_____ ОПТИМАЛЬНОЕ ___ УПРАВЛЕНИЕ ___

УДК 629.78

АНАЛИТИЧЕСКОЕ КВАЗИОПТИМАЛЬНОЕ РЕШЕНИЕ ЗАДАЧИ ПОВОРОТА ОСЕСИММЕТРИЧНОГО ТВЕРДОГО ТЕЛА С КОМБИНИРОВАННЫМ ФУНКЦИОНАЛОМ¹

© 2020 г. А. В. Молоденков^{*a*,*}, Я. Г. Сапунков^{*a*}

^{*а*}Институт проблем точной механики и управления РАН, Саратов, Россия **e-mail: molalexei@yandex.ru* Поступила в редакцию 04.06.2019 г. После доработки 10.01.2020 г. Принята к публикации 27.01.2020 г.

Представлены результаты аналитического и численного решения задачи управления вращательным движением осесимметричного твердого тела с комбинированным критерием качества процесса управления и использованием кватернионов. Критерий оптимизации учитывает продолжительность процесса управления, суммарные импульсы квадрата кинетического момента твердого тела и модуля управляющего момента, приложенного к телу. Управляемое движение осесимметричного твердого тела совершается из состояния покоя в состояние покоя.

DOI: 10.31857/S0002338820030105

Введение. С помощью замены переменных задача об оптимальном повороте осесимметричного тверлого тела из состояния покоя в заданное состояние покоя сведена к решению аналогичной задачи со сферической симметрией тела, для которой построено квазиоптимальное аналитическое решение, близкое к оптимальному. В разд. 1 в кватернионных переменных ставится задача об оптимальном развороте тела с осевой симметрией. Функционал, определяющий качество процесса управления, представляет собой линейную комбинацию с весовыми множителями трех критериев: времени процесса управления, импульса квадрата кинетического момента тела и импульса модуля управляющего момента. В разд. 2 производится переход к безразмерным переменным. В разд. 3 с помощью замены переменных делается переход к задаче об оптимальном развороте тела со сферической симметрией. При этом возникает дополнительная фазовая переменная. В результате задача становится задачей оптимального управления с подвижным правым концом траектории. В разд. 4 с помощью принципа максимума Понтрягина решение задачи сводится к решению краевой задачи для системы дифференциальных уравнений по определению фазовых и сопряженных переменных. В разд. 5 для этой задачи строится аналитическое квазиоптимальное решение, так как при этом делается одно предположение о значении сопряженной переменной дополнительной фазовой координаты, которое позволяет упростить решение задачи. В разд. 6 приводятся примеры аналитического квазиоптимального решения задачи и проводится сравнение этого решения с численным решением задачи об оптимальном развороте тела с осевой симметрией. Сравнение показывает, что построенное аналитическое квазиоптимальное решение задачи с большой точностью аппроксимирует численное решение, построенное без каких-либо предположений. Отметим, что среди численных примеров приводятся развороты космического аппарата (КА) "Спейс Шаттл", рассматриваемого как твердое тело [1]. Следует отметить, что ранее в динамической постановке были исследованы задачи оптимальных разворотов твердого тела (КА) различных динамических конфигураций с классическими критериями качества переходных процессов (быстродействие, минимум энергетических затрат и их свертка, суммарный импульс и т.д.) [1–9], не включающими в виде линейной комбинации квадрат модуля кинетического момента твердого тела. В [10] рассматривалась задача оптимального управления пространственной переориентацией КА из произвольного начального в заданное конечное угловое положение. Исследовался случай, когда минимизируе-

¹ Работа выполнена при финансовой поддержке РФФИ (проект № 19-01-00205).

МОЛОДЕНКОВ, САПУНКОВ

мый функционал объединяет в заданной пропорции расход времени и интеграл от квадрата модуля кинетического момента на переориентацию КА. Задача решалась в кинематической постановке.

1. Постановка задачи. Движение твердого тела с одной осью симметрии вокруг неподвижной точки под действием управляющего момента **М** описывается системой уравнений [2]:

$$\frac{d\mathbf{L}}{dt} = \frac{1}{2}\mathbf{L} \circ \mathbf{w}, \quad \frac{d\mathbf{w}}{dt} = R^{-1}\mathbf{M} - R^{-1}[\mathbf{w}, R\mathbf{w}], \tag{1.1}$$

где $\mathbf{L} = L_0 + \mathbf{i}_1 L_1 + \mathbf{i}_2 L_2 + \mathbf{i}_3 L_3$ – нормированный кватернион, определяющий положение твердого тела, $\mathbf{w} = \mathbf{i}_1 w_1 + \mathbf{i}_2 w_2 + \mathbf{i}_3 w_3$ – вектор угловой скорости тела, "°" – знак кватернионного умножения, *t* – время, *R* – тензор инерции, $I_1, I_2 = I_3$ – главные моменты инерции тела для неподвижной точки тела,

$$R = \begin{vmatrix} I_1 & 0 & 0 \\ 0 & I_2 & 0 \\ 0 & 0 & I_2 \end{vmatrix}.$$
 (1.2)

На управляющий момент наложено ограничение

$$|\mathbf{M}| \le M_*. \tag{1.3}$$

Начальное состояние тела при t = 0 определяется соотношениями

$$\mathbf{L}(0) = \mathbf{L}_{n}, \quad \mathbf{w}(0) = 0. \tag{1.4}$$

Конечное состояние тела при t_k , которое не фиксировано, задается соотношениями

$$\mathbf{L}(t_k) = \mathbf{L}_k, \quad \mathbf{w}(t_k) = 0. \tag{1.5}$$

Комбинированный функционал, определяющий качество процесса управления, включает в себя с весовыми множителями $\alpha_i \ge 0$, i = 1, 2, 3, время процесса, импульс квадрата величины кинетического момента и импульс модуля управляющего момента:

$$J = \int_{0}^{t_{k}} (\alpha_{1} + \alpha_{2}(I_{1}^{2}w_{1}^{2} + I_{2}^{2}(w_{2}^{2} + w_{3}^{2})) + \alpha_{3} |\mathbf{M}|) dt = \int_{0}^{t_{k}} (\alpha_{1} + \alpha_{2}(R\mathbf{w})^{2} + \alpha_{3} |\mathbf{M}|) dt.$$
(1.6)

Требуется найти оптимальное управление, удовлетворяющее ограничению (1.3), которое переводит управляемую систему (1.1) из начального состояния (1.4) в конечное (1.5) и сообщает минимальное значение функционалу (1.6).

Решение задачи оптимального управления зависит не от каждого весового множителя, а от отношения двух весовых множителей к третьему ненулевому, который может быть приравнен 1. В поставленной задаче безразмерный весовой множитель α₁ будем полагать равным 1.

2. Переход к безразмерным переменным. Для перехода к безразмерным переменным вводится масштаб управляющего момента M_* , масштаб момента инерции I_1 и масштаб времени $T = (I_1/M_*)^{1/2}$. Безразмерные переменные t^* , \mathbf{w}^* , \mathbf{M}^* , I_2^* , J^* , α_2^* , α_3^* связаны с размерными переменными переменными по формулам

$$t^* = t/T, \quad \mathbf{w}^* = \mathbf{w}T, \quad \mathbf{M}^* = \mathbf{M}/M_*, \quad I_2^* = I_2/I_1 = b_1,$$

$$J^* = J/T, \quad \alpha_2^* = \alpha_2 I_1^2 T^{-2}, \quad \alpha_3^* = \alpha_3 M_*.$$
 (2.1)

Далее будут использоваться только безразмерные переменные, верхний индекс "*" у безразмерных величин будет опущен. Уравнения движения (1.1), граничные условия (1.4), (1.5) сохраняют свою форму в безразмерных переменных, а тензор инерции и ограничение на управляющий момент в безразмерных переменных принимают следующий вид:

...

$$R = \begin{vmatrix} 1 & 0 & 0 \\ 0 & b_1 & 0 \\ 0 & 0 & b_1 \end{vmatrix}, \quad |\mathbf{M}| \le 1.$$
(2.2)

Функционал (1.6) в безразмерных переменных запишется как

$$J = \int_{0}^{t_{k}} (1 + \alpha_{2}(w_{1}^{2} + b_{1}^{2}(w_{2}^{2} + w_{3}^{2})) + \alpha_{3} |\mathbf{M}|) dt.$$
(2.3)

Второе уравнение системы (1.1) в безразмерных переменных в проекциях на оси подвижной системы координат представим так:

$$\frac{dw_1}{dt} = M_1, \quad \frac{dw_2}{dt} = b_2 M_2 - (b_2 - 1)w_1 w_3, \quad \frac{dw_3}{dt} = b_2 M_3 + (b_2 - 1)w_1 w_2, \quad b_2 = b_1^{-1}.$$
(2.4)

3. Замены переменных. Следуя подходу [3, 4] вводится вспомогательный кватернион $\mathbf{B}(\theta(t))$ по формуле

$$\mathbf{B} = \mathbf{B}(\theta(t)) = \exp\left(\frac{\mathbf{i}_1}{2}\theta(t)\right), \quad \theta(t) = b_3 \int_0^t \omega_1(\tau) d\tau, \quad (3.1)$$

где "exp(.)" — кватернионная экспонента, $\omega_1(t)$ — первая компонента вспомогательной угловой скорости ω , подлежащей определению, $b_3 = 1 - b_1$. Угловая скорость тела **w** выражается через угловую скорость ω :

$$\mathbf{w} = \mathbf{B} \circ \boldsymbol{\omega} \circ \tilde{\mathbf{B}} - \mathbf{i}_1 b_3 \boldsymbol{\omega}_1, \tag{3.2}$$

где $\tilde{\mathbf{B}}$ – сопряженный к **B** кватернион. Если (3.2) подставить в (2.4), то в векторной (кватернионной) форме оно запишется как

$$\frac{d\mathbf{\omega}}{dt} = \tilde{\mathbf{B}} \circ b_2 \mathbf{M} \circ \mathbf{B}. \tag{3.3}$$

Кватернион L выражается через другой вспомогательный кватернион Л:

$$\mathbf{L} = \mathbf{\Lambda} \circ \tilde{\mathbf{B}}.\tag{3.4}$$

Если (3.2) и (3.4) подставить в первое уравнение (1.1), то оно примет вид

$$\frac{d\Lambda}{dt} = \frac{1}{2}\Lambda \circ \boldsymbol{\omega}.$$
(3.5)

Согласно (3.3), вместо управляющего параметра М вводится новый управляющий параметр и:

$$\mathbf{u} = \mathbf{B} \circ b_2 \mathbf{M} \circ \mathbf{B},\tag{3.6}$$

который, согласно (2.2), должен удовлетворять ограничению

$$|\mathbf{u}| \le b_2. \tag{3.7}$$

Тогда уравнение (3.3) запишется в виде

$$\frac{d\mathbf{\omega}}{dt} = \mathbf{u}.\tag{3.8}$$

Из граничных условий (1.4), (1.5) с учетом замен (3.2), (3.4) следуют граничные условия для Λ и ω :

$$\Lambda(0) = \mathbf{L}_n = \Lambda_n, \quad \mathbf{\omega}(0) = 0, \tag{3.9}$$

$$\mathbf{\Lambda}(t_k) = \mathbf{L}_k \circ \mathbf{B}(\boldsymbol{\theta}(t_k)) = \mathbf{\Lambda}_k, \quad \boldsymbol{\omega}(t_k) = 0.$$
(3.10)

Система уравнений (3.5), (3.8) описывает вращательное движение твердого тела со сферической симметрией. Согласно (3.6), управляющий момент **М** выражается через вспомогательный управляющий момент **u** по формуле

$$\mathbf{M} = \mathbf{B} \circ b_{\mathbf{l}} \mathbf{u} \circ \tilde{\mathbf{B}}. \tag{3.11}$$

Если (3.2) и (3.11) подставить в функционал (2.3), то он примет вид

$$J = \int_{0}^{\infty} (1 + \beta_2 \omega^2 + \beta_3 |\mathbf{u}|) dt, \quad \beta_2 = \alpha_2 b_1^2, \quad \beta_3 = \alpha_3 b_1.$$
(3.12)

ИЗВЕСТИЯ РАН. ТЕОРИЯ И СИСТЕМЫ УПРАВЛЕНИЯ № 3 2020

t.

Вспомогательная переменная θ , согласно (3.1), удовлетворяет уравнению

$$\frac{d\Theta}{dt} = b_3 \omega_1 \tag{3.13}$$

с начальным условием

$$\theta(0) = 0. \tag{3.14}$$

В результате перехода к безразмерным переменным и замены переменных задача оптимального управления, поставленная в первом разделе, сводится к задаче, в которой требуется найти оптимальное управление $\mathbf{u}(t)$, удовлетворяющее ограничению (3.7), которое переводит управляемую систему (3.5), (3.8), (3.13) из начального состояния (3.9), (3.14) на многообразие (3.10) и сообщает минимальное значение функционалу (3.12).

После решения этой вспомогательной задачи оптимального управления по формулам (3.2), (3.4) и (3.11) можно записать решение для задачи, поставленной в безразмерных переменных в разд. 2.

4. Краевая задача оптимального управления. Функция Гамильтона–Понтрягина [11] для системы (3.5), (3.8), (3.13) имеет вид

$$H = -(1 + \beta_2 \omega^2 + \beta_3 |\mathbf{u}|) + \frac{1}{2} (\mathbf{\psi}, \mathbf{\Lambda} \circ \mathbf{\omega}) + (\mathbf{v}, \mathbf{u}) + \eta b_3 \omega_1,$$
(4.1)

где $\psi = \psi_0 + i_1 \psi_1 + i_2 \psi_2 + i_3 \psi_3$, $v = i_1 v_1 + i_2 v_2 + i_3 v_3$, η – кватернионная, векторная и скалярная сопряженные переменные, удовлетворяющие системе уравнений:

$$\frac{d\Psi}{dt} = \frac{1}{2}\Psi \circ \boldsymbol{\omega}, \quad \frac{d\mathbf{v}}{dt} = 2\beta_2 \boldsymbol{\omega} - \frac{1}{2}\operatorname{vect}(\tilde{\boldsymbol{\Lambda}} \circ \boldsymbol{\psi}) - \mathbf{i}_1 b_3 \eta, \quad \frac{d\eta}{dt} = 0, \quad (4.2)$$

где "vect" обозначает векторную часть кватерниона.

Если ввести новую сопряженную векторную переменную **p** по формуле **p** = vect($\tilde{\Lambda} \circ \psi$) [2], то функция *H* и система уравнений (4.2) запишутся как

$$H = -(1 + \beta_2 \omega^2 + \beta_3 |\mathbf{u}|) + \frac{1}{2}(\mathbf{p}, \boldsymbol{\omega}) + (\mathbf{v}, \mathbf{u}) + \eta b_3 \omega_1, \qquad (4.3)$$

$$\frac{d\mathbf{p}}{dt} = [\mathbf{p}, \boldsymbol{\omega}], \quad \frac{d\mathbf{v}}{dt} = 2\beta_2 \boldsymbol{\omega} - \frac{1}{2}\mathbf{p} - \mathbf{i}_1 b_3 \eta, \quad \frac{d\eta}{dt} = 0.$$
(4.4)

Так как правый конец траектории в фазовом пространстве $\Lambda \times \omega \times \theta$ находится на многообразии (3.10), т.е. является подвижным, то на правом конце траектории должно выполняться соответствующее условие трансверсальности, которое, как показано в [3, 4], можно получить методом неопределенных множителей Лагранжа. После исключения множителей Лагранжа условие трансверсальности на правом конце траектории принимает вид

$$\eta(t_k) + 0.5p_1(t_k) = 0. \tag{4.5}$$

Из условия максимума для функции *H* следует, что оптимальное управление определяется по формулам

$$\begin{aligned} \mathbf{u} &= b_2 \frac{\mathbf{v}}{|\mathbf{v}|}, \quad \text{если} \quad |\mathbf{v}| \ge \beta_3; \\ \mathbf{u} &= 0, \quad \text{если} \quad |\mathbf{v}| < \beta_3. \end{aligned}$$
(4.6)

В конце процесса должно выполняться условие

$$H(t_k) = 0.$$
 (4.7)

Таким образом, решение задачи оптимального управления сводится к решению краевой задачи для системы дифференциальных уравнений (3.5), (3.7), (3.13), (4.4) с граничными условиями (3.9), (3.14) в начальный момент времени и условиями (3.10), (4.5), (4.7) в конце процесса, при этом управление определяется, согласно (4.6).

Полученная краевая задача оптимального управления похожа на краевую задачу работы [6], в которой рассматривалась задача об оптимальном развороте тела со сферической симметрией с тем же функционалом (3.12). Отличие новой задачи состоит в том, что добавилась дополнительная фазовая координата θ , правый конец траектории стал подвижным и изменилось ограниче-

ние на управляющий параметр (3.7). В [6] тело со сферической симметрией вращалось вокруг неподвижной оси, что позволило построить аналитическое решение краевой задачи оптимального управления. Наличие во втором уравнении системы (4.4) последнего слагаемого в правой части уравнения усложняет решение задачи. Для упрощения решения вспомогательной краевой задачи для тела со сферической симметрией, поставленной в разд. 3, положим, что сопряженная переменная η (которая, согласно последнему уравнению (4.4), является константой) равняется нулю ($\eta(t) \equiv 0$). Это позволит с учетом нулевых граничных условий для угловой скорости полагать, что вспомогательное тело со сферической симметрией вращается вокруг неподвижной оси. В результате будут выполнены все уравнения и граничные условия краевой задачи оптимального управления, поставленные в разд. 4, кроме граничного условия трансверсальности (4.5) в конце движения. Можно надеяться, что решение квазиоптимальной задачи будет близко к решению задачи оптимального управления без предположения относительно η . Построенное в следующем разделе аналитическое решение для тела с осевой симметрией с учетом предположения для переменной η сравним с численным решением задачи для тела с осевой симметрией, поставленной в разд. 2, для оценки аналитического решения.

5. Приближенное решение краевой задачи оптимального управления. Как сказано выше, вспомогательное тело со сферической симметрией с учетом предположения для переменной η будет вращаться вокруг неподвижной оси, направление которой, согласно граничным условиям (3.9), (3.10), определяется единичным вектором е:

$$\mathbf{e} = \frac{\text{vect}\mathbf{N}}{|\text{vect}\mathbf{N}|}, \quad \mathbf{N} = \tilde{\boldsymbol{\Lambda}}_n \circ \boldsymbol{\Lambda}_k, \tag{5.1}$$

а угол поворота этого тела — следующим значением ϕ_k :

$$\varphi_k = 2 \arctan \left| \frac{|\text{vect } \mathbf{N}|}{|\text{scal } \mathbf{N}|}, \right|$$
(5.2)

где scal N задает скалярную часть кватерниона N.

Вектор угловой скорости $\boldsymbol{\omega}$, управляющий параметр **u**, сопряженные переменные **p**, **v** будут параллельны вектору **e**, при этом, согласно первому уравнению системы (4.4), вектор **p** во все время движения будет оставаться постоянным. Надо заметить, что вектор $\mathbf{e} = \mathbf{i}_1 e_1 + \mathbf{i}_2 e_2 + \mathbf{i}_3 e_3$ и угол поворота $\boldsymbol{\varphi}_k$ зависят, согласно (3.10), (5.1), (5.2), от $\boldsymbol{\theta}(t_k)$, которое определится при решении задачи.

Оптимальное управление состоит из трех этапов, из которых первый и третий будут активными, на которых управляющий параметр принимал максимальное значение по величине, а второй пассивный с нулевым значением параметра **u**, происходило движение по инерции.

На первом этапе ($0 \le t < t_{pl}$, где t_{pl} – неизвестный пока момент времени) фазовые и сопряженные переменные и управляющий параметр определяются по формулам

$$\Lambda = \Lambda_n \circ (\cos(0.25b_2t^2) + \mathbf{e}\sin(0.25b_2t^2)), \quad \mathbf{\omega} = \mathbf{e}b_2t, \quad \mathbf{u} = \mathbf{e}b_2,$$

$$\mathbf{p} = \mathbf{e}2c, \quad \mathbf{v} = \mathbf{e}(\beta + \beta_2b_2t^2 - ct), \quad \theta = 0.5e_1b_2b_3t^2.$$
 (5.3)

На втором этапе ($t_{p1} \le t < t_{p2}$, где t_{p2} неизвестный пока момент времени)

$$\Lambda = \Lambda_n \circ (\cos \varphi_2(t) + \mathbf{e} \sin \varphi_2(t)), \quad \varphi_2(t) = 0.5b_2(t - 0.5t_{p1})t_{p1}, \boldsymbol{\omega} = \mathbf{e}b_2 t_{p1}, \quad \mathbf{u} = 0, \quad \mathbf{p} = \mathbf{e}2c, \quad \mathbf{v} = \mathbf{e}(\beta - \beta_2 b_2 t_{p1}^2 + (2\beta_2 b_2 t_{p1} - c)t), \quad \theta = e_1 b_2 b_3 t_{p1}(t - 0.5t_{p1}).$$
(5.4)

На третьем этапе ($t_{p2} \le t \le t_k$):

$$\Lambda = \Lambda_{n} \circ (\cos \varphi_{3}(t) + \mathbf{e} \sin \varphi_{3}(t)), \quad \varphi_{3}(t) = 0.25b_{2}(2(t_{p1} + t_{p2})t - t^{2} - t_{p1}^{2} - t_{p2}^{2}),$$

$$\omega = \mathbf{e}b_{2}(t_{k} - t), \quad \mathbf{u} = -\mathbf{e}b_{2}, \quad \mathbf{p} = \mathbf{e}2c,$$

$$\mathbf{v} = -\mathbf{e}(\beta_{3} + 2\beta_{2}b_{2}(0.25(t^{2} + t_{p2}^{2}) - (t_{p1} + t_{p2})t + t_{p1}t_{p2}) - c(t - t_{p2})),$$

$$\theta = e_{1}b_{2}b_{3}(t_{k}t - 0.5t^{2} + t_{p1}(t_{p2} - 0.5t_{p1}) - t_{p2}(t_{k} - 0.5t_{p2})).$$

$$(5.5)$$

Значение $\theta(t_k)$, входящее в выражение для Λ_k , запишем по формуле

$$\Theta(t_k) = e_1 b_2 b_3 (0.5t_k^2 + t_{p1}(t_{p2} - 0.5t_{p1}) - t_{p2}(t_k - 0.5t_{p2})).$$
(5.6)

Постоянные величины β , *c*, t_{p1} , t_{p2} , t_k , которые входят в выражения (5.3)–(5.6), определяются из выполнения граничных условий краевой задачи:

$$\beta = b_1 + \beta_3, \quad c = b_1 t_{p_1}^{-1} + \beta_2 b_2 t_{p_1}, \quad t_{p_2} = \varphi_k b_1 t_{p_1}^{-1}, \quad t_k = t_{p_1} + t_{p_2}, \quad (5.7)$$

где *t*_{p1} должно удовлетворять уравнению

$$\beta_2 b_2 t_{pl}^4 - (b_1 + \beta_2 \varphi_k + 2\beta_3) t_{pl}^2 + \varphi_k b_l^2 = 0$$
(5.8)

и находится по формуле

$$t_{p1} = \sqrt{(b_1 + \beta_2 \phi_k + 2\beta_3 - \sqrt{(b_1 + \beta_2 \phi_k + 2\beta_3)^2 - 4\beta_2 b_1 \phi_k})(2\beta_2 b_2)^{-1}}.$$
(5.9)

Надо отметить, что φ_k , входящая в формулы (5.7), (5.9), согласно (5.1), зависит $\theta(t_k)$, которое вместе с другими константами определяется по следующему алгоритму. Задается $\theta(t_k)$, по формуле (3.1) находится Λ_k , из (5.1) и (5.2) вычисляется единичный вектор **e** и φ_k , из (5.9) – t_{p1} , а по формулам (5.7) рассчитываются t_{p2} и t_k . Затем по формуле (5.6) через полученные величины вычисляется $\theta(t_k)$ и сравнивается с заданным значением $\theta(t_k)$. Разность между заданным и вычисленным значением $\theta(t_k)$ определяет невязку. Методом Ньютона уточняется значение $\theta(t_k)$. В проведенных расчетах процесс сходился за три—четыре итерации.

Из последней формулы системы (5.7) следует, что длительности первого и третьего этапов совпадают.

Соотношения (5.3)–(5.5) с учетом формул преобразования переменных (3.2), (3.4), (3.11) определяют решение задачи о квазиоптимальном управлении разворота тела с осевой симметрией в безразмерных переменных из начального состояния покоя (1.4) в заданное состояние покоя (1.5). Значение функционала для оптимального процесса через вычисленные константы находится по формуле

$$J = t_k + \alpha_2 t_{pl}^2 (t_{p2} - t_{pl}/3) + 2\alpha_3 t_{pl}.$$
(5.10)

В частном случае, когда $\alpha_2 = 0$, уравнение (5.8) для определения t_{p1} упрощается, так как $\beta_2 = 0$, и принимает вид $(b_1 + 2\beta_3)t_{p1}^2 = \varphi_k b_1^2$. Тогда длительность первого этапа вычисляется по формуле

$$t_{p1} = b_1 \sqrt{\varphi_k / (b_1 + 2\beta_3)}.$$
 (5.11)

Приведенные выше формулы (5.7) сохраняют свою силу при $\alpha_2 = 0$.

Задача об оптимальном развороте тела с осевой симметрией с тем же функционалом качества (2.3) решалась и в другой постановке. Начальное состояние тела определялось соотношениями (1.4), а конечное состояние — только положением тела

$$\mathbf{L}(t_k) = \mathbf{L}_k,\tag{5.12}$$

угловая скорость в конце движения оставалась произвольной. Рассматривалась задача об оптимальном развороте тела с подвижным правым концом траектории. В этом случае управление состояло из двух этапов: активный, на котором управляющий момент принимал максимально допустимое значение по величине, и пассивный с нулевым значением момента. Решение вспомогательной задачи на первом этапе определяется соотношениями (5.3), а на втором этапе – (5.4), но в них надо заменить t_{o1} на t_{p} , а t_{o2} на t_k .

Значение $\theta(t_k)$ вычисляется по формуле

$$\Theta(t_k) = e_1 b_2 b_3 t_p (t_k - 0.5 t_p).$$
(5.13)

Константы β , *c*, *t*^{*k*} определяются по формулам

$$\beta = b_1 + \beta_3, \quad c = b_1 t_p^{-1} + \beta_3 b_2 t_p, \quad t_k = \varphi_k b_1 t_p^{-1} + 0.5 t_p, \tag{5.14}$$

а t_n должно удовлетворять уравнению

$$\beta_2 b_2 t_p^4 - (b_1 + 2\beta_2 \varphi_k + 2\beta_3) t_p^2 + 2\varphi_k = 0$$
(5.15)

и рассчитывается по формуле

$$t_p = \sqrt{(0.5b_1 + \beta_2\varphi_k + \beta_3 - \sqrt{(0.5b_1 + \beta_2\varphi_k + \beta_3)^2 - 2\beta_2b_1\varphi_k})b_1\beta_2^{-1}}.$$
(5.16)

Соотношения (5.3), (5.4) с учетом выражений преобразования переменных (3.2), (3.4), (3.11) определяют решение задачи о квазиоптимальном управлении разворота тела с осевой симметрией в безразмерных переменных с подвижным правым концом траектории из начального состояния покоя (1.4) в заданное положение (5.12). Значение функционала для оптимального процесса через вычисленные константы находится по формуле

$$J = t_k + \alpha_2 t_p^2 (t_k - 2t_p/3) + \alpha_3 t_p.$$
(5.17)

В частном случае, когда $\alpha_2 = 0$, уравнение (5.15) для определения t_p упрощается, так как $\beta_2 = 0$, и принимает вид $(b_1 + 2\beta_3)t_{p1}^2 = 2\varphi_k b_1^2$. Тогда длительность первого этапа следует из выражения

$$t_{p1} = b_1 \sqrt{2\varphi_k / (b_1 + 2\beta_3)}.$$
 (5.18)

Приведенные выше формулы (5.14) сохраняют свою силу и при $\alpha_2 = 0$.

6. Результаты расчетов. По методу построения квазиоптимального решения задачи об оптимальном развороте тела с осевой симметрией, изложенному в статье, проводились расчеты для четырех тел с осевой симметрией с различными отношениями главных моментов инерции.

Тело 1: $I_1 = 1.0$, $I_2 = I_3 = 0.5$, $b_1 = 0.5$. Тело 2: $I_1 = 1.0$, $I_2 = I_3 = 1.0$, $b_1 = 1.0$. Тело 3: $I_1 = 1.0$, $I_2 = I_3 = 1.5$, $b_1 = 1.5$. Тело 4 (КА "Спейс Шаттл") [1, 12]: $I_1 = 3400648 \text{ кг} \cdot \text{м}^2$, $I_2 = 21041672 \text{ кг} \cdot \text{м}^2$, $I_3 \approx I_2$ (размерные моменты инерции) или $b_1 = 6.18755$; динамические характеристики КА "Спейс Шаттл" такие же, как у почти осесимметричного твердого тела.

Тело 2, которое является телом со сферической симметрией, включено по той причине, что изложенный метод дает для него точное решение. Для тел 2 и 4 наряду с расчетами по приведенному методу проводились расчеты по численному решению задачи об оптимальном развороте тела, поставленной в разд. 2, без преобразований, описанных в разд. 3.

Расчеты проводились для двух наборов весовых множителей в функционале качества процесса управления (2.3):

$$\alpha_2 = 1.5, \quad \alpha_3 = 0.5,$$
 (6.1)

$$\alpha_2 = 0.0, \quad \alpha_3 = 0.5.$$
 (6.2)

Начальное состояние для всех расчетов одно и то же:

$$L_{n0} = 0.79505, \quad L_{n1} = 0.29814, \quad L_{n2} = -0.39752, \quad L_{n3} = 0.34783, \quad \mathbf{w}_n = 0.$$
 (6.3)

Для задачи с закрепленным правым концом траектории проводились расчеты для двух наборов конечных состояний тела:

$$L_{k0} = 0.69804, \quad L_{k1} = 0.28997, \quad L_{k2} = -0.20674, \quad L_{k3} = 0.62122, \quad \mathbf{w}_k = 0,$$
 (6.4)

$$L_{k0} = 0.51684, \quad L_{k1} = 0.24683, \quad L_{k2} = 0.00898, \quad L_{k3} = 0.81968, \quad \mathbf{w}_{k} = 0.$$
 (6.5)

В случае конечного условия (6.4) тело совершает поворот на угол 40.0°, а в случае условия (6.5) – на угол 80.0°.

В табл. 1 (первые четыре строки) приводятся результаты расчетов (моменты окончания трех этапов и значение функционала) для четырех перечисленных тел по изложенному в статье методу, т.е. по формулам (5.3)–(5.5), (3.2), (3.4), (3.11), для набора весовых множителей (6.1) для перевода тела из начального состояния (6.3) в конечное состояние (6.4). Оптимальное управление состоит из трех этапов: первый и третий активные, тело разворачивается под действием управляющего момента; второй этап пассивный, тело продолжает движение по инерции.

В табл. 1, как и в остальных таблицах, для оценки точности квазиоптимального решения задачи о развороте тела 4 в нижней строке приведены результаты численного решения задачи оптимального разворота КА "Спейс Шаттл", построенного на основе принципа максимума с помощью универсальной программы [7]. Из сравнения результатов, представленных в четвертой и

Тело	b_1	t _{pl}	t_{p2}	t_k	J
1	0.5	0.44809	1.08931	1.53740	2.26859
2	1.0	0.51304	1.36078	1.87382	2.85659
3	1.5	0.56728	1.66390	2.23118	3.51036
4	6.18755	0.73815	4.77821	5.51668	9.95924
4	6.18755	0.73826	4.77814	5.51640	9.95909

Таблица 1

Таблица 2

Тело	b_1	t_{pl}	t_{p2}	t_k	J
1	0.5	0.56731	1.66412	2.23142	3.51082
2	1.0	0.63205	2.20911	2.84116	4.67072
3	1.5	0.67392	2.78810	3.46202	5.88227
4	6.18755	0.77644	8.88830	9.66473	18.24467
4	6.18755	0.77705	8.88582	9.66288	18.24371

пятой строках табл. 1, видно, что аналитическое решение для квазиоптимального управления (четвертая строка) с большой точностью аппроксимирует численное решение задачи оптимального управления. Погрешность по величине функционала составляет 0.003%. Сравнение аналитического решения для тела 2 (тело со сферической симметрией) с численным решением задачи оптимального управления показало их полное совпадение всех знаков, приведенных в табл. 1. Из табл. 1 видно, что с увеличением величины b_1 для тела увеличивается длительность второго этапа (движения по инерции).

На рис. 1 приводятся графики изменения во времени компонент кватерниона положения, вектора угловой скорости и управляющего момента для оптимального разворота КА "Спейс Шаттл", описанного в табл. 1. На втором (пассивном) этапе первая компонента угловой скорости w_1 , согласно первому уравнению системы (2.4), сохраняет постоянное значение, две другие компоненты остаются переменными и на пассивном этапе.

В табл. 2 приводятся результаты расчетов для четырех тел для набора весовых множителей (6.1) и для перевода тела из начального состояния (6.3) в конечное состояние (6.5). Из сравнения данных табл. 1 и 2 видно, что с увеличением угла поворота между начальным и конечным положением тела незначительно увеличиваются длительности активных этапов (первого и третьего), но существенно увеличивается длительность пассивного (второго) этапа.

В табл. 3, 4 приводятся результаты расчетов для тех же тел для набора весовых множителей (6.2) при их переводе из начального состояния (6.3) в конечные состояния (6.4) или (6.5) соответственно. Второй набор весовых множителей характерен отсутствием квадрата величины кинетического момента в подынтегральной функции в функционале (2.3). Из сравнения данных табл. 1 и 3 и 2 и 4 между собой видно, отсутствие кинетического момента в (2.3) привело к увеличению длительности активных этапов и уменьшению длительности пассивного этапа, а также к уменьшению длительности всего процесса. При этом указанный эффект усиливается с увеличением отношения моментов инерции b_i .

Для задачи с подвижным правым концом траектории, в которой оптимальное управление состоит из двух этапов (первый этап активный, второй пассивный), проводились расчеты для двух конечных положений тела:

$$L_{k0} = 0.69804, \quad L_{k1} = 0.28997, \quad L_{k2} = -0.20674, \quad L_{k3} = 0.62122,$$
 (6.6)

 $L_{k0} = 0.51684, \quad L_{k1} = 0.24683, \quad L_{k2} = 0.00898, \quad L_{k3} = 0.81968.$ (6.7)

Соотношение (6.6) указывает, что тело из состояния (6.3) разворачивается на угол 40° , а соотношение (6.7) — на 80° .

Рис. 1. Пример решения задачи оптимального разворота

Тело	b_1	t _{pl}	t_{p2}	t_k	J
1	0.5	0.49402	0.98804	1.48206	1.97608
2	1.0	0.59082	1.18164	1.77245	2.36327
3	1.5	0.68698	1.37397	2.06095	2.74794
4	6.18755	1.32802	2.65604	3.98406	5.31208
4	6.18755	1.32806	2.65589	3.98396	5.31202

Таблица 3

Таблица 4

Тело	b_1	t_{pl}	t_{p2}	t_k	J
1	0.5	0.68705	1.37410	2.06115	2.74819
2	1.0	0.83554	1.67109	2.50663	3.34217
3	1.5	0.96926	1.93853	2.90779	3.87705
4	6.18755	1.85758	3.71516	5.51668	7.43032
4	6.18755	1.85788	3.71405	5.51640	7.42981

Таблица 5

Тело	b_1	t_p	t_k	J
1	0.5	0.57317	1.13819	1.79735
2	1.0	0.63205	1.42058	2.33536
3	1.5	0.67452	1.73662	2.95217
4	6.18755	0.77732	4.92643	9.31038
4	6.18755	0.77743	4.92627	9.31031

Таблица 6

Тело	<i>b</i> ₁	t _p	t_k	J
1	0.5	0.67454	1.73684	2.95261
2	1.0	0.71811	2.30342	4.07390
3	1.5	0.74290	2.90065	5.26340
4	6.18755	0.79658	9.06183	17.57981
4	6.18755	0.79720	9.06080	17.57939

В табл. 5, 6 приводятся результаты расчетов (моменты окончания двух этапов и значение функционала) для четырех перечисленных выше тел по изложенному в статье методу для набора весовых множителей (6.1) для перевода тела из начального состояния (6.3) в конечное положение (6.6) и (6.7) соответственно. Из сравнения данных табл. 5 и 6 видно, что с увеличением угла поворота между начальным и конечным положениями тел незначительно увеличивается длительность активного (первого) этапа. Увеличение длительности активного этапа ослабляется по между начальным и конечным положениями тел значительно увеличением угла поворота между начальным положениями тел значительности активного этапа ослабляется по мере увеличения отношения моментов инерции b_1 . В то же время с увеличением угла поворота между начальным и конечным положениями тел значительно увеличивается длительность пассивного (второго) этапа. При этом длительность пассивного этапа усиливается с увеличением b_1 .

В табл. 7, 8 приводятся результаты расчетов для четырех тел по изложенному в статье методу для набора весовых множителей (6.2) для перевода тела из начального состояния (6.3) в конечное положение (6.6) и (6.7) соответственно. Из сравнения данных табл. 5, 7 и 6, 8 между собой видно, отсутствие кинетического момента в функционале (2.3), так как весовой множитель $\alpha_2 = 0$ для данных табл. 7, 8, привело к увеличению длительности активного этапа и уменьшению

АНАЛИТИЧЕСКОЕ КВАЗИОПТИМАЛЬНОЕ РЕШЕНИЕ

Тело	b_1	t _p	t_k	J
1	0.5	0.69865	1.04798	1.39730
2	1.0	0.83554	1.25331	1.67108
3	1.5	0.97154	1.45731	1.94308
4	6.18755	1.87811	2.81716	3.75621
4	6.18755	1.87814	2.81711	3.75618

Таблица 7

Таблица 8

Тело	b_1	t_p	t_k	J
1	0.5	0.97163	1.45745	1.94327
2	1.0	1.18164	1.77245	2.36327
3	1.5	1.37074	2.05612	2.74149
4	6.18755	2.62701	3.94052	5.25403
4	6.18755	2.62723	3.94016	5.25377

длительности пассивного этапа, а также к уменьшению длительности всего процесса. При этом указанный эффект усиливается с увеличением отношения моментов инерции b_1 . Из сравнения данных в четвертых и пятых строках всех таблиц, в которых приводятся результаты расчетов по аналитическому решению (четвертая строка) и численному решению (пятая строка), видно квазиоптимальное решение близко численному оптимальному решению задачи. Погрешность по величине функционала не превышает 0.01%.

Заключение. Представленное в статье аналитическое квазиоптимальное решение задачи управления вращательным движением осесимметричного твердого тела с комбинированным критерием качества процесса управления может найти свое применение при построении систем управления КА, как и известные аналитические решения задачи оптимального разворота сферически-симметричного и осесимметричного твердого тела, полученные для классических функционалов оптимизации [2, 8].

СПИСОК ЛИТЕРАТУРЫ

- 1. *Li F., Bainum P.M.* Numerical Approach for Solving Rigid Spacecraft Minimum Time Attitude Maneuvers // J. Guidance, Contr., and Dynamics. 1990. V. 13. № 1.
- 2. Бранец В.Н., Шмыглевский И.П. Применение кватернионов в задачах ориентации твердого тела. М.: Наука, 1973.
- 3. *Молоденков А.В., Сапунков Я.Г.* Аналитическое решение задачи оптимального разворота осесимметричного космического аппарата в классе конических движений // Изв. РАН. ТиСУ. 2016. № 6.
- 4. *Молоденков А.В., Сапунков Я.Г.* Аналитическое решение задачи оптимального по быстродействию разворота осесимметричного космического аппарата в классе конических движений // Изв. РАН. ТиСУ. 2018. № 2.
- 5. *Левский М.В.* Применение принципа максимума Л.С. Понтрягина к задачам оптимального управления ориентацией космического аппарата // Изв. РАН. ТиСУ. 2008. № 6.
- 6. *Молоденков А.В., Сапунков Я.Г.* Оптимальное управление вращательным движением твердого тела с комбинированным критерием качества // Изв. РАН. ТиСУ. 2019. № 3.
- 7. Сапунков Я.Г., Молоденков А.В. Численное решение задачи оптимальной переориентации вращающегося космического аппарата // Мехатроника, автоматизация, управление. 2008. № 6.
- 8. Бранец В.Н., Черток М.Б., Казначеев Ю.В. Оптимальный разворот твердого тела с одной осью симметрии // Космич. исслед. 1984. Т. 22. Вып. 3.
- 9. Левский М.В. Квадратично оптимальное управление переориентацией космического аппарата за фиксированное время в динамической постановке // Изв. РАН. ТиСУ. 2018. № 1.
- 10. *Левский М.В.* Аналитическое управление переориентацией космического аппарата с использованием комбинированного критерия оптимальности // Изв. РАН. ТиСУ. 2018. № 2.
- 11. Понтрягин Л.С., Болтянский В.Г., Гамкрелидзе Р.В., Мищенко Е.Ф. Математическая теория оптимальных процессов. М.: Наука, 1961.
- 12. Griffin M.D., French J.R. Space Vehicle Design. AIAA Education Series. Reston, Virginia, 2004.