  | 1.99  | 1.98  | 1.99  | 2.00  | 1.99  | 1.98  |
| Cl                                              | 0.96  | 0.97  | 1.01  | 1.01  | 1.01  | 1.00  | 1.01  | 1.01  |
| S                                               | 0.02  | 0.03  | —     | 0.01  | —     | 0.01  | —     | 0.01  |
| Mn≠, %                                          | 2     | 3     | 7     | 8     | 8     | 9     | 9     | 9     |

 Table 1. Chemical composition (wt %) of Mn-poor hibbingite from metamorphozed sulfide ores at deep levels of the Oktyabrskoye deposit

Примечание. нпо – ниже предела обнаружения. Мп≠, % – содержание минала кемпита.

| Компонент | 9     | 10      | 11        | 12          | 13        | 14        | 15     | 16     |
|-----------|-------|---------|-----------|-------------|-----------|-----------|--------|--------|
| Fe        | 50.24 | 49.71   | 50.46     | 49.95       | 49.67     | 49.66     | 47.43  | 50.19  |
| Mn        | 5.25  | 5.22    | 5.30      | 5.52        | 5.80      | 6.08      | 6.35   | 6.73   |
| Cu        | нпо   | нпо     | 0.32      | нпо         | 0.31      | нпо       | 2.55   | нпо    |
| Zn        | нпо   | 0.33    | 0.66      | 0.34        | нпо       | нпо       | нпо    | нпо    |
| Ni        | нпо   | нпо     | нпо       | нпо         | нпо       | нпо       | нпо    | нпо    |
| Co        | 0.30  | 0.29    | нпо       | 0.28        | 0.30      | 0.30      | 0.29   | 0.30   |
| Cl        | 17.99 | 17.73   | 17.81     | 17.82       | 17.98     | 17.81     | 17.45  | 17.03  |
| S         | нпо   | 0.16    | 0.17      | нпо         | нпо       | нпо       | 0.16   | 0.31   |
| Сумма     | 73.78 | 73.44   | 74.72     | 73.91       | 74.06     | 73.85     | 74.253 | 74.056 |
|           | Коз   | ффициен | ты в форм | уле, рассчи | итанные н | а 2 атома |        |        |
| Fe        | 1.79  | 1.78    | 1.78      | 1.78        | 1.77      | 1.77      | 1.69   | 1.75   |
| Mn        | 0.19  | 0.19    | 0.19      | 0.20        | 0.21      | 0.22      | 0.23   | 0.25   |
| Cu        | —     | —       | 0.01      | —           | 0.01      | —         | 0.08   | —      |
| Zn        | _     | 0.01    | 0.02      | 0.01        | _         | _         | _      | _      |
| Ni        | _     | _       | —         | _           | _         | _         | _      | _      |
| Co        | 0.01  | 0.01    | -         | 0.01        | 0.01      | 0.01      | 0.01   | 0.01   |
| сумма     | 1.99  | 1.99    | 2.00      | 2.00        | 2.00      | 2.00      | 2.01   | 2.01   |
| Cl        | 1.01  | 1.00    | 0.99      | 1.00        | 1.01      | 1.00      | 0.98   | 0.98   |
| S         | —     | 0.01    | 0.01      | —           | —         | —         | 0.01   | 0.02   |
| Mn≠, %    | 10    | 10      | 10        | 10          | 11        | 11        | 12     | 13     |

Таблица 2. Химический состав (мас. %) хибингита, обогащенного марганцем, из метаморфизо-

ванных сульфидных руд глубоких горизонтов Октябрьского месторождения Table 2. Chemical composition (wt %) of Mn-rich hibbingite from metamorphozed sulfide ores at deep

levels of the Oktvabrskove deposit

Примечание. нпо – ниже предела обнаружения. Мп≠, % – содержание минала кемпита.

# СИДЕРИТ И МАРГАНЦОВИСТЫЙ СИДЕРИТ

Во многих псевдоморфозах по магнетиту и сульфидам Cu-Fe-Ni хиббингиту сопутствует сидерит. Относительно редко псевдоморфозы по магнетиту и сульфидам и прожилки среди них целиком слагает сидерит. Иногда это срастания сложнозональных кристаллов, в которых ядра содержащего мало примесей сидерита окружены марганцовистым сидеритом. Размер ромбоэдрических и сложной формы кристаллов сидерита не более 70 мкм. По большей части сидерит беден марганцем и содержит малые примеси Со и Си (табл. 4, ан. 25–28). Обогащенный марганцем сидерит содержит до 4 мас. % CuO и малые примеси Ni и Zn (табл. 4, ан. 29–30). Магний в данном сидерите не обнаружен, содержание кальция – ничтожное.

## БОЛЕЕ ПОЗДНЯЯ МЕТАМОРФОГЕННО-ГИДРОТЕРМАЛЬНАЯ МИНЕРАЛИЗАЦИЯ

Описанные выше образования местами дополнительно несколько брекчированы и в них развиты более поздние и низкотемпературные метаморфогенно-гидротермальные гизингерит, борнит и барит. Гизингерит  $Fe_4^{3+}[(OH)_8Si_4O_{10}] \cdot 4H_2O$  нередко окружает и частично замещает агрегаты хиббингита (рис. 3) и/или сидерита. Местами руды

| deep levels of the oktydolskoye deposit |       |          |           |            |         |            |       |       |
|-----------------------------------------|-------|----------|-----------|------------|---------|------------|-------|-------|
| Компонент                               | 17    | 18       | 19        | 20         | 21      | 22         | 23    | 24    |
| Fe                                      | 48.23 | 47.11    | 47.39     | 47.10      | 45.47   | 42.94      | 34.97 | 34.13 |
| Mn                                      | 7.32  | 7.21     | 7.49      | 8.32       | 9.39    | 11.87      | 18.59 | 20.54 |
| Cu                                      | 0.66  | 0.33     | 0.67      | нпо        | 0.32    | 0.31       | 2.57  | 0.64  |
| Zn                                      | нпо   | нпо      | 0.33      | 0.32       | 0.33    | 0.32       | нпо   | нпо   |
| Ni                                      | нпо   | 1.48     | нпо       | нпо        | нпо     | нпо        | нпо   | 0.59  |
| Co                                      | 0.30  | 0.30     | 0.29      | 0.30       | 0.30    | 0.31       | 0.29  | 0.30  |
| Cl                                      | 17.56 | 17.55    | 17.90     | 17.93      | 17.81   | 17.99      | 17.18 | 17.55 |
| S                                       | 0.16  | 0.32     | 0.16      | 0.17       | 0.16    | нпо        | 0.65  | 0.31  |
| Сумма                                   | 74.11 | 74.30    | 73.63     | 74.14      | 73.78   | 73.74      | 74.25 | 74.06 |
|                                         | Kos   | эффициен | ты в форм | уле, рассч | итанные | на 2 атома |       |       |
| Fe                                      | 1.71  | 1.67     | 1.68      | 1.67       | 1.62    | 1.53       | 1.24  | 1.21  |
| Mn                                      | 0.26  | 0.26     | 0.27      | 0.30       | 0.34    | 0.43       | 0.67  | 0.74  |
| Cu                                      | 0.02  | 0.01     | 0.02      | -          | 0.01    | 0.01       | 0.08  | 0.02  |
| Zn                                      | -     | _        | 0.01      | 0.01       | 0.01    | 0.01       | _     | _     |
| Ni                                      | -     | 0.05     | _         | -          | -       | _          | _     | 0.02  |
| Co                                      | 0.01  | 0.01     | 0.01      | 0.01       | 0.01    | 0.01       | 0.01  | 0.01  |
| Сумма                                   | 2.00  | 2.00     | 1.99      | 1.99       | 1.99    | 1.99       | 2.00  | 2.00  |
| Cl                                      | 0.99  | 0.98     | 1.00      | 1.00       | 1.00    | 1.01       | 0.96  | 0.98  |
| S                                       | 0.01  | 0.02     | 0.01      | 0.01       | 0.01    | —          | 0.04  | 0.02  |
| Mn≠, %                                  | 13    | 13       | 14        | 15         | 17      | 22         | 35    | 38    |

Таблица 3. Химический состав (мас. %) хибингита, богатого марганцем, из метаморфизованных сульфидных руд глубоких горизонтов Октябрьского месторождения

**Table 3.** Chemical composition (wt %) of manganoan hibbingite from metamorphozed sulfide ores at deep levels of the Oktyabrskove denosit

Примечание. нпо – ниже предела обнаружения. Мп≠, % – содержание минала кемпита.

пронизаны множеством волосовидных криволинейных просечек борнита. Ассоциация гизингерита, борнита, барита возникла при повышенной  $fO_2$ , чем отлична от предыдущей.

## ИТОГИ ИССЛЕДОВАНИЯ

На глубоких горизонтах Октябрьского месторождения в тектонизированных и метаморфизованных сплошных пентландит-путоранитовых рудах с магнетитом развиты хиббингит и его марганцовистая разновидность  $(Fe^{2+},Mn^{2+})_2(OH)_3Cl$ , а также сидерит, включая его марганцовистую разновидность  $(Fe^{2+},Mn^{2+})[CO_3]$ , заместившие магнетит и тесно ассоциирующие с ними сульфиды. Хиббингит содержит от 2 до 38 мол. % марганцовистого компонента — минала кемпита  $Mn_2^{2+}(OH)_3Cl$ . Распространен хиббингит с 7–13% минала кемпита. Хиббингит, заместивший магнетит и путоранит, обогащен медью: он содержит до 2.6 мас. % Cu, т.е. до 4% минала атакамита  $Cu_2^{2+}(OH)_3Cl$ . Хиббингит, заместивший магнетит и пентландит, обогащен никелем (до 1.5 мас. % Ni). Хиббингит сопровождают сидерит и марганцовистый сидерит, самородное серебро и обогащенный кадмием сфалерит. Это низкотемпературные метаморфогенно-гидротермальные образования, которые возникли в условиях цеолитовой фации, Процесс замещения магнетита хиббингитом и сидеритом — это процесс восстановления, который, по-видимому, прошел в кислотной—углекислотной среде, возможно, при участии углеводородов или водорода. Вероятная реакция:

$$Fe^{2+}Fe_2^{3+}O_4 + HCl + CO_2 + H_2 \rightarrow$$
  
→  $Fe_2^{2+}(OH)_3Cl + Fe^{2+}[CO_3].$ 

| Таблица 4. | Химический состав    | (мас. %) сидерита | из метаморфи | изованных сульф | ридных руд глубо- |
|------------|----------------------|-------------------|--------------|-----------------|-------------------|
| ких горизс | онтов Октябрьского м | месторождения     |              |                 |                   |

| Компонент                                      | 25    | 26    | 27    | 28    | 29    | 30    |  |
|------------------------------------------------|-------|-------|-------|-------|-------|-------|--|
| FeO                                            | 64.38 | 61.26 | 61.16 | 61.20 | 57.36 | 42.80 |  |
| MnO                                            | 0.24  | 0.30  | 0.37  | 0.49  | 1.33  | 13.70 |  |
| CaO                                            | нпо   | нпо   | нпо   | нпо   | нпо   | 0.09  |  |
| CoO                                            | 0.19  | 0.26  | 0.32  | 0.19  | 0.32  | 0.26  |  |
| CuO                                            | 0.14  | 0.14  | 0.13  | нпо   | 2.23  | 4.74  |  |
| NiO                                            | нпо   | нпо   | нпо   | нпо   | 0.26  | 0.19  |  |
| ZnO                                            | нпо   | нпо   | нпо   | нпо   | 0.21  | нпо   |  |
| Сумма                                          | 61.95 | 61.96 | 61.98 | 61.88 | 61.71 | 61.78 |  |
| Коэффициенты в формуле, рассчитанные на 1 атом |       |       |       |       |       |       |  |
| Fe                                             | 0.991 | 0.989 | 0.987 | 0.988 | 0.934 | 0.697 |  |
| Mn                                             | 0.004 | 0.005 | 0.006 | 0.008 | 0.022 | 0.226 |  |
| Ca                                             | —     | —     | —     | —     | —     | 0.002 |  |
| Co                                             | 0.003 | 0.004 | 0.005 | 0.003 | 0.005 | 0.004 |  |
| Cu                                             | 0.002 | 0.002 | 0.002 | —     | 0.032 | 0.068 |  |
| Ni                                             | —     | —     | —     | —     | 0.004 | 0.003 |  |
| Zn                                             | —     | —     | —     | —     | 0.003 | —     |  |
| Сумма                                          | 1     | 1     | 1     | 1     | 1     | 1     |  |

**Table 4.** Chemical composition (wt %) of siderite from metamorphozed sulfide ores at deep levels of the Oktyabrskoye deposit

Примечание. Mg, Pb, Cd - не обнаружены.

Работа выполнена при финансовой поддержке РФФИ (грант № 19-05-00490), с использованием оборудования, приобретенного за счет средств Программы развития Московского государственного университета им. М.В. Ломоносова.

## СПИСОК ЛИТЕРАТУРЫ

*Будько И.А., Изоитко В.М., Кулагов Э.А., Митенков Г.А.* Макинавит и валлериит в рудах Норильска и Талнаха // Уч. Зап. НИИГА. Рег. Сер. **1966**. Вып. 5. С. 203–209.

Генкин А.Д., Дистлер В.В., Филимонова А.А., Евстигнеева Т.Л., Коваленкер В.А., Служеникин С.Ф., Лапутина И.П., Смирнов А.В., Гроховская Т.Л. Сульфидные медно-никелевые руды норильских месторождений. М.: Наука. **1981**. 234 с.

*Годлевский М.Н.* Траппы и рудоносные интрузии Норильского района. М.: Госгеолтехиздат, **1959.** 89 с.

Годлевский М.Н., Шумская Н.И. Халькопирит-миллеритовые руды месторождения Норильск I // Геол. рудн. месторождений. **1960**. № 6. С. 61–72.

Горяинов И.Н., Аплонов В.С. Региональная гидротермальная деятельность на северо-западе Сибирской платформы // Геология и геофизика. **1980**. № 7. С. 35–43.

Золотухин В.В. О низкотемпературных метасоматитах, связанных с процессами серпентинизации в норильских рудоносных трапповых интрузиях. В кн.: Геология и петрология интрузивных траппов Сибирской платформы. М.: Наука. **1970**. С. 179–186.

Золотухин В.В., Васильев Ю.Р., Смекалин А.Г., Бакуменко И.Т. Бабингтонит-пренит-пумпеллиитовая парагенетическая ассоциация в метасоматитах Норильска. В кн.: Мат. по генетич. и эксперимент. минералогии. Т. 5. Новосибирск: Наука. **1967**. С. 218–251.

Изоитко В.М. Технологическая минералогия и оценка руд. СПб.: Наука. 1997. 582 с.

*Кулагов Э.А., Евстигнеева Т.Л., Юшко-Захарова О.Е.* Новый сульфид никеля – годлевскит // Геол. рудн. месторождений. **1969**. Т. 11. № 3. С. 115–121.

*Кулагов Э.А., Изоитко В.М., Митенков Г.А.* Хизлевудит в сульфидных медно-никелевых рудах Талнахского месторождения // Докл. АН СССР. **1967**. Т. 176. С. 900–902.

*Люлько В.А., Амосов Ю.Н., Душаткин А.Б.* Тектоника, рудоконтролирующие структуры и металлогеническое районирование Игарско-Норильского региона. В кн.: Металлогения Сибири. Т. 2. Новосибирск: Наука. **1987**. С. 143–149.

*Маслов Г.Д.* Тектоника Игарско-Норильского района и рудоконтролирующие структуры. В кн.: Тектоника Сибири. Т. 2. Новосибирск: Наука. **1963**. С. 336–350.

*Рябов В.В.* Некоторые особенности минералогии метасоматитов из ореола Талнахской дифференцированной рудоносной интрузии (северо-запад Сибирской платформы). В кн.: Мат. по генетич. и эксперимент. минералогии. Т. 8. Новосибирск: Наука. **1975**. С. 107–147.

*Спиридонов Э.М.* Рудно-магматические системы Норильского рудного поля // Геология и геофизика. **2010**. С. 52–79.

Спиридонов Э.М. Генетическая модель месторождений Норильского рудного поля // Смирновский сборник-2019. М.: Макс Пресс. 2019. С. 41–113.

Спиридонов Э.М. Голотип высоцкита – метаморфогенно-гидротермальный высоцкит (Pd,Ni)S месторождения Норильск I // Вестн. МГУ. Геология. 2021. № 1 (в печати)

Спиридонов Э.М., Голубев В.Н., Гриценко Ю.Д. Изотопный состав свинца галенита, алтаита и интерметаллидов палладия сульфидных руд Норильского рудного поля // Геохимия. 2010. № 8. С. 1–10.

Спиридонов Э.М., Гриценко Ю.Д. Эпигенетический низкоградный метаморфизм и Co-Ni-Sb-As минерализация в Норильском рудном поле. М.: Научный мир. **2009**. 218 с.

Спиридонов Э.М., Ладыгин В.М., Анастасенко Г.Ф., Кулагов Э.А., Люлько В.А., Степанов В.К. Метавулканиты пренит-пумпеллиитовой и цеолитовой фаций трапповой формации Норильского района Сибирской платформы. М.: Изд. МГУ, **2000**. 212 с.

*Степанов В.К., Туровцев Д.М.* Многофакторные модели медно-никелевых месторождений норильского типа // Тр. ЦНИГРИ. **1988**. Вып. 223. С. 86–94.

# Hibbingite and Its Manganoan Variety from Metamorphosed Pentlandite-Putoranite Ores at Deep Levels of the Oktyabrskoye Deposit, Norilsk Ore Field

# E. M. Spiridonov<sup>*a*</sup>, \*, S. N. Belyakov<sup>*a*</sup>, Yu. A. Ivanova<sup>*a*</sup>, K. V. Egorov<sup>*a*</sup>, N. N. Korotaeva<sup>*a*</sup>, D. I. Naumov<sup>*a*</sup>, and O. V. Yapaskurt<sup>*a*</sup>

<sup>a</sup>Lomonosov Moscow State University, Moscow, Russia \*e-mail: emstspiridon@gmail.com

Hibbingite and its manganoan variety,  $(Fe^{2+},Mn^{2+})_2(OH)_3Cl$ , and siderite, including its manganoan variety,  $(Fe^{2+},Mn^{2+})[CO_3]$ , replacing magnetite and associated sulphides, occur in tectonized and metamorphosed pentlandite-putoranite ores at deep levels of the Oktyabrskoye deposit belonging to the Norilsk ore field (Siberia). Hibbingite aggregates are

formed by lamellar crystals. Hibbingite contains 2-38 mol. % of the kempite  $Mn_2^{2+}(OH)_3Cl$  component. Hibbingite with 7-13% of the kempite component is common. Hibbingite replacing magnetite and putoranite, is enriched in copper: up to 2.6 wt % Cu that corresponds

to 4 mol. % of the atacamite  $Cu_2^{2+}(OH)_3Cl$  component. Hibbingite replacing magnetite and pentlandite contains up to 1.5 wt % Ni. In zonal siderite crystals cores are composed of low-impurity siderite, whereas rim is enriched in Mn (up to 23 mol. % of the rhodochrosite end member) and Cu (up to 4.5 wt % CuO). Pure native silver and cadmium-enriched sphalerite are associated with hibbingite and siderite. These are low-temperature metamorphogenic-hydrothermal mineralizations developed under the conditions of zeolite facies. The replacing of magnetite for hibbingite and siderite is a reduction process that apparently took place under acidic–carbon dioxide conditions with the participation of hydrocarbons or hydrogen. The probable reaction is:

 $\mathrm{Fe}^{2+}\mathrm{Fe}_2^{3+}\mathrm{O}_4 + \mathrm{HCl} + \mathrm{CO}_2 + \mathrm{H}_2 \rightarrow \mathrm{Fe}_2^{2+}(\mathrm{OH})_3\mathrm{Cl} + \mathrm{Fe}^{2+}[\mathrm{CO}_3].$ 

Keywords: metamorphogenic-hydrothermal hibbingite, manganoan hibbingite, Norilsk ore field

#### REFERENCES

Anthony J.W., Bideaux R.A., Bladh K.W., Nichols M.C. Handbook of Mineralogy, Volume V. Borates, Carbonates, Sulfates. Mineral Data Publishing, Tucson: AZ. 2003. 813 p.

Buchwald V. F., Koch C. B. Hibbingite,  $\beta$ -Fe<sub>2</sub>(OH)<sub>3</sub>Cl, a chlorine-rich corrosion product in meteorites and ancient iron objects. *Meteoritics*. **1995**. Vol. 30. P. 493.

Bud'ko I.A., Izoitko V.M., Kulagov E.A., Mitenkov G.A. Makinavite and valleriite in Norilsk and Talnakh ores. Proc. NIIGA. Reg. ser. **1966**. Vol. 6. P. 203–209 (in Russian).

Genkin A.D., Distler V.V., Filimonova A.A., Evstigneeva T.L., Kovalenker V.A., Sluzhenikin S.F., Laputina I.P., Smirnov A.V., Grokhovskaya T.L. Sulphide copper-nickel ores of the Norilsk deposits. Moscow: Nauka, **1981**. 234 p. (*in Russian*).

Godlevsky M.N. Traps and ore-bearing intrusions of the Norilsk region. Moscow: Gosgeoltekhizdat, **1959**. 89 p. (*in Russian*).

Godlevsky M.N., Shumskaya N.I. Chalcopyrite-millerite ores of the Norilsk-I deposit. Geol. Ore Deposits. 1960. N 6. P. 61–72 (in Russian).

Goryainov I.N., Aplonov V.S. Regional hydrothermal activity in the northwest of the Siberian platform. Geol. Geophys. **1980**. N 7. P. 35–43 (*in Russian*).

*Izoitko V.M.* Technological mineralogy and ore evaluation. Saint-Petersburg: Nauka, **1997**. 582 p. (*in Russian*).

Junge M., Oberthür T., Melcher F. Cryptic variation of chromite chemistry, platinum group element and platinum group mineral distribution in the UG-2 chromitite: an example from the Karee Mine, western Bushveld Complex, South Africa. *Econ. Geol.* **1993.** Vol. 88. P. 795–810.

Kulagov E.A., Evstigneeva T.L., Yushko-Zakharova O.E. A new nickel sulfide – godlevskite. Geol. Ore Deposits. 1969. Vol. 11. N 3. P. 115–121 (in Russian).

Kulagov E.A., Izoitko V.M., Mitenkov G.A. Heazlewoodite in sulfide copper-nickel ores of the Talnakh deposit. Dokl. USSR Acad. Sci. 1967. Vol. 176. P. 900–902 (in Russian).

Lyulko V.A., Amosov Yu.N., Dushatkin A.B. Tectonics, ore-controlling structures and metallogenic zoning of the Igarsko-Norilsk region. In: *Metallogeny of Siberia. Vol. 2.* Novosibirsk: Nauka, **1987**. P. 143–149 (*in Russian*).

Maslov G.D. Tectonics of the Igarsko-Norilsk region and ore-controlling structures. In: Tectonics of Siberia. Vol. 2. Novosibirsk: Nauka, **1963**. P. 336–350 (*in Russian*).

*Philpotts A.R., Ague J.J.* Principles of igneous and metamorphic petrology. Cambridge University Press, **2009**. 667 p.

*Ryabov V.V.* Some features of the mineralogy of metasomatites from the aureole of the Talnakh differentiated ore-bearing intrusion (northwest of the Siberian platform). In: *Mat. on genetic. and experiment. mineralogy.* Vol. 8. Novosibirsk: Nauka, **1975**. P. 107–147 (*in Russian*).

Saini-Eidukat B., Kucha H., Keppler H. Hibbingite,  $\gamma$ -Fe<sub>2</sub>(OH)<sub>3</sub>Cl, a new mineral from the Duluth Complex, Minnesota, with implications for the oxidation of Fe-bearing compounds and the transport of metals. *Amer. Miner.* **1994**. Vol. 79. P. 555–561.

Sainti-Eidukat B., Rudashevsky N.S., Polozov A.G. Evidence for hibbingite-kempite solid solution. Miner. Mag. 1998. Vol. 62. P. 251–255.

Spiridonov E.M. Ore-magmatic systems of the Norilsk ore field. Russian Geol. Geophys. 2010. P. 52–79.

*Spiridonov E.M.* Genetic model of deposits of the Norilsk ore field. In: *Smirnov collection-2019*. Moscow: Max Press, **2019**. P. 41–113 (*in Russian*).

*Spiridonov E.M.* Holotype of the vysotskite – metamorphogenic-hydrothermal vysotskite (Pd, Ni) S from the Norilsk-I deposit. *Moscow University Geol. Bull.* **2021**. N 1 (*in press*).

*Spiridonov E.M., Golubev V.N., Gritsenko Yu.D.* Lead isotopic composition of galena, altaite and palladium intermetallic compounds of sulfide ores of the Norilsk ore field. *Geochem. Int.* **2010.** Vol 48. P. 815–824.

*Spiridonov E.M., Gritsenko Yu.D.* Epigenetic low-grade metamorphism and Co–Ni–Sb–As mineralization in the Norilsk ore field. Moscow: Naychny mir, **2009**. 218 p. (*in Russian*).

Spiridonov E.M., Ladygin V.M., Anastasenko G.F., Kulagov E.A., Lyulko V.A., Stepanov V.K. Metavolcanic rocks of the prehnite-pumpelliite and zeolite facies of the trap formation of the Norilsk region of the Siberian platform. Moscow: Moscow State University, **2000**. 212 p.

*Spiridonov E.M., Serova A.A., Kulikova I. M., Korotaeva N.N., Zhukov N.N.* Metamorphic-hydrothermal Ag–Pd–Pt mineralization in the Noril'sk sulfide ore deposit, Siberia. *Canad. Miner.* **2016**. Vol. 54. P. 429–452.

Stepanov V.K., Turovtsev D.M. Multivariate models of copper-nickel deposits of the Norilsk type. *Proc. TsNIGRI.* **1988**. Vol. 223. P. 86–94 (*in Russian*).

Zolotukhin V.V. About low-temperature metasomatites associated with serpentinization processes in the Norilsk ore-bearing trap intrusions. In: *Geology and petrology of the intrusive traps of the Siberian Platform*. Moscow: Nauka, **1970**. P. 179–186 (*in Russian*).

Zolotukhin V.V., Vasiliev Yu.R., Smekalin A.G., Bakumenko I.T. Babingtonite-prenite-pumpelyite paragenetic association in the Norilsk metasomatites. In: Mat. on genetic. and experiment. mineralogy. Vol. 5. Novosibirsk: Nauka, **1967**. P. 218–251 (*in Russian*).

Zubkova N.V., Pekov I.V., Sereda E.V., Yapaskurt V.O., Pushcharovsky D.Yu. The crystal structure of hibbingite, orthorhombic Fe<sub>2</sub>(OH)<sub>3</sub>Cl. Z. Krist. **2019**. Bd. 254. S. 379–382.