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Ion channels constitute a diverse family of transmembrane proteins, which regulate flow of
ions through cell membranes. The channels are involved in multiple physiological process-
es and they are targets for numerous naturally occurring toxins and medically important
drugs. However, molecular details of the channel structure, mechanisms of action, and in-
teraction with ligands are still debated. A reason for this is the shortage of atomic-level
three dimensional structures. During last two decades significant contributions to the field
have been made with indirect experimental approaches including mutagenesis, electro-
physiology, and analysis of structure-function relations. Molecular modeling was applied
to rationalize these experimental data in structural terms. Recent achievements of the
X-ray crystallography and cryo-electron microscopy provide unambiguous solutions for
many structural problems that were previously addressed by indirect and modeling studies.
In this review we describe several examples of structural predictions that have been made
by molecular modeling with the aim to rationalize indirect experimental data. We compare
the models with recently published crystal and cryo-EM structures. A good agreement of
many predictions with the later published experimental structures validates further em-
ployment of molecular modeling studies. Currently available and expected structures of
principal ion channels and their complexes with ligands provide realistic templates for
modeling homologous channels, their multiple variants, including decease-associated mu-
tants, and docking drugs and toxins in the models. These studies are expected to provide
high-quality predictions, which are necessary to design new channel-specific ligands and
provide recommendations for personalized chemotherapy.
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Ion channels play fundamental roles in physiology. These proteins control passive ion
transport through cell membranes. Fast ion permeation (millions of ions per second)
changes membrane voltage and mediates rapid inflow of the second-messenger calcium
ions, which regulate numerous intracellular processes. Ion channels are main elements of
electrical signaling. They are responsible for reception, generation, propagation and trans-
duction of signals in the nervous system. Synaptic plasticity, which represents cellular basis
of learning and memory, is also associated with ion channels [1].

Abbreviations: TTX – tetrodotoxin; STX – saxitoxin; LA – local anesthetic; MC – Monte Carlo; MCM –
MC-minimization; μCTX – μ-conotoxin; VSD – voltage-sensing domain
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Ion channels are targeted by many drugs and naturally occurring toxins. More than 10%
of all pharmacological agents regulate function of ion channels. Examples of ion channel
ligands include, but are not limited to anesthetics and analgesics, antidepressants, anticon-
vulsants, antiarrhythmics and antihypertensive drugs. Therefore, development of potent
and specific ion channel ligands is a primary goal of neuropharmacology. Despite decades
of large efforts in academia and industry, our understanding of molecular basis of specific
drugs action on ion channels is still incomplete. For example, molecular mechanisms of
action of classical local anesthetics and anticonvulsants on voltage-gated sodium channel
are still debated in physiological literature, see [2, 3]. There are two major causes of this
situation. The first one is large variety of channel-forming proteins with different foldings,
subunit compositions and functional states. This variety complicates investigations of ion
channels structure, function and modulation because experimental data obtained for one
channel class are poorly transferrable to another class. Secondly, membrane localization of
ion channels has long prevented or complicated their isolation and purification, which is
necessary for structural studies. Even nowadays representative structures are available for
only a limited number of channel classes, although the rapid progress in the X-ray crystal-
lography and cryo-electron microscopy (cryo-EM) provides increasingly large number of
the channel structures. However, experimental structural studies are very complex and la-
borious and a new channel structure is usually published in a high-impact journal.

Molecular modeling approach. In lack of high-resolution experimental structures mo-
lecular modeling methods are usually applied to fill the gaps. Computational approaches,
namely, molecular dynamics and Monte Carlo energy minimizations, employ experimen-
tal data on atom-interactions (force fields) to simulate behavior of molecular systems or
predict energetically favorable structures [4]. However, the approximate nature of force
fields and huge time required for computation at even modern supercomputers prevent
hands-free predictions of ion channel folding. Therefore, in lack of crystal or cryo-EM
structure of an ion channel, “homology modeling” approach can be used to predict its
3D structure [5, 6]. This approach is based on the assumption that the principal folding is
conserved in a family of related proteins and therefore an available crystal or cryo-EM
structure can be used as a template to predict structure of another channel from this family.
Experimental data are also used to computationally predict ligand-channel complexes.
Available data on structure-activity relationships and/or results of site-directed mutagene-
sis are used to reveal regions of ligand binding. Such information helps to build reliable
models, which integrate results of indirect experiments obtained by different scientific
groups with different experimental approaches. The models, in turn, provide structural ra-
tionale for the experimental data and help to design new experiments [7, 8].

The main problem with molecular models is that usually their precision and predictive
potential are unknown until respective crystal or cryo-EM structure is obtained. In the last
decades, this problem limited application of models of ion channels and their complexes
with ligands in experimental studies. Recently, crystal and cryo-EM structures of the
channels, which had been modeled in the past, become available. These experimental
structures allow estimating precision of the modeling predictions. It is impossible to con-
sider the large field of ion channels in this work. Therefore, we describe here several exam-
ples of our theoretical studies of so-called P-loop channels.

P-loop channels. P-loop channels constitute a superfamily of functionally and structur-
ally different proteins, which have common folding of the pore-forming domain, but may
have very different signal-recognition and modulatory domains. The family includes volt-
age-gated potassium, sodium and calcium channels, TRP channels, and channels gated by
cyclic nucleotides and glutamate. All these channels are tetramers or pseudo-tetramers, in
which the four subunits (repeats in case of eukaryotic sodium and calcium channels whose
pore is formed by a single polypeptide) contribute to the pore domain a helix-loop-helix
structural motif (Fig. 1A). The reentrant membrane loop (P-loop) between transmem-
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Fig. 1. General architecture of P-loop channels. A, Transmembrane topology of voltage-gated potassium channel
subunit. The N-part forms voltage-sensing domain (VSD) with the voltage sensing segment S4. The C-part con-
tributes to the pore domain and contains re-entrant membrane loop (P). B and C, extracellular (B) and side (C)
views on the pore domain of potassium channel. Segments and main regions are labeled.
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brane helices S5 and S6 harbors the selectivity filter. Interestingly, even membrane orienta-
tion of the pore domain can be different: in ionotropic glutamate receptors P-loops enter
the membrane from the cytoplasm, whereas in other members they are located extracellu-
larly. P-loops in sodium in calcium channels form a helix-loop-helix motif whereas other
members of the superfamily contains only the first helix.

Models of sodium channels with outer pore-blocking toxins. Homology modeling of
P-loop channels has become possible in 1998 when Roderick MacKinnon and colleagues
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published pioneering crystal structure of a prokaryotic potassium channel KcsA [9]. Im-

portance of this and several later resolved potassium channel structures for advancing our

understanding of ion channels function at the atomic level was recognized by the Nobel

Prize in chemistry in 2003. General organization of the pore domain revealed by these

studies is shown in Figures 1B, C. A narrow selectivity filter formed by residues in the four

loops divides the permeation pathway in two distinct regions, namely the inner pore and

the outer pore.

An important example, which demonstrates the predictive power and limitations of the

modeling approach based on indirect experimental data, is a series of theoretical studies of

voltage-gated sodium channels whose outer pore is blocked by tetrodotoxin (TTX), saxi-

toxin (STX) and μ-conotoxins (μCTX). The modeling was complicated by the fact that the

outer pore of potassium channels is too narrow to accommodate even rather small mole-

cules of TTX and STX, implying that the outer pore of sodium channels is substantially

different from that in potassium channels. On the other hand, action of these toxins was

addressed in many experimental studies, which provides patterns of specific toxins-chan-

nel interactions and even energetics of some interactions. Analysis of these interactions re-

vealed a clockwise arrangement of repeats in pseudo-tetrameric sodium channels [10].

Rigid structures of TTX and STX allowed Lipkind and Fozzard to predict relative disposi-

tion of key TTX/STX sensing residues in the outer-pore region between the selectivity-fil-

ter DEKA ring (residues Asp, Glu, Lys and Ala from the four repeats) and the ring of so-

called outer carboxylates [11]. However, to dock rigid TTX and STX in the outer pore, the

authors suggested different disposition of the pore helices in the KcsA potassium channel,

which was used as a template for modeling, and in the modeled sodium channel [12]. Later

we have built a model with the same toxin-sensing residues, but kept the pore helices in

KcsA-like disposition and used Monte Carlo energy minimizations that relaxed residues in

the outer pore, allowing it to form rather wide region, which readily accommodates the

toxins [13].

The next breakthrough was the crystal structure of a bacterial sodium channel NavAb

[14]. Although the homotetrameric NavAb, as well as other prokaryotic sodium channels,

NavRh [15] and NavMs [16], are not identical to sodium channels of eukaryotes, these

structures revealed significant differences with potassium channels. In the latter channels

the C-half of each P-loop has the second helix (P2) which is absent in potassium channels.

Modeling studies did not reveal existence of the second helix in the region of the toxins

binding that is an example of limitations of homology modeling approach in prediction of

the secondary structure elements. Employment of the NavAb structure as a template for

homology modeling allowed us to build a new model of TTX-bound channel Nav1.4 [17].

To elaborate the model, we introduced insertions/deletions (indels) in the selectivity-fil-

ter region in the aligned sequences of the homotetrameric prokaryotic and pseudo-

heterotetrameric eukaryotic sodium channels (Fig. 2A). The indels were necessary to

keep proper orientation of conserved structure-stabilizing residues and TTX-sensing

residues in the 3D model.

The same model was used to rationalize interesting experimental data on the channel

block by peptide KIIIA and other μ-conotoxins [18]. A peculiarity of the KIIIA action is

an incomplete channel block. This was explained in the model where KIIIA binds between

P-loops of repeats III and IV, does not occlude the outer pore, and leaves a path for TTX to

reach the deeper located selectivity filter. Now we can compare these modeling predictions

with recent structures of eukaryotic sodium channels [19, 20] and their complexes with

TTX, STX and μCTX [21]. The comparison is given in Fig. 2B–E and 3. Conserved 3D

disposition of P-helices in potassium and sodium channels was correctly predicted. Indels

in the sequence alignment of NavAb and eukaryotic channels were also correctly predicted

(Fig. 2A). Disposition of TTX-sensing groups were predicted with a high precision

(Fig. 2B, C). The binding mode of TTX/STX was correctly predicted in general, although
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Fig. 2. Modeling of TTX binding in the outer pore of sodium channel. A, Sequence alignment of P-loops and in-

ner helices of potassium, sodium, calcium and glutamate-gated channels. Key TTX-sensing residues estimated by

mutational studies in the Nav1.4 are bold underlined. The insertions/deletions in the sequence alignment are pro-

posed to reproduce in the model experimental data on TTX action. B and C, Extracellular (B) and side (C) views

on superimposed structures of the model and cryo-EM structure (PDB code 6A95). Side chains of TTX-sensing

residues are shown. D and E, Model (D) and cryo-EM structure (E) of TTX-bound channel. General orientation

of TTX and main TTX-channel contacts match in the model and experimental structure.
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some details of toxin-channel orientation do differ between the models and experimental

structures (Fig. 2D, E). Asymmetric binding of μCTX KIIIA against P2 helix of repeat III

was correctly predicted (Fig. 3). In should be noted however, that exact KIIIA orientation
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Fig. 3. Modeling μCTX-KIIIA binding. Extracellular (A) and side (B) views on superimposed structures of the

model and cryo-EM structure (PDB code 6J8E). Repeat III is yellow, The toxin backbone is blue in the model

and red in the cryo-EM structure. The model correctly predicts KIIIA binding to P-loops in repeats III and IV

and its significant shift from the pore axis (which allows TTX to reach the selectivity filter in KIIIA-bound chan-

nel. However, the toxin orientation in the channel is significantly different between the model and cryo-EM

structure. Probable cause of this mismatch is the toxin interaction with extracellular IIIS5-IIIP external loop (B).
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is substantially different in the model and in the experimental structure. Probable reason

for this mismatch is the interaction of the toxin with long extracellular loops of the eukary-

otic sodium channel (Fig. 3B), which were not considered in the models because the cor-

responding loops in available templates are short.

Thus, principal features of toxin binding were predicted correctly, but models and ex-

perimental structures do differ in some details. The major causes of these disagreements

are the inherent limitations of the homology modeling approach that cannot account seri-

ous differences between the structural template and the modeled channel.

Models of sodium channels with the inner pore blockers. The inner pore region of sodium

channels is targeted by important small-molecule drugs that include local anesthetics, an-

tiarrhythmics and anticonvulsants. According to mutational data, charged local anesthet-

ics, e.g. lidocaine, and electroneutral anticonvulsants, e.g. carbamazepine, share the same

binding region inside the inner pore cavity, see [2]. Given that electrostatic interactions

make significant contribution to ligand-protein energy in the low-dielectric membrane en-

vironment, such data is a challenging paradox in structure-activity relations of sodium

channel ligands. To resolve this paradox, we elaborated models in which the ammonium

group of a cationic ligand displaces a sodium ion from its binding site in the inner pore and

occupies this site, whereas an electroneutral ligand chelates the sodium ion in this site [2].

In our models even bulky cationic groups of cocaine and quinidine do fit the sodium bind-

ing site in the inner pore. In complete agreement with our concept, the crystal structure of

flecainide-bound NavAb shows the ligand’s bulky cationic group that occupies the sodium

binding site in the inner pore [22]. We are not aware of X-ray structures of ion channels

with the pore-bound ligands, which are in direct contact with permeant ions. However, the

key role of such contacts is demonstrated in a study of the hERG potassium channel with

negatively charged activators [23].

Hydrophobic access pathway for drugs in the inner pore is another problem related to

the action of LAs. This experimentally discovered pathway, which provides a slow drug ac-

cess from membrane to the inner pore of the closed channel, is an important feature of the

“modulated receptor” hypothesis that explains state-dependent action of LAs [24]. How-

ever, localization of this pathway was unknown. Our modeling study predicted that this
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pathway, which we called a “sidewalk”, is located between S6 helices in repeats III and IV

and the P-helix of repeat III [13]. Although the interface between S6 helices in potassium

channel structures is too narrow, even modest deviations of the helices in our sodium

channel model has made the sidewalk wide enough to let through some LAs [25]. This

modeling prediction was confirmed in the crystal structure of the prokaryotic sodium

channel NavAb where interfaces between S6 helices are dubbed “fenestrations” [14]. In-

deed, sodium and potassium channels have slightly different spatial arrangement of trans-

membrane helices. Due to this difference sodium channel fenestrations are wide enough to

let through molecules like LAs.

According to mutational data, LAs and related drugs strongly interact with residues in

adjacent S6 helices that line the inner pore. Accordingly, in the classical scheme the li-

gands bind almost vertically with the aminogroup approaching the selectivity filter [26].

However, our computations predicted that closed-channel models lack room to accommo-

date LAs in such orientation. In the energetically optimal binding mode the drugs adopt

horizontal orientation, the aromatic moiety extends into the repeat interface (side-

walk/fenestration), and the aminogroup at the pore axis approaches the selectivity filter to

block permeation upon the channel opening [25]. In the crystal structure of the NavMs

prokaryotic channel with a LA-like molecule PL1, only bromine atom is resolved [27], but

its position in the fenestration completely agrees with our prediction (Fig. 4). Our predic-

tion that some ligands, which block resting channels in the horizontal binding mode and

directly interact with the fenestration-facing residues, is recently confirmed in the crystal

structure of f lecainide-bound NavAb [22]. Thus, localization of the hydrophobic access

pathway between two S6 helices and P-helix, as well as binding mode of local anesthetics

and related drugs in the pore, which were initially proposed in our models, is now generally

accepted.

Ligands of the L-type calcium channel. Recently, the long-awaited cryo-EM structures

of the Cav1.1 channel with important drugs (diltiazem, verapamil, dihydropyridine antago-

nist nifedipine and dihydropyridine agonist S-Bay k 8644) have been published [28]. In

the cryo-EM structure, Cav1.1-bound diltiazem approaches the III/IV interface with the

ligand ammonium group and the fused rings located in the inner pore. The cryo-EM

structure confirms important aspects our Cav1.2 model with a diltiazem derivative in

which the ligand ammonium group and bulky fused rings do bind in the inner pore and the

methoxyphenyl ring protrudes into interface IIIP1/IIIS6/IVS6, which is proposed to con-

stitute the drug access pathway from the membrane to the inner pore [29]. Our model

was used to rationalize action of a photo-switchable derivative of diltiazem on the Cav1.2

channel [30].

In the cryo-EM structures, agonist S-Bay k 8644 and antagonist nifedipine bind in the

III/IV repeat interface of Cav1.1. The agonist exposes its nitro group, the key determinant

of the agonistic activity, to the permeation pathway, does not contact any channel residue

and is available for interactions with the second hydration shell of a calcium ion, whereas

the antagonist has a hydrophobic methoxy group in place of the agonist nitro group [28–30]. In

our Cav1.2 models, dihydropyridine agonists and antagonists do bind in interface

IIIP1/IIIS5/IIIS6/IVS6 and expose their hydrophilic or hydrophobic groups, respectively,

to the permeation pathway; agonists are proposed to stabilize a permeant calcium ion,

whereas antagonists would destabilize it [31–33]. In our models the ligands are closer to

the pore axis than in the cryo-EM structures. Future studies are necessary to confirm or

falsify the model-based proposal on the atomic mechanisms of action of dihydropyridine

agonists and antagonists.

In one of the two cryo-EM structures of verapamil-bound Cav1.1, the ligand ammoni-

um nitrogen is 5 Å from the closest to it calcium ion in the selectivity filter. A bigger dis-

tance of 6.3 Å between the same atoms is predicted in our model of devapamil-bound

Cav1.2 [34]. In our model devapamil extends one of the methoxyphenyl rings into the
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Fig. 4. Modeling of local anesthetics binding in the inner pore of sodium channels. A, Chemical structures.

Charged amino groups that displace the ion from the selectivity filter and aromatic/hydrophobic moieties that

bind in repeat interface are highlighted. B and C, Intracellular (B) and side (C) views of superimposition of tetra-

caine binding model with the crystal structure of unblocked channel (PDB code 5HVX), PL1 blocked channel

NavMs (PDB ID 4P9O) and f lecainide-blocked channel NavAb (PDB code 6MVX). In the model, carbon atoms

are cyan. The sodium ion in the ligand-free channel is shown as yellow sphere. The bromine atom of PL1 is ma-

genta. Ligand binding mode is the same in all the structures.
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III/IV repeat interface, an analogy with the LAs horizontal binding mode in sodium chan-

nels. In one of the cryo-EM structures a dimethoxyphenyl ring of verapamil also closely

approaches the III/IV interface.. Most importantly, in our model, but not in the cryo-EM

structure, the nitrile group, a fingerprint of verapamil and other phenylalkylamines, inter-

acts with the calcium ion in the selectivity filter to partially compensate repulsion between

the ion and the charged ligand. The likely cause of the disagreement is detergent, which

was used to extract the Cav1.1 channel from the membrane. In the cryo-EM structure one

of the detergent molecules interacts with verapamil, approaches the calcium ion in the se-

lectivity filter and prevents its contact with the nitrile group.

Altogether, in the cryo-EM structures of ligand-bound channel Cav1.1, less than half of

ligand-sensing residues, which were previously identified in mutational studies, form spe-

cific contacts with the ligands [28]. Some of the earlier mutational studies may have re-

vealed allosteric rather than direct ligand-channel interactions. However, the fact that no

contacts with polar diltiazem- and verapamil-sensing residues are seen in the cryo-EM

structures does not make sense in view of rich data on structure-activity relations of such

ligands.

The disagreement between the mutational data, which reflect the channel block in

physiological conditions, and cryo-EM structures that show deeply frozen ligand-channel

complexes may be due to several factors. Firstly, each cryo-EM structure shows a single

binding mode (two binding modes of verapamil), whereas dispersed ensembles of low-en-
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ergy binding modes have been predicted with Monte Carlo energy minimizations [2] and

molecular dynamics simulations [3, 35]. Secondly, physiological factors, such as mem-

brane voltage, temperature, pH, and concentration of cations and anions are known to af-

fect ligand action. These factors are lacking or may be misrepresented in the deeply frozen

ligand-channel complexes. Binding modes of small Cav1.2 ligands, which act in micromo-

lar concentrations, should be sensitive to these factors. Thirdly, the Cav1.1 channel is cap-

tured in a state with the activated voltage sensors, but closed activation gate. This structure

is proposed to represent an inactivated state [28], but whether or not it corresponds to a

physiological inactivated state is unknown.

Thus, the models and cryo-EM structures of ligand-bound calcium channels have both

common and different features. The models are better consistent with indirect experimen-

tal data simply because these data were taken into consideration to select “physiological”

binding modes among ensembles of predicted low-energy ligand-channel complexes. On

the other hand, the cryo-EM structures represent long-awaited starting approximations for

docking ligands in various Cav1.x channels and their disease-associated mutants. Such

modeling studies are important for rationalizing available data on structure-activity rela-

tionships and design of new drugs.

Models of glutamate-gated channels with pore blockers. Another example of successful

modeling predictions is the pore structure and binding of pore blockers in the glutamate-

gated channels. The sequences of the pore-lining segments of glutamate receptor channels

are close to those in potassium channels [36, 37]. This justified use of homology modeling

with potassium channel crystal structures as templates. Molecular models provided differ-

ent predictions about drug binding modes in the pore [38–41] and, in particular, proposed

specific organization of the selectivity filter [38, 42]. In glutamate-gated channels, ion

conductance, calcium permeability and binding of pore blockers are mainly controlled by

so-called N/Q/R site, which is located at the P-loop turns [43]. The NMDA-type chan-

nels, which demonstrate large conductance, calcium permeability and are sensitive to vari-

ous organic blockers, have asparagine in the N/Q/R site. In the AMPA-type subunits, this

position can by occupied by glutamine or arginine. Presence of arginine in this site abol-

ishes the calcium permeability and binding of cationic pore blockers. When the site con-

tains glutamine, the channel properties are intermediate. In particular, NMDA-type chan-

nels are blocked by mono-cationic MK-801, ketamine and memantine. These mono-cat-

ionic blockers do not affect glutamine-containing AMPAR channels. However,

polyamines, polyamine-containing toxins and long dicationic analogs of memantine and

ketamine do block both NMDA and glutamine-containing AMPA receptor channels [43].

We proposed that the N/Q/R site residues are involved in intersubunit H-bonds that re-

strict conformational f lexibility or the side chains. As a result, the carbonyl groups of as-

paragines face the pore, whereas the carbonyl groups of glutamine are directed away from

the pore lumen and thus do not participate in coordination of permeant ions and binding

of the channel blockers [38, 42]. Therefore, only long molecules, whose terminal groups

can penetrate deeply into the selectivity filter region, can effectively block the pore. These

models provided structural rationale for several structure-activity studies [44–46]. Com-

parison of the model with the recent structure [47] is given in Fig. 5A. It shows that the

binding mode prediction was largely correct. Moreover, the cyclic organization of the se-

lectivity filter also agrees with the predictions (Fig. 5, and C). The difference in the binding

mode of argiotoxin is stronger. In the models the toxin adopts a semifolded conformation

due to intramolecular H-bonding. In the cryo-EM structure the toxin is almost extended.

As a result the toxin penetrates completely the selectivity filter with its polyamine tail.

Perspectives of modeling approach. The above examples show that the homology model-

ing approach, which takes into account various experimental data, can predict important

features of the channel structures and principal binding modes of ligands. The precision of

predictions is mainly limited by the structural templates and used experimental datasets.
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Fig. 5. Modeling binding of IEM-1460 in the AMPA receptor channel. A, Superimposition of the model and

cryo-EM structure (PDB code 6DMO). Backbones in the model and experimental structure are red and violet,

respectively. Carbons of IEM-1460 in the model are cyan. In both structures the adamantane group is located in

the cavity, whereas terminal ammonium group penetrates into the selectivity filter. The only difference is some

vertical shift of the ligand, which is caused by corresponding difference in the conformation at the P-loop turn.

B and C, Intracellular views on rings formed by residues Gln586 (B) and Gln587 (C) in the selectivity filter.
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This conclusion, which is based on comparison of our models with later published experi-

mental structures, validates employments of the modeling approach for further studies.

Certainly, impressive progress in experimental structural studies of ion channels provides

unambiguous solutions for many important problems, which previously were addressed by

indirect studies interpreted with homology modeling. More experimental structures are

expected in future. This should shift the focus of modeling studies towards more specific
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questions. Indeed, it is unlikely that structures of many ion channels in different organ-

isms, their multiple mutants, and complexes with various ligands will be resolved experi-

mentally in the foreseen future. Below are some problems that can be addressed with mo-

lecular modeling.

Drug design. At first sight, the number of approved drugs seems larger than that of target

channels. However, if we consider all channel isoforms in different organisms and different

states and their naturally occurring mutations, for example, decease-associated mutations

and mutations in insects that adapted to tolerate insecticides, the number of channels is

much larger than that of practically used ligands. For example, some mutations cause drug

insensitivity, a well-known phenomenon of largely unknown mechanisms. This creates a

large room for further applications of molecular modeling, which is now based on much

more adequate structural templates.

Before crystal and cryo-EM structures of eukaryotic P-loop channels became available,

homology modeling helped to address general location of the ligand binding site, rational-

ize experimental data, explain effects of mutations on ligand action, generate testable hy-

pothesis on residues contributing to ligand receptors, and guide further experimental stud-

ies. However, precision of homology models was too low to predict quantitatively potency

of different drugs. Cryo-EM and crystal structures present reliable starting approximations

to dock various ligands with the aims to quantitatively analyze structure-activity relation-

ships and assist medicinal chemists in development of new more selective drugs. There is

no shortage of paradoxes in structure-activity relations, which call for explanations in

structural terms. For example, the above mentioned cryo-EM structures of the Cav1.1

channel with different ligands [28] do not show ligand contacts with many ligand-sensing

residues that have been determined in previous mutational studies and do not completely

explain important peculiarities of structure-activity relations of ligands.

Channelopathies. Public databases describe thousands of genetic mutations in human

ion channels, which are associated with inherited diseases called channelopathies. For ex-

ample, ClinVar database lists over 1,500 variants of gene SCN5A, which encodes the α1

subunit of cardiac sodium channel Nav1.5 [48]. Many of these variants are associated with

arrhythmias, including long-QT syndrome type 3 (LQT3), Brugada syndrome, cardiac

conduction disease, sick sinus syndrome and atrial standstill [49–51]. Loss-of-function

Nav1.5 mutations may enhance the channel inactivation, impair steady-state activation,

decelerate recovery from inactivation or decrease current density. In contract, gain-of-

function mutations of Nav1.5, which underlie LQT3, often cause opposite biophysical

changes. Mutations in other sodium channels are also associated with severe deceases.

Thus, many mutations in gene SCN1A, which encodes neuronal sodium channel Nav1.1,

are associated with genetic epilepsy syndromes [52]. Genetic mutations of the skeletal

muscle sodium channel Nav1.4 are associated with such diseases as potassium-aggravated

myotonia, paramyotonia congenita, hyperkalemic periodic paralysis, hypokalemic period-

ic paralysis, and a form of congenital myasthenic syndrome [53]. Loss-of function muta-

tions in Nav1.7, which is expressed in sensory and autonomic neurons, result in congenital

insensitivity to pain, whereas gain-of-function mutations cause such pain syndromes as in-

herited erythromelalgia, paroxysmal extreme pain disorder, and small-fibre neuropathy

[54]. Mutations in the Nav1.8 and Nav1.9 channels are associated, respectively, with

small-fibre neuropathy and congenital insensitivity to pain.

According to a unified loss-of-function hypothesis for epilepsy syndromes caused by ge-

netic changes in the Nav1.1 channels, mild impairment predisposes to febrile seizures, in-

termediate impairment leads to generalized epilepsy with febrile seizures plus, and severe

loss of function causes severe myoclonic epilepsy of infancy [55]. Many Nav1.1 mutations,

which are described in the ClinVar database, are mapped in the 3D structure of Cav1.1

channel [56], but understanding mechanistic effects of specific mutations on the channel



1344 TIKHONOV, ZHOROV
gating awaits molecular modeling focused on state-dependent contacts of wild-type and

mutated residues.

Attempts to explain in structural terms how channelopathy-associated mutations affect

functional properties of P-loop channels are rare. One example concerns data that lysine

substitution of asparagine in the middle of helix IS6 in Nav1.5 and glutamate substitution of

asparagine at the C-end of helix IVS6 are associated with LQTS syndrome [57]. Inde-

pendently of this publication, we predicted that these asparagine residues, which are excep-

tionally conserved in S6 helices of sodium and calcium channels, form H-bonds with polar

residues at the C-ends of neighboring S6 helices in the open, but not closed structures [58].

Our prediction of the state-dependent H-bonds is consistent with recent structures of sodi-

um and calcium channels. It explains why substitutions of the asparagines with longer and

more flexible residues, which would fortify the intersegment open-state H-bonds, cause

gain-of-function of the Nav1.5 channel manifested as the LQT syndrome [57].

Another example is structural interpretation of a channelopathy mutation R518C in the

VSD-II cytoplasmic N-end of the Cav1.2 channel [59]. The mutation, which is re-discov-

ered in the Almazov National Medical Research Centre (St Petersburg), is associated with

Timothy syndrome (TS), a very rare multisystem disorder. Previously, TS-associated

Cav1.2 mutations R518C/H, as well as mutations G402S and G406R in helix IS6 of the

pore domain were demonstrated to decelerate voltage-dependent inactivation [60–62].

However, structural mechanisms of these effects were unknown. To understand the mech-

anisms, the three Cav1.2 variants have been modeled using cryo-EM structures of presum-

ably inactivated channel Cav1.1 [63] and crystal structures of the open and closed channel

NavAb [64]. Steered Monte Carlo energy minimizations were used to transfer the Cav1.2

pore domain from the presumably inactivated state, which is inherited from the Cav1.1

template, to the open and closed states, which are seen in the NavAb crystal structures.

Computations predicted that conformational changes in VSD-II upon its deactivation

would propagate through the cytoplasmic linker I/II to the C-end of helix IS6 and initiate

its transition to the closed-gate conformation. Helix IS6 would bend at f lexible glycines

G402 and G406, facilitating the activation gate closure. Mutations R518C/H would retard

the I/II linker shift and thus transition of IS6 to the closed-gate conformation. Mutations

G406R and G402S would stabilize the open state and thus also resist the pore closure. This

study provided a mechanistic rationale for deceleration of the voltage-dependent inactiva-

tion caused by three TS-associated mutations and suggests targets for further studies of cal-

cium channelopathies.

Towards personalized chemotherapy of channelopathies. A recent study describes a group

of 15 patients with the same clinical phenotype (LQT3), which was associated with differ-

ent mutations in the Nav1.5 channel [65]. The patients demonstrated different response to

mexiletine, which is used to treat this type of arrhythmia. Biophysical studies of the mutat-

ed channels revealed different effects of mexiletine on conformation of VSD-III and elec-

trophysiological characteristics of the channel. These data were used to build a statistical

model that successfully predicted response to mexiletine for seven of eight other LQT3 pa-

tients whose Nav1.5 variants were electrophysiologically studied. However, structural

mechanisms of different effects of mexiletine on the channel variants are unknown. This

and many other intriguing experimental data on channelopathies, as well as large sets of

data on ligand action on wildtype channels and their variants, call for interpretation in

structural terms. Molecular modeling will contribute to such interpretations.
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МЕТОДЫ МОЛЕКУЛЯРНОГО МОДЕЛИРОВАНИЯ В ИЗУЧЕНИИ
СТРОЕНИЯ ИОННЫХ КАНАЛОВ И ИХ МОДУЛЯЦИИ ЛИГАНДАМИ

Д. Б. Тихоновa, *, Б. С. Жоровa

aИнститут эволюционной физиологии и биохимии им. И.М. Сеченова РАН,
Санкт-Петербург, Россия

*E-mail: denistikhonov2002@yahoo.com

Ионные каналы представляют собой разнообразное семейство трансмембран-

ных белков, которые регулируют поток ионов через клеточные мембраны. Они

вовлечены в многочисленные физиологические процессы и являются мишенями

для разнообразных природных токсинов и фармакологических препаратов. Од-

нако молекулярные детали структур каналов, механизмы их работы и взаимодей-

ствия с лигандами все еще обсуждаются. Одной из причин этого является не-

хватка трехмерных структур атомарного разрешения. В течение последних двух

десятилетий значительный вклад в эту область внесли косвенные эксперимен-

тальные подходы, включая мутагенез, электрофизиологию и анализ структурно-

функциональных связей в рядах лигандов. Молекулярное моделирование широ-

ко применялось для структурной интерпретации этих экспериментальных дан-

ных. Последние достижения рентгеновской кристаллографии и криоэлектрон-
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ной микроскопии дают однозначные решения многих структурных проблем, ко-

торые ранее решались только косвенными и модельными исследованиями.

В этом обзоре описывается несколько примеров структурных предсказаний, ко-

торые были сделаны с помощью молекулярного моделирования с целью объяс-

нения косвенных экспериментальных данных. Мы сравниваем модели с недавно

опубликованными экспериментальными структурами. Хорошее согласие многих

предсказаний с более поздними опубликованными экспериментальными струк-

турами подтверждает перспективы дальнейшего использования молекулярных

модельных исследований. Имеющиеся в настоящее время и ожидаемые структу-

ры основных ионных каналов и их комплексов с лигандами обеспечивают реали-

стичные шаблоны для моделирования каналов, их множественных вариантов, в

том числе связанных с каналопатиями, и для предсказания связывания фарма-

кологических препаратов и токсинов. Эти исследования, как ожидается, обеспе-

чат высококачественные прогнозы, которые необходимы для разработки новых

специфичных для канала лигандов и рекомендаций по персонализированной те-

рапии.

Ключевые слова: натриевые каналы, кальциевые каналы, глутамат-активируемые

каналы, молекулярное моделирование, механизмы блокады, каналопатии
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