= МИНЕРАЛЫ И ПАРАГЕНЕЗИСЫ МИНЕРАЛОВ =

КРИСТАЛЛИЗАЦИЯ ЯРОЗИТА ИЗ СУЛЬФАТ-ФОСФАТНОГО ГЕЛЯ НА ПРОЯВЛЕНИИ ФОСФАТНОЙ МИНЕРАЛИЗАЦИИ ШЕЛКАНДЫ (ЮЖНЫЙ УРАЛ)

© 2022 г. д. чл. Н. В. Чуканов^{1, *}, А. В. Касаткин², д. чл. Д. А. Варламов³, д. чл. В. Н. Ермолаева³, д. чл. С. В. Колисниченко⁴, Ф. Нестола⁵

¹Институт проблем химической физики РАН, просп. Семенова, 1, Черноголовка, 142432 Россия ²Минералогический музей им. А.Е. Ферсмана РАН, Ленинский просп., 18-2, Москва, 119071 Россия

³Институт экспериментальной минералогии РАН,

ул. Академика Осипьяна, 4, Черноголовка, 142432 Россия

⁴Независимый исследователь, ул. Кирова, 13, Челябинская обл., с. Верхняя Санарка, 457035 Россия

⁵Университет Падуи, Виа Градениго, 6, Падуя, 35131 Италия

*e-mail: chukanov@icp.ac.ru

Поступила в редакцию 05.04.2022 г. После доработки 05.04.2022 г. Принята к публикации 07.04.2022 г.

Изучены многофазные сульфат-фосфатные агрегаты, образовавшиеся в результате гипергенного изменения пород черносланцевой толщи проявления Шелканды (Челябинская область, Южный Урал). Главная фосфатная фаза этих агрегатов представлена рентгеноаморфным гидроксифосфатом, формула которого (Fe³⁺, Al)₃(PO₄)(OH)₆·nH₂O соответствует изученному ранее "азовскиту" из Керченского железорудного бассейна (Крым). Включения в "азовските" представлены агрегатами аммонийсодержащего ярозита и фосфорсодержащим гётитом. Обсуждается возможный механизм кристаллизации ярозита.

Ключевые слова: гипергенез, ярозит, фосфаты, гётит, черные сланцы, Шелканды, Южный Урал

DOI: 10.31857/S0869605522030030

введение

Среди гипергенных водных фосфатов известно большое количество рентгеноаморфных фаз. Лишь незначительная их часть относится к минеральным видам, зарегистрированным Комиссией по новым минералам, номенклатуре и классификации минералов Международной минералогической ассоциации (КНМНК ММА): это фосфаты алюминия эвансит $Al_3(PO_4)(OH)_6 \cdot 8H_2O$ и боливарит $Al_2(PO_4)(OH)_3 \cdot 4 - 5H_2O$ (García-Guinea et al., 1995), розьересит $Pb_xCu_vAl_2(PO_4)_m \cdot nH_2O$ (Palache et al., 1951), сантабарбараит

 Fe_3^{3+} (PO₄)₂(OH)₃·5H₂O (Pratesi et al., 2003) и дельвоксит CaFe_4^{3+}(PO_4)_2(OH)_8·4-5H₂O (Palache et al., 1951; Čech, Povondra, 1979). Ангастонит CaMgAl₂(PO₄)₂(OH)₄·7H₂O (Mills et al., 2008) недавним решением КНМНК ММА также отнесен к числу рентгеноаморфных (Greyi et al., 2022).

Большая часть рентгеноаморфных водных фосфатов характеризуется переменными относительными количествами катионов металлов и фосфора, а также переменным содержанием воды. Чаще всего в качестве доминирующих компонентов в этих фосфатах выступают трехвалентные катионы (Fe³⁺, Al³⁺, реже Cr³⁺), однако нередко эти минеральные фазы содержат примесные двухвалентные катионы (Mg²⁺, Ca²⁺, Cu²⁺, Pb²⁺)

и другие), а также дополнительные анионные группы $(SO_4^{2-}, AsO_4^{3-}, SiO_4^{4-}, CrO_4^{2-})$. Разнообразные аморфные водные фосфаты железа, в том числе содержащие примесные компоненты и описанные в минералогической литературе под разными названиями ("оксикерченит", "босфорит", "боржицкиит", "фушерит", "азовскит") известны в Керченском железорудном бассейне в Крыму (Chukanov, 2005; Тищенко, Касаткин, 2020).

Для многих гипергенных аморфных водных фосфатов характерны колломорфные, т.н. натечные агрегаты, имеющие ритмически-зональное строение с чередованием зон различного состава. Подобные агрегаты фосфатов с общей формулой CuAl₅(PO₄, SiO₄, SO₄, AsO₄)F(OH)_{11–13}·nH₂O (n = 5-6), широко распространенные на руднике Западный Кародон в Великобритании (West Caradon Mine, Liskeard, UK) (Chukanov et al., 2018), содержат чередующиеся зоны двух типов, в которых отношение S : P составляет 0 и 0.8.

Аморфные сульфаты в природе более редки. Бурые колломорфные агрегаты чистого аморфного водного сульфата железа со стехиометрией Fe : S = 4 : 1 были обнаружены нами в отвалах одного из полиметаллических месторождений рудного региона Шнееберг (Рудные горы, Саксония, Германия). На рентгенограмме этого материала присутствует только широкое гало, а его ИК-спектр содержит несколько широких по-

лос, относящихся к колебаниям анионов OH^- и SO_4^{2-} , связей Fe^{3+} –O и молекул H_2O .

В июне 2021 г. одним из авторов (CBK) было обнаружено интересное проявление фосфатной минерализации в щебеночном карьере Шелканды, расположенном в Уйском районе Челябинской области (Южный Урал). Здесь нами установлены бирюза, варисцит, крандаллит, планерит, фторвавеллит, а также рентгеноаморфные водные фосфаты железа с включениями многочисленных очень мелких зерен ярозита – единственного сульфата, найденного в этом проявлении. Ниже дается подробное описание этой находки, а также обсуждается возможный механизм кристаллизации ярозита из фосфорсодержащего геля.

КРАТКАЯ ХАРАКТЕРИСТИКА ПРОЯВЛЕНИЯ ШЕЛКАНДЫ

Фосфатная минерализация на Южном Урале обнаружена в пределах Уйского, Чебаркульского и Пластовского районов Челябинской области. Чаще всего она фиксируется в придорожных карьерах, заложенных при строительстве дорог, или на естественных выходах углисто-кремнистых сланцев. Известны выходы фосфатной минерализации в окрестностях сел Никольское, Зауралово, Уштаганка, поселка Светлый (Батуровский карьер) и в районе деревни Крыжановка. В разное время здесь были установлены бирюза, варисцит, крандаллит, монтгомериит, планерит, фторапатит, фторвавеллит (Попов, Спирин, 1993; Попов, 2010; Колисниченко и др., 2017; наши данные). Все указанные проявления расположены в зоне распространения углистокремнистых сланцев Восточного склона Южного Урала (так называемая "черносланцевая толща"). На территории Челябинской области она простирается приблизительно на 60 км в длину, а ее ширина варьирует от 1 до 15 км. К формированию толщи привел метаморфизм глубоководных морских осадков силурийского, предположительно лландоверийского возраста. Осадки большей частью имеют химико-биогенный генезис, содержат обильные остатки радиолярий и сульфиды, главным образом пирротин, что свидетельствует о сероводородном обогащении водного бассейна. Насыщенность "черных сланцев" графитом и углистым веществом говорит о формировании их в условиях, значительно обедненных кислородом, за счет чего происходило резкое обогащение осадков органическим веществом.

К этой же "черносланцевой толще" относится и проявление фосфатной минерализации Шелканды, расположенное в юго-восточном отроге Кумлякского кряжа, приблизительно в 120 км к юго-западу от г. Челябинск. Проявление Шелканды было обнаружено в одноименном щебеночном карьере, где добывалась дресва для отсыпки дорожного полотна. Дорожные работы обнажили "камни с зеленой краской" (по выражению местного населения), которые оказались бирюзой. Карьером вскрыта дресвяная кора выветривания по углисто-кремнистым сланцам. Толща сланцев местами пронизана штокверком кварцевых жил, залегающих несогласно со сланцеватой текстурой сланцев. Эта минерализация отмечена в нескольких частях карьера. В некоторых кварцевых жилах по трещинам обнаружены крупные плоские обособления (до 25 × 20 см) тонких плотных ярко-зеленых агрегатов бирюзы, серовато-зеленые массивные агрегаты Fe-содержащего варисцита размером до 1 см, щетки белых призматических кристаллов крандаллита размером до 0.5 мм, белые сферолиты планерита размером до 1 мм, желтовато-голубые прожилки фторвавеллита размером до 1 см. Часто небольшие полости растворения в кварце покрыты корочками бирюзы. Другие жилы "ожелезнены" обильными лимонитовыми корочками и не содержат первичных фосфатов, за исключением фторвавеллита. Именно в них были найдены образцы с рентгеноаморфными водными фосфатами железа и ярозитом, изученные в настоящей работе.

МЕТОДЫ ИССЛЕДОВАНИЯ

Рентгеновские дифрактометрические данные получены в лаборатории Департамента наук о Земле Университета Падуи, Италия с помощью многофункционального рентгеновского дифрактометра Rigaku Oxford Diffraction SuperNova с детектором Pilatus 200K Dectris, на Мо K_{α} -излучении при ускоряющем напряжении 50 кВ, силе тока 0.8 мА и размере фокуса рентгеновского пучка 0.12 мм. Стандартное расстояние образец—детектор равно 68 мм. Время экспозиции составляло 30 мин.

Инфракрасный (ИК) спектр феррифосфат-ярозитового агрегата, предварительно растертого в агатовой ступке и запрессованного в таблетку с КВг, снят на фурье-спектрометре ALPHA FTIR (Bruker Optics, Германия) в диапазоне волновых чисел $360-3800 \text{ см}^{-1}$, при разрешающей способности 4 см⁻¹ и числе сканирований, равном 16. В качестве образца сравнения использовалась аналогичная таблетка, приготовленная из чистого KBr.

Исследование химического состава образцов проводилось методом рентгеноспектрального микроанализа с применением растрового электронного микроскопа Tescan Vega-II XMU (режим EDS, ускоряющее напряжение 20 кВ, ток электронного пучка 400 пА) и использованием системы регистрации рентгеновского излучения и расчета состава образца INCA Energy 450. Время накопления сигнала составляло 100 с. Диаметр зоны возбуждения не превышал 5 мкм. Диаметр электронного пучка составлял 157–180 нм.

Изображения получены с увеличением от $124 \times \text{ до } 350 \times \text{ в сканирующем режиме,}$ при диаметре электронного пучка 60 нм. Более подробное описание метода изложено в статье (Варламов и др., 2017).

Определявшиеся элементы, аналитические рентгеновские линии и использовавшиеся стандарты: Na K_{α} – альбит; Al K_{α} – Al₂O₃; Si K_{α} – SiO₂; P K_{α} – LaPO₄; S K_{α} – FeS₂; Cl K_{α} – NaCl; K K_{α} – ортоклаз; Ca K_{α} – волластонит; V K_{α} – V; Cr K_{α} – Cr; Fe K_{α} – Fe; Cu K_{α} – Cu.

Рис. 1. Основная (внутренняя) часть фосфат-ярозитового агрегата из проявления Шелканды (см. аналитические данные в табл. 1). Аншлиф. Изображение в отраженных электронах.

Fig. 1. The main (inner) part of the phosphate-jarosite aggregate from the Shelkandy occurrence (see analytical data in Table 1). Polished section. BSE image.

РЕЗУЛЬТАТЫ

Изученные образцы представляют собой темно-коричневые со смоляным блеском массивные агрегаты размером до 4 × 3 см, развивающиеся на тонкой белой корочке фторвавеллита мощностью до 1 мм, покрывающей углисто-кремнистый сланец. Фторвавеллит диагностирован по химическому составу и рентгенограмме. Он содержит (мас. %; содержание H₂O рассчитано по стехиометрии): Al₂O₃ 36.45, P₂O₅ 33.55, V₂O₅ 0.47, H₂O 25.85, F 4.39, O=F – 1.85, сумма 98.86. Эмпирическая формула (расчет на 11 анионов и 5 молекул H₂O): Al_{3.00}P_{1.98}V_{0.02}O₈(OH)_{2.03}F_{0.97}·5H₂O. Рассчитанные по порошковой рентгенограмме параметры ромбической элементарной ячейки отвечают фторвавеллиту: a = 9.581(2), b = 17.224(3), c = 7.004(1) Å, V = 1155.8(3) Å³.

Внутренняя часть темно-коричневых агрегатов в основном представлена массивным рентгеноаморфным фосфатом железа, который рассечен трещинами усыхания и содержит прожилки высокожелезистого позднего фосфата и многочисленные скопления мельчайших кристалликов ярозита (рис. 1). Во внешних частях этих многофазных агрегатов наблюдаются ритмические структуры, образованные аморфными фосфатами с разными отношениями содержаний главных компонентов (Fe, Al, Cu, P) в чередующихся зонах (рис. 2).

Типичные химические составы минеральных фаз, присутствующих в изученных агрегатах, приведены в табл. 1 и 2. Дефицит крупных катионов металлов (K + Na + Ca) в составе ярозита связан с присутствием в этом минерале изоморфной примеси аммония, на что указывают данные ИК-спектроскопии (см. ниже). С другой стороны, согласно данным ИК-спектроскопии, в ярозите возможно частичное замещение OHгрупп молекулами H₂O (Chukanov, Chervonnyi, 2016). С учетом этих данных сбалансированная по зарядам эмпирическая формула ярозита может быть записана в виде

Рис. 2. Периферическая часть фосфат-ярозитового агрегата из проявления Шелканды. Аншлиф. Изображение в отраженных электронах. Цифры соответствуют номерам анализов в табл. 2.

Fig. 2. Peripheral part of the phosphate-jarosite aggregate from the Shelkandy occurrence. Polished section. BSE image. The figures correspond to the numbers of analyses in Table 2.

$$[K_{0.64}(NH_4)_{0.20}Na_{0.13}Ca_{0.03}]_{\Sigma 1.00}(Fe_{2.90}^{3+}Al_{0.11})_{\Sigma 3.01}[(SO_4)_{1.85}(PO_4)_{0.12}(SiO_4)_{0.02}]_{\Sigma 1.99}[(OH)_{5.95}Cl_{0.01}, (H_2O)_{0.04}].$$

Порошковая рентгеновская дифрактограмма изученного образца близка к эталонной рентгенограмме ярозита (JCPDS-ICDD, 22-0827) – см. табл. 3. Какие-либо иные рефлексы, которые могли бы относиться к фосфатной матрице, на рентгенограмме отсутствуют, что говорит о рентгеноаморфном состоянии Fe-фосфата. Единственный слабый пик при 4.16 Å, имеющий ширину, соответствующую приблизительно 0.2 Å, скорее всего, относится к примесному плохо раскристаллизованному гётиту. Рефлексы ярозита также уширены (их средняя ширина близка к 0.1 Å). Расчетные параметры гексагональной (тригональной) ячейки ярозита из фосфат-ярозитового агрегата проявления Шелканды следующие: a = 7.2887(8) Å, c = 17.166(3) Å, V = 789.8(2) Å³.

Наиболее интенсивные полосы в ИК-спектре феррифосфат-ярозитового агрегата (рис. 3) относятся к ярозиту. Слабая полоса при 1431 см⁻¹ соответствует деформационным колебаниям примесных ионов аммония.

Отнесение остальных полос ИК-спектра следующее. Широкое плечо при 3230 см⁻¹ и пик при 1631 см⁻¹ (с плечом при 1560 см⁻¹) относятся, соответственно, к валентным и деформационным колебаниям молекул H₂O, присутствующих в фосфатных фазах. Плечо при 700 см⁻¹ и слабый пик при 786 см⁻¹ соответствует деформационным колебаниям групп Fe³⁺...OH в фосфатных фазах. Полосы симметричных валентных [при 1006 см⁻¹, мода $A_1(v_1)$] асимметричных валентных [при 1085 см⁻¹, мода $F_2(v_3)$] и деформационных [при 629 см⁻¹, мода $F_2(v_4)$] колебаний групп SO₄²⁻ наблюдаются на фоне повышенного поглощения ИК-излучения в диапазонах 1000–1100 и 500–650 см⁻¹ вследствие вклада в спектр диффузных полос, относящихся к аналогичным колебани-

	Содержания (<i>P</i> , мас. %) и их среднеквадратичные отклонения (SD)					
Компонент	Фосфат 1		Фосфат 2		Ярозит	
	Р	SD	Р	SD	Р	SD
Na ₂ O	0.02	0.03	0.01	0.02	0.84	0.23
K ₂ O	0.04	0.02	0.02	0.03	6.18	0.05
CaO	0.81	0.09	1.76	0.12	0.58	0.20
Al ₂ O ₃	3.30	0.21	4.12	0.22	1.17	0.39
Fe ₂ O ₃	71.28	2.08	58.42	2.17	47.31	1.02
SiO ₂	0.25	0.22	0.60	0.11	0.24	0.06
P_2O_5	8.72	0.64	17.58	0.76	1.70	0.10
V_2O_5	0.49	0.26	0.19	0.10	0.06	0.08
SO ₃	0.11	0.19	0.29	0.02	30.06	0.15
Cr ₂ O ₃	0.07	0.05	0.11	0.09	0.07	0.11
Cl	0.03	0.01	0.05	0.05	0.08	0.03
-O=Cl ₂	0.01	0.00	0.01	0.01	0.02	0.01
Сумма	85.10	1.15	83.12	2.92	88.27	1.18
	Формульные коэффициенты (f) и их среднеквадратичные отклонения (SD					лонения (SD)
	f	f SD f SD		f	SD	
Na	0.00	0.01	0.00	0.00	0.13	0.04
Κ	0.01	0.00	0.00	0.00	0.64	0.00
Ca	0.11	0.00	0.12	0.00	0.05	0.02
Al	0.48	0.02	0.31	0.02	0.11	0.04
Fe	6.65	0.66	2.77	0.12	2.90	0.04
Si	0.03	0.03	0.04	0.01	0.02	0.00
Р	0.91	0.02	0.94	0.01	0.12	0.01
V	0.04	0.02	0.01	0.00	0.00	0.00
S	0.01	0.02	0.01	0.00	1.85	0.03
Cr	0.00	0.00	0.00	0.00	0.00	0.01
Cl	0.01	0.00	0.01	0.00	0.01	0.00
Способ расчета	P + S + Si + V + Cr = 1 $Fe + Al + P + S + Si + V + Cr = 5$					Si + V + Cr = 5

Таблица 1. Химический состав фосфатов и ярозита из внутренней части сульфат-фосфатных агрегатов из проявления Шелканды (рис. 1): среднее из 3 локальных анализов для каждой фазы **Table 1.** Chemical composition of phosphates and jarosite from the inner part of the sulfate-phosphate aggregates from the Shelkandy occurrence (Fig. 1): mean of 3 local analyses for each phase

ям групп PO_4^{3-} аморфных фосфатов. Однозначное отнесение полосы при 427 см⁻¹ затруднительно: она может относиться к деформационным [мода $E(v_2)$] колебаниям групп PO_4^{3-} , либрационным колебаниям молекул воды или примеси гётита. Очень слабые пики при 1980 и 2030 см⁻¹ относятся к обертонам S–O- и P–O-валентных колебаний.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

В породах "черносланцевой толщи" Южного Урала содержатся обильные вростки сульфидов (с преобладанием пирротина), которые скорее всего и послужили источни-

Таблица 2. Химический состав ф	росфатов из перио	рерической части с	сульфат-фосо	фатных агрега-
тов из проявления Шелканды (р	ис. 2)			

Table 2. Chemical composition	n of phosphates from	m the peripheral part	of the sulfate-phosph	late aggregates
from the Shelkandy occurrenc	e (Fig. 2)			

Компонент	1	2	3	4	5	6	7	
Содержание, мас. %								
Na ₂ O	0.00	0.08	0.15	0.25	0.17	0.00	0.03	
K ₂ O	0.09	0.25	0.19	0.08	0.02	0.00	0.00	
CaO	0.03	0.21	0.97	0.83	0.75	0.64	0.30	
CuO	6.50	7.56	0.28	0.63	0.19	0.65	0.90	
Fe ₂ O ₃	9.87	28.95	49.00	53.95	56.73	64.37	71.45	
Al ₂ O ₃	29.87	15.18	4.84	4.87	4.07	4.16	2.51	
SiO ₂	0.00	0.22	0.00	0.44	0.31	0.48	0.75	
P_2O_5	33.77	32.20	12.41	11.80	7.11	7.22	7.50	
V ₂ O ₅	0.17	0.02	0.17	0.70	0.40	0.17	0.51	
CrO ₃	0.00	0.18	0.17	0.26	0.07	0.00	0.17	
SO ₃	0.06	0.00	0.18	0.53	0.00	0.00	0.48	
Cl	0.00	0.05	0.00	0.00	0.00	0.04	0.00	
-O=Cl ₂	_	0.01	_	_	_	0.01	_	
Сумма	80.36	84.90	68.36	74.35	69.82	77.72	84.60	
	Формул	ьные коэфо	рициенты, р	ассчитанны	ые на 1 атом	P + S + Si +	V + Cr	
Na	0.00	0.01	0.03	0.04	0.05	0.00	0.01	
Κ	0.00	0.01	0.02	0.01	0.00	0.00	0.00	
Ca	0.00	0.01	0.10	0.08	0.12	0.10	0.04	
Cu	0.17	0.21	0.02	0.04	0.02	0.07	0.09	
Fe	0.26	0.79	3.40	3.57	6.47	7.24	6.86	
Al	1.23	0.65	0.53	0.50	0.73	0.73	0.38	
Si	0.00	0.01	0.00	0.04	0.05	0.07	0.10	
Р	1.00	0.99	0.97	0.88	0.91	0.91	0.81	
V	0.00	0.00	0.01	0.03	0.03	0.01	0.03	
Cr	0.00	0.00	0.01	0.01	0.01	0.00	0.01	
S	0.00	0.00	0.01	0.03	0.00	0.00	0.05	
Cl	0.00	0.00	0.00	0.00	0.00	0.01	0.00	

ком железа, серы и меди для изученных в настоящей работе агрегатов. Наиболее вероятным первичным источником фосфора "черносланцевой толщи" и аммония в изученном в настоящей работе ярозите было органическое вещество силурийских донных осадков.

Морфологические характеристики изученных фосфат-ярозитовых агрегатов указывают на возможный механизм кристаллизации ярозита из фосфорсодержащего геля и последующее отверждение последнего в результате частичной дегидратации с образованием аморфных фосфатов.

Главная фаза фосфатной матрицы изученных в настоящей работе агрегатов (фосфат 2) по химическому составу близка к так называемому "азовскиту" – аморфному водному фосфату железа, содержащему около 57 мас. % Fe₂O₃ и около 17 мас. % P₂O₅ (Ефремов, 1938; Palache et al., 1951), что соответствует атомному отношению Fe³⁺ : P \approx

Таблица 3. Порошковые рентгеновские диф	рактометрические данны	е фосфа	г-ярозитового аг-
регата из проявления Шелканды			

Table 3. Powder 2	X-ray diffraction	data for the	phosphate-jarosi	te aggregate	from the S	helkandy o	occur-
rence							

Фосфат-ярозитовый агрегат		Ярозит (JCPDS-ICDD, 22-0827)				
d, Å	I, %	d, Å	I, %	hkl		
5.90	40	5.9300	45	101		
5.07	50	5.0900	70	012		
4.16*	10					
3.625	10	3.6500	40	110		
3.110	85	3.1100	75	021		
3.072	100	3.0800	100	113		
2.880	25	2.8610	30	006		
2.537	50	2.5420	30	024		
2.285	30	2.2870	40	107		
1.976	45	1.9770	45	303		
1.825	45	1.8250	45	220		
1.713	20	1.7170	6	312		
1.540	30	1.5360	20	226		
1.505	35	1.5070	20	0 2 10		

Примечание. * Рефлекс, предположительно относящийся к примеси гётита.

≈ 3 : 1. В отличие от сантабарбараита, который имеет стехиометрию Fe^{3+} : $P \approx 3 : 2$ и является продуктом окисления вивианита, образующим псевдоморфозы по его кристаллам и агрегатам, "азовскит" слагает колломорфные агрегаты, сформировавшиеся в результате отверждения фосфатного геля. Порошковые рентгенограммы некоторых образцов "азовскита" содержат очень слабые, широкие пики гётита. На порошковой рентгенограмме изученного в настоящей работе агрегата имеется слабый примесный пик гётита при 4.16 Å, однако электронно-зондовые анализы не показывают присутствия фазы, состав которой мог бы соответствовать этому минералу. Можно предположить, что фосфат 1 фактически является субмикроскопическим срастанием гётита с аморфным фосфатом. В пользу этого предположения говорят низкое содержание фосфора в фосфате 1 [атомное отношение (Fe + Al) : Р около 7.8 : 1] и большая ширина рефлекса порошковой рентгенограммы при 4.16 Å.

Фосфор и сера являются обычными примесными компонентами в агрегатах гётита (Минералы, 1967; Parfitt, 1989; Torrent et al., 1992; Paul et al., 2007). Во многих случаях рентгенографический анализ и микроскопические исследования не выявляют присутствия механических примесей фосфатов или сульфатов в P- и S-содержащих образцах этого минерала. Предполагалось, что фосфор может присутствовать в гётите в виде анионов PO_4^{3-} , адсорбированных на поверхности частиц этого минерала или в макропорах его агрегатов. Кинетика сорбции ортофосфатов гётитом, а также десорбции ортофосфатов с поверхности частиц гётита подробно изучалась в связи с проблемой доступности фосфатных удобрений для растений (Torrent et al., 1992; Strauss et al., 1997; Chitrakar et al., 2006). Однако вопрос о том, в какой форме фосфор и сера входят в состав природного гётита, остаётся нерешенным. Данные ИК-спектроскопии и ЯМР ³¹Р говорят о том, что наиболее вероятной формой нахождения фосфатных групп на поверхности гётита является бидентатный комплекс HPO_4^{2-} (Parfitt, Atkinson,

Рис. 3. ИК-спектр фосфат-ярозитового агрегата из проявления Шелканды. **Fig. 3.** IR spectrum of the phosphate-jarosite aggregate from the Shelkandy occurrence.

1976; Ahmed et al., 2019; Kim et al., 2011). С другой стороны, на основании данных о корреляциях между содержаниями различных примесных элементов в природном гётите была высказана гипотеза о возможном вхождении Al, Si и P в структуру этого минерала (Pownceby et al., 2019).

выводы

Полученные данные подтверждают существование аморфного гидроксифосфата железа с идеализированной формулой $\mathrm{Fe}^{3+}_{3}(\mathrm{PO}_{4})(\mathrm{OH})_{6}$ и переменным содержанием воды, ранее описанного под названием "азовскит". Как и в железных рудах Керченского бассейна, на проявлении Шелканды "азовскит" ассоциирует с фосфорсодержащим гётитом, в котором сканирующая электронная микроскопия не выявляет какой-либо фазовой неоднородности. Таким образом, механизм вхождения фосфора в состав гётитовых агрегатов остается дискуссионным.

Характер агрегатов ярозита, образующих включения в аморфном фосфате железа, позволяет предположить их образование в результате кристаллизации из сульфатфосфатного геля. Последний мог являться продуктом воздействия водных растворов, содержащих серную кислоту и сульфаты железа и образовавшихся при окислении пирротина, на первичные фосфаты.

Работа выполнена в соответствии с темой Государственного задания, номер государственного учета АААА-А19-119092390076-7.

СПИСОК ЛИТЕРАТУРЫ

Варламов Д.А., Ермолаева В.Н., Янчев С., Чуканов Н.В. Минералы надгруппы пирохлора из несульфидной эндогенной ассоциации Pb–Zn–Sb–As минералов в Пелагонийском массиве, Македония // ЗРМО. 2017. Т. 146. № 4. С. 65–78.

Ефремов Н.Е. К генезису железных руд Керченского и Таманского полуостровов // Советская геология. **1938**. № 5. С. 74–91.

Колисниченко С.В., Попов В.А., Епанчинцев С.Г., Кузнецов А.М. Минералы Южного Урала. Минералы Челябинской области. Энциклопедия уральского камня. Челябинск: Санарка, **2017**. 416 с.

Минералы. Справочник под редакцией Ф.В. Чухрова и Э.М. Бонштедт-Куплетской. Т. II. Вып. 3. Москва: Наука, **1967**. 676 с.

Попов В.А. Вавеллит из черных сланцев Русской Бразилии (Южный Урал) // 11-е Всероссийские научные чтения памяти ильменского минералога В.О. Полякова. Миасс: ИМин УрО РАН. **2010**. С. 17–18.

Попов В.А., Спирин А.Н. Вавеллит, бирюза и крандаллит в черных сланцах близ с. Зауралово на Южном Урале // Уральский минералогический сборник. № 2. **1993**. С. 78–81.

Тищенко А.И., Касаткин А.В. Минералы и минеральные комплексы Крыма. Симферополь: Бизнес-Информ, **2020**. 468 с.

Crystallization of Jarosite from Sulfate-Phosphate Gel in the Shelkandy Occurrence of Phosphate Mineralization, South Urals

N. V. Chukanov^{*a*}, *, A. V. Kasatkin^{*b*}, D. A. Varlamov^{*c*}, V. N. Ermolaeva^{*c*}, S. V. Kolisnichenko^{*d*}, and F. Nestola^{*e*}

^aInstitute of Problems of Chemical Physics RAS, Chernogolovka, Russia

^bFersman Mineralogical Museum RAS, Leninsky Prospekt, 18-2, Moscow, 119071 Russia

^cInstitute of Experimental Mineralogy RAS, Chernogolovka, Russia

^dIndependent researcher, Kirova str., 13, Verkhnyaya Sanarka, Chelyabinsk Oblast, Russia

^eUniversity of Padova, Via Gradenigo, 6, Padova, Italy

*e-mail: chukanov@icp.ac.ru

Polyphase sulfate-phosphate aggregates formed as a result of supergene alteration of black schists of the Shelkandy occurrence (Chelyabinsk region, South Urals) have been investigated. The major phase of the aggregates is an X-ray amorphous hydroxyphosphate with the formula $(Fe^{3+},Al)_3(PO_4)(OH)_6$ nH_2O corresponding to so-called "azovskite" from the Kerch iron-ore basin (Crimea) which was described earlier. Inclusions in "azovskite" are presented by ammonium-bearing jarosite and phosphorus-bearing goethite. Possible mechanism of jarosite crystallization is discussed.

Keywords: hypergenesis, jarosite, phosphates, goethite, black schists, Shelkandy, South Urals

REFERENCES

Ahmed A.A., Gypser S., Leinweber P., Freese D., Kühn O. Infrared spectroscopic characterization of phosphate binding at the goethite-water interface. Phys. Chem. Chem. Phys. 2019. Vol. 21. P. 4421–4434.

Čech F., Povondra P. A re-examination of bořickýite [= delvauxite]. *Tschermaks Mineral. Petrogr. Mitt.* **1979**. Vol. 26. P. 79–86.

Chitrakar R., Tezuka S., Sonoda A., Sakane K., Ooi K., Hirotsu T. Phosphate adsorption on synthetic goethite and akaganeite. *J. Colloid Interface Sci.* **2006**. Vol. 298. P. 602–608.

Chukanov N.V. Kerch Iron-Ore Basin. Minerals of the Kerch Iron-Ore Basin in Eastern Crimea. Mineralogical Almanac. Moscow: Ocean Pictures LTd. **2005**. Vol. 8. 109 p.

Chukanov N.V., Chervonnyi A.D. Infrared Spectroscopy of Minerals and Related Compounds. Springer: Cham-Heidelberg-Dordrecht-New York-London, **2016**. 1109 p.

Chukanov N.V., Weiß S., Meisser N., Pekov I.V., Britvin S.N., Vozchikova S.A., Belakovskiy D.I., Ermolaeva V.N. Post-mining amorphous Cu-Al hydroxyphosphate from West Caradon Mine, Liskeard, UK. N. Jahrb. Mineral. Abh. 2018. Vol.195/3. P. 205-210.

Efremov N.E. On the genesis of iron ores of the Kerch and Taman peninsulas. *Soviet Geology.* **1938**. N. 5. P. 74–91 (*in Russian*).

García-Guinea J., Chagoyen A.M., Nickel E.H. A re-investigation of bolivarite and evansite. *Canad. Miner.* **1995**. Vol. 33. P. 59–65.

Grey I.E., Elliott P., Mumme W.G., MacRae C.M., Kampf A.R., Mills S.J. Redefinition of angastonite, CaM-gAl₂(PO₄)₂(OH)₄:7H₂O, as an amorphous mineral. Eur. J. Miner. **2022**. Vol. 34. P. 215–221.

Kim J., Li W., Philips B.L., Grey C.P. Phosphate adsorption on the iron oxyhydroxides goethite (α -FeOOH), akaganeite (β -FeOOH), and lepidocrocite (γ -FeOOH): a ³¹P NMR Study. *Energy Environ. Sci.* **2011**. Vol. 4. P. 4298–4305.

Kolisnichenko S.V., Popov V.A., Epachintsev S.G., Kuznetsov A.M. Minerals of South Urals. Minerals of the Chelyabinsk Region. Enciclopedy of Urals' Stone. Chelyabinsk: Sanarka, **2017**. 416 p. (*in Russian*).

Mills S.J., Groat L.A., Wilson S.A., Birch W.D., Whitfield P.S., Raudsepp M. Angastonite, CaMgAl₂(PO₄)₂(OH)₄:7H₂O, a new phosphate mineral from Angaston, South Australia. *Miner. Mag.* **2008**. Vol. 72. P. 1011–1020.

Minerals: Reference Book (Eds. Chukhrov F.V., Bonshtedt-Kupletskaya E.M.). Vol. II, Iss. 3. Moscow: Nauka, 1967. 676 p.

Palache C., Berman H., Frondel C. Dana's system of mineralogy, 7th edition. Vol. II. 1951. 924 p. Parfitt R.L., Atkinson R.J. Phosphate adsorption on goethite (α-FeOOH). Nature. 1976. Vol. 264. N 5588. P. 720–742.

Parfitt R.L. Phosphate reactions with natural allophane, ferrihydrite and goethite. *J. Soil Sci.* **1989**. Vol. 40. P. 359–369.

Paul K.W., Kubicki J.D., Sparks D.L. Sulphate adsorption at the Fe (hydr)oxide–H₂O interface: comparison of cluster and periodic slab DFT predictions. *Eur. J. Soil Sci.* **2007**. Vol. 58. P. 978–988.

Popov V.A. Wavellite from black schists of Russian Brazil (South Urals). 11th Russian Scientific Conference devoted to the memory of the Ilmen's mineralogist V.O. Polyakov. Miass: Institute of Mineralogy of the Urals branch of RAS, **2010**. P. 17–18.

Popov V.A., Spirin A.N. Wavellite, turquoise, and crandallite in black schists near the village of Zauralovo, South Urals. In: *Mineralogical Bulletin of Urals.* **1993**. N. 2. P. 78–81 (*in Russian*).

Pownceby M.I., Hapugoda S., Manuel J., Webster N.A.S., MacRae C.M. Characterisation of phosphorus and other impurities in goethite-rich iron ores – Possible P incorporation mechanisms. *Miner. Engin.* **2019**. Vol. 143. Paper 106022.

Pratesi G., Cipriani C., Giuli G., Birch W. Santabarbaraite: a new amorphous phosphate mineral. Eur. J. Miner. 2003. Vol. 15. P. 185–192.

Strauss R., Brummer G.W., Barrow N.J. Effects of crystallinity of goethite: II. Rates of sorption and desorption of phosphate. Eur. J. Soil Sci. 1997. Vol. 48. P. 101–114.

Tishchenko A.I., Kasatkin A.V. Minerals and Mineral Complexes of Crimea. Simferopol: Biznes-Inform, **2020**, 468 p. (*in Russian*).

Torrent J., Schwertmann U., Barron V. Fast and slow phosphate sorption by goethite-rich natural materials, *Clays Clay Miner*. **1992**. Vol. 40. P. 14–21.

Varlamov D.A., Ermolaeva V.N., Jančev S., Chukanov N.V. Oxides of the pyrochlore supergroup from a nonsulfide endogenic assemblage of Pb–Zn–Sb–As minerals in the Pelagonian massif, Macedonia. Zapiski RMO (Proc. Russian Miner. Soc.). 2017. Vol. 146. N 4. P. 65–78 (in Russian, English translation: Geol. Ore Depos. 2018. Vol. 60. N 8. P. 717–725).