РОССИЙСКИЙ ФИЗИОЛОГИЧЕСКИЙ ЖУРНАЛ им. И.М. СЕЧЕНОВА 2023, том 109, № 5, с. 588-599

= ЭКСПЕРИМЕНТАЛЬНЫЕ СТАТЬИ —

ВЛИЯНИЕ ТРАВМЫ СПИННОГО МОЗГА НА Р2-СИГНАЛИЗАЦИЮ В ХОЛИНЕРГИЧЕСКОМ СИНАПСЕ

© 2023 г. А. Е. Хайруллин^{1, 2,} *, Д. В. Ефимова¹, А. А. Еремеев², Д. Э. Сабирова², С. Н. Гришин¹, А. У. Зиганшин¹

¹Казанский государственный медицинский университет, Казань, Россия ²Казанский федеральный университет, Казань, Россия *E-mail: khajrulli@yandex.ru

> Поступила в редакцию 06.03.2023 г. После доработки 21.03.2023 г. Принята к публикации 22.03.2023 г.

Известно, что в спинальных мотонейронах после поражения верхнего уровня спинного мозга происходит деградация нейронов, сопровождающаяся дегенерацией аксонов. В настоящем исследовании функциональная целостность нервномышечной передачи оценивалась методом стимуляционной механомиографии. Мы продемонстрировали снижение модулирующей активности $AT\Phi$ в холинергическом синапсе вследствие травмы спинного мозга (модель контузионной травмы спинного мозга) в сравнении с гиподинамией (модель антиортостатического вывешивания задних конечностей). Продемонстрированная аномальная модуляция пуринами нервно-мышечного перехода предоставляет доказательства дегенерации аксонов и предполагает, что транссинаптическая дегенерация двигательных нейронов может происходить ниже уровня поражения спинного мозга у пациентов с подобными травмами.

Ключевые слова: денервация, АТФ, Р2-рецепторы, скелетные мышцы, гипогравитационный двигательный синдром, травматический двигательный синдром, синапс, сурамин

DOI: 10.31857/S0869813923050059, EDN: XQROOK

введение

Обзор исследований, рассматривающих изменения в двигательных единицах вследствие действия различных повреждающих факторов, позволяет утверждать, что преобразования в количестве и балансе возбуждающих и тормозных сигналов после травмы спинного мозга реорганизуют управление мотонейронами. Похоже, что изменения в ретроградной сигнализации наряду с событиями в проксимальном участке аксона информируют тело мотонейрона о дистально расположенном повреждении, чтобы активировать сложный клеточный ответ, который в конечном итоге направлен либо на регенерацию, либо, в некоторых случаях, на гибель клеток [1, 2].

Повреждения спинного мозга человека, происходящие обычно на шейном и грудном уровнях, приводят к прерыванию нисходящих путей к нижним двигательным нейронам [3] и к значительным функциональным и морфологическим нарушениям двигательных единиц, расположенных каудальнее места повреждения [4, 5]. В ряде исследований была показана посттравматическая выживаемость мотонейронов [6, 7], но структурные изменения их синаптических контактов с мышцами,

вызванные глубокой потерей активности, до сих пор остаются малоизученными. Восстановление после травм спинного мозга требует не только восстановления связи между головным и спинным мозгом, но и стабилизации связей между двигательными нейронами и мышцами [4].

В ряде исследований было показано, что периферическая нервная система не остается интактной после травматического повреждения спинного мозга. С 60-х гг. прошлого столетия методом клинической электромиографии зарегистрировано наличие спонтанных потенциалов (фибрилляции и положительные острые волны) после травмы спинного мозга у человека [8], что в дальнейшем более подробно было описано на животных моделях [9].

При моделировании экспериментальной травмы спинного мозга также наблюдались изменения морфофункционального состояния скелетных мышц, подобные постденервационным [10], к примеру, снижение мембранных потенциалов в покое, снижение мембранной резистентности, распространение ацетилхолиновых рецепторов (AChR) от области концевой пластинки, холинергическая гиперчувствительность и гиперкалиемия при введении сукцинилхолина [5].

Существует несколько гипотез о том, чем можно объяснить такие результаты, одной из возможных причин может быть нарушение функции нервно-мышечного синапса. Существуют данные об изменении аксонального транспорта нескольких видов веществ, участвующих в синаптической передаче у крыс с травмой спинного мозга на грудном уровне [11], снижение транспорта ацетилхолина и холин-ацетилтрансферазы, при увеличении переноса ацетилхолинэстеразы. Дальнейшие дополнительные исследования позволили утверждать, что существует прямая связь между ожидаемым снижением синаптической передачи при травме спинного мозга и уменьшением плотности AChR за счет уменьшения их рециркуляции и синтеза [12, 13].

К тому же, зарегистрированное уменьшение амплитуды сокращений мышц указывает на потерю аксонов, которая может происходить из-за гибели тел нервных клеток в спинном мозге и в ганглиях задних корешков или из-за того, что эти нейроны, лишенные синаптических входов и импульсной активности после травмы спинного мозга, не могут поддерживать жизнеспособный аксон [14].

В дополнение к опосредованию (модуляторному действию) нейротрансмиссии, АТФ была идентифицирована как мощный передатчик астроцитарной кальциевой сигнализации [15, 16]. Астроциты высвобождают АТФ регулируемым путем, что приводит к распространению межклеточных волн проникновения кальция в цитозоль [17]. Астроцитарная кальциевая сигнализация, по-видимому, является общим механизмом, с помощью которого астроциты реагируют на различные стимулы, включая синаптическую активность, воздействие медиатора и травматическое повреждение [18]. В свою очередь, сигналы астроцитарного кальция передаются соседним нейронам, тем самым модулируя их синаптическую силу [19]. Этот АТФ-зависимый процесс распространения кальциевых волн происходит не только в головном мозге, где он лучше всего изучен *in situ*, но также и в паренхиме спинного мозга [20, 21], где он может играть роль в распространении местного повреждения.

Известно, что вследствие повреждения тканей высвобождается большое количество молекул АТФ, непосредственно участвующих в механизмах развития острого и хронического болевого синдрома, а также местного и генерализованного воспалительного процесса [22, 23]. При повреждении спинного мозга выброс АТФ увеличивается в перитравматических областях в течение более чем 6 ч [24].

Среди АТФ-чувствительных пуринергических рецепторов рецептор P2X7 (P2X7R) необычен тем, что может образовывать большие макромолекулярные поры при повторяющемся или длительном воздействии высоких концентраций АТФ [25]. Роль этого рецептора особенно важна при спинальной травме, поскольку он обильно экспрессируется нейронами спинного мозга [24], которые, в свою очередь, реагируют на AT Φ чрезмерным возбуждением, за которым следует необратимое увеличение Ca²⁺ и, в конечном счете, гибель клеток.

Также известны провоспалительные эффекты активации P2X7R: высвобождение интерлейкинов (включая IL-113) [26], супероксида и активация каспазы [27], циклооксигеназы-2 и ФНО-а [28, 29].

На основании вышеизложенного, целью настоящего исследования было выбрано определение вовлеченности Р2-сигнализации в нервно-мышечном синапсе на модели травмы спинного мозга и гиподинамии.

МЕТОДЫ ИССЛЕДОВАНИЯ

В качестве объекта исследования использовали структуры опорно-двигательного аппарата тазовых конечностей, имеющие принципиальное значение в организации двигательной активности (морфофункционально различные: камбаловидная мышца, длинный разгибатель большого пальца ноги и диафрагма—соответствующие нервно-мышечные синапсы—соответствующие спинальные двигательные центры).

Не менее чем за неделю до начала и во время экспериментов каждую крысу размещали в отдельной специализированной клетке при комнатной температуре 23°C, с циклом свет/темнота: 12 ч/12 ч, с доступом к воде и пище *ad libitum*. Все экспериментальные воздействия осуществляли в одинаковое время суток.

В зависимости от решаемых исследовательских задач животные были разделены на следующие экспериментальные группы: группу с контузионной травмой спинного мозга (как модель ограничения центростремительной и центробежной сигнализации, сопровождающаяся ограничением функционального использования двигательного аппарата); группу с воздействием моделируемой гипогравитации (как модель ограничения действия осевой нагрузки и силы реакции опоры при сохранении нервных влияний и возможности сократительной активности мышцы). Идентичность каждой крысы в каждой экспериментальной группе оставалась закодированной до конца эксперимента и анализа данных.

Контузионную травму спинного мозга осуществляли по модифицированной методике Allen [30]. Под комбинированной внутримышечной анальгезией с использованием золетила (Zoletil 50, "Virbac", Франция), 0.5 мг/кг и ксилавета инъекционного (XylaVET, "Pharmamagist Ltd", Венгрия) 0.5 мл/кг в асептических условиях осуществляли препарирование 7–8 грудных позвонков. Проводили ламинэктомию, после чего позвоночный канал оголялся, становился доступным для осмотра и манипуляций в нем, а твердая оболочка спинного мозга оставалась интактной. Затем устанавливали трубку высотой 20 см на корни дужек ламинэктомированного позвонка и опускали внутри нее груз массой 2.5 г с высоты 5 см. Падающий груз и трубку после нанесения удара сразу же удаляли. После операции всем животным вводили антибактериальный препарат энрофлон (0.1 мл, п/к), животных помещали в индивидуальные клетки, однократно подкожно вводили 5 мл 0.9%-ного раствора хлорида натрия. В течение первых суток осуществляли дополнительный обогрев. В послеоперационном периоде у животных с нарушением мочеиспускания механически опорожняли мочевой пузырь дважды в день до восстановления его функции.

Для дополнительного контроля экспериментов на модели контузионной травмы спинного мозга и исключения данных, которые могут быть получены при ограничении движений нижних конечностей, было принято решение провести дополнительные исследования в условиях моделируемой гипогравитации.

Для имитации гипогравитации была использована модель антиортостатического вывешивания задних конечностей крыс [31—33]. В такой экспериментальной модели сведены к минимуму влияния таких нежелательных побочных факторов, как фиксация и ограничение возможности перемещения в пространстве. Сохране-

Рис. 1. Схема нанесения контузионной травмы.

ние подвижности благоприятно сказывается на общем состоянии животного, снимает беспокойство и агрессивность.

После проведения операции животных содержали в течение семи суток в одиночных клетках с водой и кормом *ad libitum*. После семисуточного восстановления животных предварительно наркотизировали, вводя внутрибрюшинно раствор этаминала натрия в дозе 40 мг/кг, обескровливали и выделяли *m. soleus*, *m. extensor digitorium longus*, *m. diaphragma* с культями нервов.

Выделенные мышцы, зафиксированные за оба сухожильных конца, погружали в небольшие резервуары объемом 10 мл, наполненные раствором Кребса (состав в мМ): NaCl – 118.0, KCl – 4.75, CaCl₂ – 2.5, NaHCO₃ – 24.8, KH₂PO₄ – 1.18, MgSO₄·7H₂O – 1.18, глюкоза – 11, pH 7.4. Заданное значение температуры ($20 \pm 0.5^{\circ}$ C) поддерживали с помощью термостата. На мышцы изначально подавали нагрузку в 1 г, затем оставляли в покое на полчаса для адаптации к среде.

Электростимуляцию проводили с помощью "всасывающего" электрода (suction electrode). Культю нерва выделенной мышцы помещали в "всасывающий" электрод оригинальной конструкции. Для раздражения использовали электростимулятор Digitimer MultiStimul D330 (Великобритания). Мышцы стимулировали в течение 2 мин прямоугольными импульсами амплитудой 3 В и продолжительностью 0.5 мс при частоте 0.1 Гц. Силу сокращений мышц регистрировали с помощью датчика двигательной активности Linton FCG-01 (Великобритания), аналоговый сигнал преобразовывали системой сбора данных Віораск МР100MSW (США). Все полученные в течение двух минут ответы (12 сократительных ответов) усредняли и обрабатывали как один результат. Рассчитывали их в процентах относительно исходных результатов, полученных в начале эксперимента. Через полчаса после фиксирования нервно-мышечной ткани проводили контрольную стимуляцию мышц дважды с интервалом в пять минут, удостоверившись в стабильности сократительных ответов, начинали экспериментальные процедуры.

Рис. 2. Зависимость силы сокращений *m. soleus* крыс, вызванных электрической стимуляцией, от экспериментальных условий в контроле и добавлении в среду АТФ (100 мкМ), сурамина (100 мкМ) или их сочетания. n = 8-10. * p < 0.05 от контрольных значений.

Для оценки эффектов пуринергических агонистов и антагонистов в ванночку добавляли 100 мкМ АТФ и через 10 мин оценивали механические ответы мышцы. Затем мышцу промывали раствором Кребса и инкубировали с раствором сурамина в концентрации 100 мкМ в течение 20 мин с последующим добавлением 100 мкМ АТФ и вновь регистрировали механические ответы мышц. Для подтверждения синаптической природы эффектов АТФ в экспериментах нервно-мышечную ткань инкубировали с сурамином в концентрации 100 мкМ, через 20 мин регистрировали сократительные ответы мышц, возникающие в ответ на непрямую стимуляцию электрическим током.

Статистическую обработку данных проводили с помощью программы SPSS Statistics. Проверку соответствия полученных данных нормальному распределению проводили с помощью критерия Колмогорова. Рассчитывали средние арифметические анализируемых параметров и стандартную ошибку. Статистическую значимость наблюдаемых изменений оценивали с помощью критерия Стьюдента для независимых и попарно сопряженных выборок. Различия рассматривали как значимые при p < 0.05.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ

При условиях, соответствующих нативным, усредненная по 10 экспериментам сила сокращения камбаловидной мышцы крысы составила 2.48 ± 0.31 г, 7-дневная ортостатическая разгрузка и контузионная травма спинного мозга оказывали облегчающее влияние на сократимость исследуемой мышцы, так, сила сокращения составила $118.3 \pm 5.0\%$ (n = 8, p < 0.05) и $121.7 \pm 3.9\%$ (n = 10, p < 0.05) соответственно от исходных значений интактной мышцы (рис. 2).

АТФ в концентрации 100 мкМ обратимо потенцировала амплитуду вызванных стимуляцией электрическим полем сокращений интактной камбаловидной мышцы – до 117.6 \pm 5.2% (n = 10, p < 0.05, рис. 2). Ее эффект сохранялся и на объектах, подвергшихся ортостатической разгрузке. Однако мы не получили достоверных данных на контуженных животных, такое снижение модулирующей способности АТФ согласуется с данными, полученными нами ранее на модели денервации [34].

Рис. 3. Зависимость силы сокращений *m. diaphragma* крыс, вызванных электрической стимуляцией, от экспериментальных условий в контроле и добавлении в среду АТФ (100 мкМ), сурамина (100 мкМ) или их сочетания. n = 7-12. * p < 0.05 по сравнению с контролем.

Неселективный антагонист Р2-рецепторов сурамин в концентрации 100 мкМ никаких достоверных эффектов не проявил. При этом на его фоне почти полностью угнеталось действие экзогенной АТФ (100 мкМ).

Усредненная по 12 экспериментам сила сокращения *m. diaphragma* интактных крыс составила 1.51 ± 0.075 г (n = 12), что было принято за 100%. Ортостатическая разгрузка и контузионная травма спинного мозга существенно не влияли на сократимость дыхательной мышцы.

Аппликация 100 мкМ АТФ на *m. diaphragma* обратимо усиливала контрактильную способность интактной мышцы до 114.6 ± 5.2% (n = 12, p < 0.05, рис. 3) и до 116.2 ± 6.1% (n = 7, p < 0.05, рис. 3) на диафрагме крыс, подвергшихся антиортостатическому вывешиванию. На фоне контузии наблюдалось стойкое снижение модулирующей способности АТФ до статистически незначимых 106.9 ± 7.3% (n = 8, p > 0.05, рис. 3).

Сурамин в концентрации 100 мкМ никаких достоверных эффектов не проявил. При этом на его фоне почти полностью угнеталось действие экзогенной АТФ (100 мкМ).

Сила сокращения *m. EDL* интактных крыс составила 0.75 \pm 0.039 г (n = 10), что было принято за 100%. Гипогравитационная разгрузка усиливала сократимость исследуемой мышцы, так, сила сокращения составила 121.1 \pm 7.1% (n = 9, p < 0.05) от исходных значений на интактной мышце (рис. 4). В противоположность этому контузионная травма спинного мозга вызывала снижение силы сокращения до 86.6 \pm 7.2% (n = 10, p < 0.05, рис. 4) от контроля на интактной мышце.

Аппликация 100 мкМ АТФ на *m. EDL* обратимо угнетала контрактильную способность интактной мышцы до $86.2 \pm 3.9\%$ (n = 10, p < 0.05, рис. 4) и до $108.6 \pm 2.9\%$ (n = 9, p < 0.05, рис. 4) на *m. EDL* крыс, подвергшихся антиортостатическому вывешиванию. На фоне контузии не наблюдалось значимой АТФ-индуцированной модуляции.

Сурамин в концентрации 100 мкМ никаких достоверных эффектов не проявил. При этом на его фоне почти полностью угнеталось действие экзогенной АТФ (100 мкМ).

Рис. 4. Зависимость силы сокращений *m. EDL* крыс, вызванных электрической стимуляцией, от экспериментальных условий в контроле и добавлении в среду $AT\Phi$ (100 мкМ), сурамина (100 мкМ) или их сочетания. n = 9-10. * p < 0.05 по сравнению с контролем.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Травма спинного мозга является основной причиной инвалидности, и в настоящее время общепринятого лечения данного патологического состояния не существует [1, 2, 4]. Снижение функциональной активности мышечной системы после травм спинного мозга связано как с прямым механическим повреждением, так и со вторичными патофизиологическими механизмами, вызванными первоначальной травмой. Эти механизмы изначально включают обширное кровоизлияние в месте повреждения и некроз клеточных компонентов центральной нервной системы. На более поздних стадиях повреждения в спинном мозге наблюдается реактивный глиоз [35]. Действия астроцитов, а также многих других клеток в этом ответе создают среду, которая крайне неблагоприятна для повторного роста аксонов, к тому же происходит активация иммунной системы. Например, раннее привлечение нейтрофилов, а на более поздних стадиях макрофагов, к месту повреждения вызывает обострение травмы. Однако на хронических стадиях макрофаги и рекрутированные Т-хелперы потенциально могут обеспечивать трофическую поддержку нейронных и ненейрональных компонентов поврежденной центральной нервной системы. В условиях активации такого количества повреждающих механизмов олигодендроциты оказываются очень уязвимыми. На хронических стадиях травмы спинного мозга большое количество олигодендроцитов подвергается апоптозу в местах, удаленных от места первичного повреждения [36]. Это приводит к оголению аксонов и ухудшению их проводящих способностей, что значительно усугубляет функциональные нарушения. За счет изучения молекулярных механизмов, вызывающих апоптоз олигодендроцитов, и выявления потенциальных мишеней для терапевтического вмешательства предотвращение этой волны апоптоза будет иметь огромное значение для людей, живущих с травмой спинного мозга [35].

Травма спинного мозга связана с многократным увеличением высвобождения АТФ, которое может продолжаться в течение 6 ч и более, с чем связано вторичное повреждение и гибель мотонейронов вследствие увеличения концентрации цитозольного Ca^{2+} [37]. Р2Х-рецепторы — это АТФ-зависимые катионные каналы, которые опосредуют быструю передачу возбуждения в различных областях головного и спинного мозга. При этом некоторые подтипы рецепторов Р2Х обладают необычным свойством изменять свою ионную селективность при длительном воздействии АТФ. Кратковременное воздействие АТФ индуцирует открытие каналов, проницаемых как для одно-, так и для двухвалентных катионов, тогда как более продолжительное воздействие приводит к прогрессирующему расширению пор канала с развитием проницаемости для молекул размером до 700 Да [24].

Grafe и соавт. исследовали кинетику выхода АТФ и изменения амплитуды ПД при механическом воздействии (сдавливании) А-волокон нерва. Это приводило к увеличению экстраклеточного АТФ и одновременно к уменьшению амплитуды ПД [38] и, по мнению авторов, АТФ активирует аксональные P2X рецепторы.

Поскольку распространение кальциевых волн опосредовано высвобождением AT Φ , возникает вопрос, может ли, в частности, травма спинного мозга быть связана с чрезмерным высвобождением AT Φ , и является ли AT Φ вредным для нейронов спинного мозга. Вероятнее всего, чрезмерное высвобождение AT Φ может привести к гибели спинальных нейронов за счет активации нейрональных P2XR. Эта идея основана на наблюдениях, что высвобождение AT Φ и передача сигналов Ca²⁺ астроцитами запускаются травматическим повреждением [39–41]; травматическое повреждение связано со снижением внеклеточного Ca²⁺, что усиливает как высвобождение астроцитарного AT Φ , так и передачу сигналов Ca²⁺ [42–44] и увеличивает сродство P2X7R [45], активация P2X7R напрямую опосредует гибель клеток [46], и нейроны спинного мозга, включая двигательные нейроны, экспрессируют P2X7R [47].

Биолюминесцентная визуализация высвобождения АТФ у крыс, подвергшихся экспериментальному ушибу спинного мозга, показала, что области, окружающие травматическое повреждение, имеют аномально высокий и устойчивый характер высвобождения АТФ, это указывает на то, что Р2Х7-опосредованная нейродегенерация способствует вторичному повреждению после травмы спинного мозга [24].

Даже при полной травме спинного мозга на уровне грудных сегментов (Th7– Th9) электростимуляция ниже уровня травмы активирует двустороннюю ритмическую двигательную активность задних конечностей у животных [48, 49].

Как известно, P1- и P2-рецепторы присутствуют и в глиальных клетках: швановская клетка, олигодендроцит, астроцит и микроглия. Тип рецепторов зависит не только от клетки, но и от ее физиологического состояния и клеточного цикла. В астроцитах мозга обнаружено, что помимо P2Y1- и P2X7-рецепторов, активация P2X2, P2X4, P2X5, P2Y2, P2Y4 и P2Y14 приводит к повышению концентрации внутриклеточного кальция. У швановских клеток выявлена активация кальциевых токов при стимуляции P2Y-рецепторов, а для активации P2X-рецепторов используемая концентрация АТФ должна быть на три порядка выше [50]. Наши результаты показывают, что после травмы спинного мозга происходит значительное ухудшение функции периферической нервной системы. Такое избыточное увеличение внутриклеточных ионов кальция может вызывать эксайтотоксичность, когда поступление ионов кальция в клетку активирует ряд ферментов (фосфолипаз, эндонуклеаз, протеаз (кальпаины)), разрушающих цитозольные структуры и приводит к запуску апоптоза клетки [51].

Механизмы, лежащие в основе угнетения функции периферической нервной системы, важны для предотвращения ухудшения состояния и поддержания высокого потенциала восстановления движений, особенно с помощью клеточной терапии, направленной на восстановление поврежденного спинного мозга.

ЗАКЛЮЧЕНИЕ

Полученные результаты демонстрируют, что нервно-мышечная передача и функциональные свойства двигательных единиц могут быть сохранены после травмы спинного мозга, это создает основу для функционального восстановления или специальных фармакотерапевтических подходов.

СОБЛЮДЕНИЕ ЭТИЧЕСКИХ СТАНДАРТОВ

Проведенные эксперименты полностью соответствуют действующим национальным и международным нормам в области этики. Все применимые международные, национальные и/или институциональные принципы ухода и использования животных были соблюдены.

Все процедуры, выполненные в исследованиях с участием животных, соответствовали этическим стандартам, утвержденным правовыми актами РФ, принципам Базельской декларации и рекомендациям.

ИСТОЧНИК ФИНАНСИРОВАНИЯ

Работа выполнена при финансовой поддержке гранта 2/22-5, ФГБОУ ВО Казанский ГМУ Минздрава России на проведение научных исследований в рамках Программы развития Университета, а также в рамках программы "Стратегическое академическое лидерство Казанского федерального университета" (ПРИОРИТЕТ-2030).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

ВКЛАД АВТОРОВ

Все авторы внесли равный вклад в разработку идеи работы и планирование эксперимента, сбор и обработку данных, написание и редактирование манускрипта.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Pollin MM, McHanwell S, Slater CR* (1991) The effect of age on motor neurone death following axotomy in the mouse. Development 112(1): 83–89. https://doi.org/10.1242/dev.112.1.83
- 2. *Rishal I, Fainzilber M* (2014) Axon-soma communication in neuronal injury. Nat Rev Neurosci 15(1): 32–42.
 - https://doi.org/10.1038/nrn3609
- 3. Jackson AB, Dijkers M, Devivo MJ, Poczatek RB (2004) A demographic profile of new traumatic spinal cord injuries: change and stability over 30 years. Arch Phys Med Rehabil 85(11): 1740–1748. https://doi.org/10.1016/j.apmr.2004.04.035
- 4. Burns AS, Jawaid S, Zhong H, Yoshihara H, Bhagat S, Murray M, Roy RR, Tessler A, Son YJ (2007) Paralysis elicited by spinal cord injury evokes selective disassembly of neuromuscular synapses with and without terminal sprouting in ankle flexors of the adult rat. J Comp Neurol 500(1): 116–133. https://doi.org/10.1002/cne.21143
- Burns AS, Lemay MA, Tessler A (2005) Abnormal spontaneous potentials in distal muscles in animal models of spinal cord injury. Muscle Nerve 31(1): 46 –51.
- https://doi.org/10.1002/mus.20229 *Kaelan C, Jacobsen PF, Kakulas BA* (1988) An investigation of possible transynaptic neuronal degeneration in human spinal cord injury. J Neurol Sci 86(2–3): 231–237.
- https://doi.org/10.1016/0022-510x(88)90101-3
 7. Bjugn R, Nyengaard JR, Rosland JH (1997) Spinal cord transection no loss of distal ventral horn neurons. Modern stereological techniques reveal no transneuronal changes in the ventral horns of the mouse lumbar spinal cord after thoracic cord transection. Exp Neurol 148(1): 179 186.
- Kirshblum S, Lim S, Garstang S, Millis S (2001) Electrodiagnostic changes of the lower limbs in subjects with chronic complete cervical spinal cord injury. Arch Phys Med Rehabil 82(5): 604–607. https://doi.org/10.1053/apmr.2001.22348

- Burns AS, Boyce VS, Tessler A, Lemay MA (2007) Fibrillation potentials following spinal cord injury: Improvement with neurotrophins and exercise. Muscle Nerve 35(5): 607–613. https://doi.org/10.1002/mus.20738
- 10. *Carter JG, Sokoll MD, Gergis SD* (1981) Effect of spinal cord transection on neuromuscular function in the rat. Anesthesiology 55(5): 542–546. https://doi.org/10.1097/00000542-198111000-00011
- Dahlstrom A, Heiwall PO, Booj S, Dahllof AG (1978) The influence of supraspinal impulse activity on the intra-axonal transport of acetylcholine, choline acetyltransferase and acetylcholinesterase in rat motor neurons. Acta Physiol Scand 103(3): 308–319. https://doi.org/10.1111/j.1748-1716.1978.tb06218.x
- Akaaboune M, Culican SM, Turney SG, Lichtman JW (1999) Rapid and reversible effects of activity on acetylcholine receptor density at the neuromuscular junction *in vivo*. Science 286(5439): 503–507. https://doi.org/10.1126/science.286.5439.503
- Bruneau E, Sutter D, Hume RI, Akaaboune M (2005) Identification of nicotinic acetylcholine receptor recycling and its role in maintaining receptor density at the neuromuscular junction in vivo. J Neurosci 25(43): 9949–9959. https://doi.org/10.1523/JNEUROSCI.3169-05.2005
- 14. Xiong GX, Zhang JW, Hong Y, Guan Y, Guan H (2008) Motor unit number estimation of the tibialis anterior muscle in spinal cord injury. Spinal Cord 46(10): 696–702. https://doi.org/10.1038/sc.2008.7
- Cotrina, ML, Lin JH, Alves-Rodrigues A, Liu S, Li J, Azmi-Ghadimi H, Kang J, Naus CC, Nedergaard M (1988) Connexins regulate calcium signaling by controlling ATP release. Proc Natl Acad Sci U S A 95(26): 15735–15740. https://doi.org/10.1073/pnas.95.26.15735
- Guthrie PB, Knappenberger J, Segal M, Bennett MV, Charles AC, Kater SB (1999) ATP released from astrocytes mediates glial calcium waves. J Neurosci 19(2): 520–528. https://doi.org/10.1523/JNEUROSCI.19-02-00520.1999
- 17. Arcuino G, Lin JHC, Takano T, Liu C, Jiang L, Gao Q, Kang J, Nedergaard M (2002) Intercellular calcium signaling mediated by point-source burst release of ATP. Proc Natl Acad Sci U S A 99(15): 9840–9845.

https://doi.org/10.1073/pnas.152588599

18. Fields RD, Stevens-Graham B (2002) New insights into neuron-glia communication. Science 298(5593): 556–562.

https://doi.org/10.1126/science.298.5593.556

- 19. *Haydon PG* (2001) Glia: listening and talking to the synapse. Nat Rev Neurosci 2(3): 185–193. https://doi.org/10.1038/35058528
- 20. *Nedergaard M, Ransom B, Goldman S* (2003) New roles for astrocytes: Redefining the functional architecture of the brain. Trends Neurosci 26(10): 523–530. https://doi.org/10.1016/j.tins.2003.08.008
- 21. *Fam SR, Gallagher CJ, Salter MW* (2000) P2Y(1) purinoceptor-mediated Ca²⁺ signaling and Ca²⁺ wave propagation in dorsal spinal cord astrocytes. J Neurosci 20(8): 2800–2808. https://doi.org/10.1523/JNEUROSCI.20-08-02800.2000
- 22. *Khakh BS, North RA* (2006) P2X receptors as cell-surface ATP sensors in health and disease. Nature 442(7102): 527–532. https://doi.org/10.1038/nature04886
- 23. Gourine AV, Dale N, Llaudet E, Poputnikov DM, Spyer KM, Gourine VN (2007) Release of ATP in the central nervous system during systemic inflammation: Real-time measurement in the hypothalamus of conscious rabbits. J Physiol 585(Pt 1): 305–316. https://doi.org/10.1113/jphysiol.2007.143933
- 24. Wang X, Arcuino G, Takano T, Lin J, Peng WG, Wan P, Li P, Xu Q, Liu QS, Goldman SA, Nedergaard M (2004) P2X7 receptor inhibition improves recovery after spinal cord injury. Nature Med 10(8): 821–827. https://doi.org/10.1038/nm1082
- North A (2002) Molecular physiology of P2X receptors. Physiol Rev 82(4): 1013–1067. https://doi.org/10.1152/physrev.00015.2002
- 26. Solle M, Labasi J, Perregaux DG, Stam E, Petrushova N, Koller BH, Griffiths RJ, Gabel CA (2001) Altered cytokine production in mice lacking P2X7 receptors. J Biol Chem 276(1): 125–132. https://doi.org/10.1074/jbc.M006781200
- Kahlenberg J, Dubyak GW (2004) Mechanisms of caspase-1 activation by P2X7 receptor-mediated K⁺ release. Am J Physiol 286(5): 1100–1108. https://doi.org/10.1152/ajpcell.00494.2003
- 28. Samad TA, Moore KA, Sapirstein A, Billet S, Allchorne A, Poole S, Bonventre JV, Woolf CJ (2001) Interleukin-1beta-mediated induction of Cox-2 in the CNS contributes to inflammatory pain

hypersensitivity. Nature 410(6827): 471–475. https://doi.org/10.1038/35068566

- Suzuki T, Hide I, Ido K, Kohsaka S, Inoue K, Nakata Y (2004) Production and release of neuroprotective tumor necrosis factor by P2X7 receptor-activated microglia. J Neurosci 24(1): 1–7. https://doi.org/10.1523/JNEUROSCI.13-12-05153.1993
- 30. *Allen AR* (1911) Surgery of experimental lesion of spinal cord equivalent to crush injury of fracture dislocation of spinal column: a preliminary report. JAMA 57: 878–880.
- 31. Ильин ЕА, Новиков ВЕ (1980) Стенд для моделирования физиологических эффектов невесомости в лабораторных экспериментах с крысами. Косм биол авиакосм мед 14(3): 79–80. [Ilyin EA, Novikov VE (1980) Stand for modeling the physiological effects of weightlessness in laboratory experiments with rats. Cosm biol aerocosm med 14(3): 79–80. (In Russ)].
- 32. *Morey-Holton ER, Globus RK* (2002) Hindlimb unloading rodent model: technical aspects. J Appl Physiol 92(4): 1367–1377. https://doi.org/10.1152/japplphysiol.00969.2001
- Morey-Holton ER, Globus RK (1988) Hindlimb unloading of growing rats: a model for predicting skeletal changes during space flight. Bone 22(5 Suppl): 83–88. https://doi.org/10.1016/s8756-3282(98)00019-2
- 34. Khairullin AE, Efimova DV, Markosyan VA, Grishin SN, Teplov AY, Ziganshin AU (2021) The effect of acute unilateral denervation injury on purinergic signaling in the cholinergic synapse. Biophysics 66(3): 483–486. https://doi.org/10.1134/S0006350921030064
- 35. Profyris C, Cheema SS, Zang DW, Azari MF, Boyle K, Petratos S (2004) Degenerative and regenerative mechanisms governing spinal cord injury. Neurobiol Disease 15(3): 415–436. https://doi.org/10.1016/j.nbd.2003.11.015
- 36. Beattie MS, Farooqui AA, Bresnahan JC (2000) Review of current evidence for apoptosis after spinal cord injury. J Neurotrauma 17(10): 915 – 925. https://doi.org/10.1089/neu.2000.17.915
- 37. Peng W, Cotrina ML, Han X, Yu H, Bekar L, Blum L, Takano T, Tian GF, Goldman SA, Nedergaard M (2009) Systemic administration of an antagonist of the ATP-sensitive receptor P2X7 improves recovery after spinal cord injury. Proc Natl Acad Sci U S A 106(30): 12489–12493. https://doi.org/10.1073/pnas.0902531106
- Grafe P, Schaffer V, Rucker F (2006) Kinetics of ATP release following compression injury of a peripheral nerve trunk. Purinerg Signal 2: 527–536.
- 39. *Cook SP, McCleskey EW* (2002) Cell damage excites nociceptors through release of cytosolic ATP. Pain 95(1–2): 41–47.
- Neary JT, Kang Y, Willoughby KA, Ellis EF (2003) Activation of extracellular signal-regulated kinase by stretch-induced injury in astrocytes involves extracellular ATP and P2 purinergic receptors. J Neurosci 23(6): 2348–2356. https://doi.org/10.1523/JNEUROSCI.23-06-02348.2003
- 41. Du S, Rubin A, Klepper S, Barrett C, Kim YC, Rhim HW, Lee EB, Park CW, Markelonis GJ, Oh TH (1999) Calcium influx and activation of calpain I mediate acute reactive gliosis in injured spinal cord. Exp Neurol 157(1): 96–105. https://doi.org/10.1006/exnr.1999.7041
- 42. *Stokes BT, Fox P, Hollinden G* (1983) Extracellular calcium activity in the injured spinal cord. Exp Neurol 80(3): 561–572.
- 43. Nilsson P, Hillered L, Olsson Y, Sheardown MJ, Hansen AJ (1993) Regional changes in interstitial K⁺ and Ca²⁺ levels following cortical compression contusion trauma in rats. J Cereb Blood Flow Metab 13(2): 183–192. https://doi.org/10.1038/jcbfm.1993.22
- 44. Stout C, Charles A (2003) Modulation of intercellular calcium signaling in astrocytes by extracellular calcium and magnesium. Glia 43(3): 265–273. https://doi.org/10.1002/glia.10257
- 45. Bianchi BR, Lynch KJ, Touma E, Niforatos W, Burgard EC, Alexander KM, Park HS, Yu H, Metzger R, Kowaluk E, Jarvis MF, Biesen T (1999) Pharmacological characterization of recombinant human and rat P2X receptor subtypes. Eur J Pharmacol 376(1-2): 127-138. https://doi.org/10.1002/glia.10257
- 46. Di Virgilio, Chiozzi FP, Falzoni S, Ferrari D, Sanz JM, Venketaraman V, Baricordi OR (1998) Cytolytic P2X purinoceptors. Cell Death Differ 5(3): 191–199.
- 47. Deuchars SA, Atkinson L, Brooke RE, Musa H, Milligan CJ, Batten TF, Buckley NJ, Parson SH, Deuchars J (2001) Neuronal P2X7 receptors are targeted to presynaptic terminals in the central and peripheral nervous systems. J Neurosci 21(18): 7143–7152. https://doi.org/10.1523/JNEUROSCI.21-18-07143.2001
- Gerasimenko YP, Avelev VD, Nikitin OA, Lavrov IA (2003) Initiation of locomotor activity in spinal cats by epidural stimulation of the spinal cord. Neurosci Behav Physiol 33(3): 247–254. https://doi.org/10.1023/a:1022199214515

- 49. Lavrov I, Dy CJ, Fong AJ, Gerasimenko Y, Courtine G, Zhong H, Roy RR, Edgerton VR (2008) Epidural stimulation induced modulation of spinal locomotor networks in adult spinal rats. J Neurosci 28(23): 6022–6029. https://doi.org/10.1523/JNEUROSCI.0080-08.2008
- Irnich D, Burgstahler R, Bostock H, Grafe P (2001) ATP affects both axons and Schwann cells of unmyelinated C fibers. Pain 92: 343–350. https://doi.org/10.1016/S0304-3959(01)00277-9
- Lucas DR, Newhouse JP (1957) The Toxic Effect of Sodium L-Glutamate on the Inner Layers of the Retina. AMA Archiv Ophthalmol 58(2): 193–201. https://doi.org/10.1001/archopht.1957.00940010205006

The Effect of Spinal Cord Injury on P2 Signaling in the Cholinergic Synapse

A. E. Khairullin^{*a*, *b*, *, D. V. Efimova^{*a*}, A. A. Eremeev^{*b*}, D. E. Sabirova^{*b*}, S. N. Grishin^{*a*}, and A. U. Ziganshin^{*a*}}

^aKazan State Medical University, Kazan, Russia ^bKazan Federal University, 420008, Kazan, Russia *e-mail: khajrulli@yandex.ru

It is known that in spinal motor neurons, after damage to the upper level of the spinal cord, neuronal degradation occurs, accompanied by axon degeneration. In the present study, the functional integrity of neuromuscular transmission was assessed by the method of stimulation mechanomiography. We demonstrated a decrease in the modulating activity of ATP in the cholinergic synapse due to spinal cord injury (a model of spinal cord contusion injury) in comparison with hypodynamia (a model of anti-orthostatic hanging of the hind limbs). The demonstrated abnormal modulation of the neuromuscular junction by purines provides evidence of axon degeneration and suggests that transsynaptic degeneration of motor neurons may occur below the level of spinal cord injury in patients with similar injuries.

Keywords: denervation, ATP, P2 receptors, skeletal muscles, hypogravity motor syndrome, traumatic motor syndrome, synapse, suramin