ИЗВЕСТИЯ РАН. ТЕОРИЯ И СИСТЕМЫ УПРАВЛЕНИЯ, 2021, № 6, с. 24–34

_____ ОБРАБОТКА ИНФОРМАЦИИ ____ И ИДЕНТИФИКАЦИЯ

УДК 681.51.015

ИДЕНТИФИКАЦИЯ НЕСТАЦИОНАРНЫХ АЭРОДИНАМИЧЕСКИХ ХАРАКТЕРИСТИК САМОЛЕТА ПО ПОЛЕТНЫМ ДАННЫМ¹

© 2021 г. В. Н. Овчаренко^{а,*}, Б. К. Поплавский^b

^а МАИ (национальный исследовательский ун-т), Москва, Россия ^b ЛИИ, МАИ, МО, г. Жуковский, Россия *e-mail: owcharenko.v@yandex.ru Поступила в редакцию 14.01.2021 г. После доработки 23.07.2021 г. Принята к публикации 26.07.2021 г.

Рассматривается проблема описания нестационарных аэродинамических коэффициентов самолета. Предложен подход, основанный на параметризации и последующей идентификации аэродинамических переходных функций частотно-временным методом. Эффективность подхода показана на примере идентификации коэффициента подъемной силы ближнемагистрального самолета по полетным данным.

DOI: 10.31857/S0002338821060147

Введение. В эксплуатационных диапазонах изменения кинематических переменных аэродинамические силы и моменты, действующие на ЛА, определяются мгновенными значениями аэродинамических углов, угловых скоростей и положением аэродинамических органов управления. Эта зависимость аэродинамических характеристик может выражаться линейными или нелинейными функциями от переменных движения.

При энергичном маневрировании или при интенсивных внешних воздействиях (например, при попадании в сильный порыв ветра в полете в неблагоприятных погодных условиях) условия установившегося полета нарушаются и значения кинематических переменных могут выйти за пределы допустимых эксплуатационных ограничений. На больших углах атаки или на больших угловых скоростях возникают нелинейные аэродинамические эффекты, обусловленные отрывом набегающего потока от несущих поверхностей и разрушением системы вихрей. Любой из этих случаев приводит к нестационарным аэродинамическим нагрузкам [1]. Поэтому исследование вопросов безопасности полета, отработка навыков пилотирования в этих условиях приобретают чрезвычайную важность. Эти факторы приводят к необходимости разработки адекватных математических моделей аэродинамических характеристик, которые можно было бы применить как при решении задач динамики полета, так и в программном обеспечении пилотажных стендов и тренажеров.

Можно выделить два основных подхода к построению математических моделей для моделирования нестационарных аэродинамических характеристик самолетов.

Первый подход (в хронологическом порядке) был предложен в работе [2] и основан на использовании аэродинамических переходных функций. В дальнейшем этот подход получил развитие в публикациях [3, 4]. Неопределенность в задании аэродинамических переходных функций для конкретного самолета на заданном маневре составляет основную трудность применения этого подхода.

Второй подход предложен в [5, 6] и основан на знании координаты точки отрыва потока и разрушении вихревой системы на аэродинамическом профиле, которая в летном эксперименте не наблюдается. Применительно к нестационарным аэродинамическим характеристикам самолета этот подход рассмотрен в [7, 8]. По существу в этом случае самолет отождествляется с некоторым аэродинамическим профилем с эквивалентными аэродинамическими характеристиками.

¹ Работа выполнена в рамках реализации Программы создания и развития научного центра мирового уровня "Сверхзвук" на 2020–2025 годы при финансовой поддержке Минобрнауки России (соглашение от 16 ноября 2020 г. № 075-15-2020-924).

В настоящее время получил развитие метод искусственных нейронных сетей для моделирования динамических эффектов, обусловленных отрывом и разрушением вихрей [9]. В этом случае понятия аэродинамических переходных функций и точки отрыва потока не применяются. Кроме того, рассматриваются и другие подходы к описанию динамики самолета на больших углах атаки [10].

В предлагаемой статье аэродинамические переходные функции аппроксимируются линейным дифференциальным уравнением первого порядка и полиномиальным входным сигналом по углу атаки и угловой скорости тангажа с неизвестными коэффициентами. Значения этих коэффициентов определяются в процессе решения задачи идентификации по полетным данным, полученным в натурном летном эксперименте.

1. Математическая модель нестационарных аэродинамических характеристик самолета. Рассмотрим математическую модель только коэффициента подъемной силы летательного аппарата в целом в условиях нестационарного обтекания. Пусть выполнены следующие предположения:

• аэродинамические характеристики самолета в установившемся движении известны с высокой точностью;

на интервале обработки полетных данных конфигурация самолета остается постоянной;

• аппроксимация нестационарных аэродинамических коэффициентов зависит от постоянных параметров, значения которых можно уточнить по полетным данным;

• для описания нестационарных аэродинамических коэффициентов можно применить метод аэродинамических переходных функций [3].

Пусть зависимость коэффициента подъемной силы самолета c_y от параметров полета (угла атаки α , числа M, угловой скорости тангажа ω_z) и параметров конфигурации на неустановившемся режиме полета может быть представлена в виде

$$c_{v} = c_{v\infty}(\alpha, M, \delta_{KOH\Phi}) + \Delta c_{v}(t, \alpha, M, \delta_{KOH\Phi}; \dot{\alpha}, \dot{\omega}_{z}); \quad t \in [0, T],$$

где $c_{y\infty}(\alpha, M, \delta_{\kappa o h \phi})$ – коэффициент подъемной силы, полученный в аэродинамических продувках или расчетным путем с учетом полетной конфигурации самолета; $\Delta c_y(t, \alpha, M, \delta_{\kappa o h \phi}; \dot{\alpha}, \dot{\omega}_z)$ – поправка коэффициента подъемной силы в условиях неустановившегося движения с учетом полетной конфигурации самолета; $\delta_{\kappa o h \phi} = (\delta_{B}, \delta_{np}, \delta_{3akp}, \delta_{u}, \delta_{T.m}, \delta_{m}, u \ T.d.)$ – вектор переменных, определяющих полетную конфигурацию самолета (отклонение руля высоты, предкрылков, закрылков, интерцепторов, тормозных щитков, шасси и т.д.).

В силу предположения а) следует ожидать, что поправка $\Delta c_y(t, \alpha, M, \delta_{\text{кон}\phi}; \dot{\alpha}, \dot{\omega}_z)$ мала по абсолютному значению и может быть представлена в виде

$$\Delta c_{\nu}(\alpha, M, \delta_{\text{кон}\phi}; \dot{\alpha}, \dot{\omega}_{z}) = \Delta c_{\nu\infty}(\alpha, M, \delta_{\text{кон}\phi}) + \Delta c_{\nu\text{дин}}(t, \dot{\alpha}, \dot{\omega}_{z}),$$

где $\Delta c_{y\infty}(\alpha, M, \delta_{\text{кон}\phi})$ — поправка коэффициента подъемной силы в установившемся движении; $\Delta c_{y \text{ дин}}(t, \dot{\alpha}, \dot{\omega}_z)$ — динамическая поправка коэффициента подъемной силы, обусловленная нестационарными аэродинамическими эффектами в неустановившемся движении.

Поправку $\Delta c_{y\infty}(\alpha, M, \delta_{\text{кон}\phi})$ удобно представить в виде суммы некоторых функций от наиболее значимых переменных с неизвестными коэффициентами:

$$\Delta c_{y\infty}(\alpha, M, \delta_{\text{кон}\phi}) = \sum_{i=1}^{N_{g}} c_{i} g_{i}(\alpha, M, \delta_{\text{кон}\phi}), \qquad (1.1)$$

где $g_i(\alpha, M, \delta_{\text{кон}\phi})$ — известные функции и их количество N_g , которые подбираются в процессе решения задачи идентификации; $c_1, c_2, ...$ — неизвестные коэффициенты, значения которых оцениваются по полетным данным на неустановившемся маневре. Примером суммы (1.1) может служить выражение $\Delta c_{\nu\infty}(\alpha, M, \delta_{\text{кон}\phi}) = c_1 \alpha + c_2 \delta_{\text{в}}$.

ИЗВЕСТИЯ РАН. ТЕОРИЯ И СИСТЕМЫ УПРАВЛЕНИЯ № 6 2021

Для определения поправки $\Delta c_{y_{\text{дин}}}(t, \dot{\alpha}, \dot{\omega}_z)$ применим метод аэродинамических переходных функций. Рассмотрим $\Delta c_{y_{\text{дин}}}$ вида

$$\Delta c_{y_{\text{ДИН}}}(t, \dot{\alpha}, \dot{\omega}_{z}) = \frac{b_{a}}{V} \int_{0}^{t} h_{\alpha}(t - \tau; \alpha(\tau), \omega_{z}(\tau)) \frac{d\alpha}{d\tau} d\tau + \frac{b_{a}}{V} \int_{0}^{t} h_{\omega_{z}}(t - \tau; \alpha(\tau), \omega_{z}(\tau)) \frac{d\omega_{z}}{d\tau} d\tau,$$
(1.2)

где h_{α}, h_{ω_z} – аэродинамические переходные функции; b_a – средняя аэродинамическая хорда; V – скорость полета.

Выражение (1.2) в уравнения динамики продольного движения самолета впервые введено в работе [2] и является результатом эвристических рассуждений о структуре аэродинамических коэффициентов как функционалов от угла атаки α и угловой скорости тангажа ω_z . Однако ни из теории нестационарного обтекания, ни из аэродинамического эксперимента не ясно как задавать аэродинамические переходные функции в аналитическом виде на конкретном маневре самолета. Поэтому для выявления вида аэродинамических переходных функций и накопления статистической информации необходимо идентифицировать h_{α} , h_{ω_z} вместе с другими аэродинамическими поправками на различных тестовых маневрах в натурном эксперименте. В такой постановке задача идентификации нестационарных аэродинамических характеристик остается все еще сложной. Однако, учитывая достаточно общий характер структуры уравнения (1.2), заменим его выражением

$$\Delta c_{y_{\text{ДИН}}}(t, \dot{\alpha}, \dot{\omega}_z) = \frac{b_a}{V} \int_0^t h_{\alpha}(t - \tau; \alpha(\tau)) \frac{d\alpha}{d\tau} d\tau + \frac{b_a}{V} \int_0^t h_{\omega_z}(t - \tau; \omega_z(\tau)) \frac{d\omega_z}{d\tau} d\tau.$$
(1.3)

Интегралы в (1.3) имеют одинаковую структуру и могут быть изучены как один интеграл с переменным верхним пределом

$$\Delta C(t) = \int_{0}^{t} h(t - \tau; u(\tau)) \dot{u}(\tau) d\tau, \qquad (1.4)$$

где $u(\tau) = (\alpha(\tau)$ или $\omega_z(\tau)).$

Продифференцируем $\Delta C(t)$ по t, получим

$$\frac{d}{dt}\Delta C(t) = \int_{0}^{t} \frac{\partial h(t-\tau; u(\tau))}{\partial t} \dot{u}(\tau) d\tau + h(0; u(t)) \frac{du}{dt}.$$
(1.5)

Выберем переходную функцию такой, что

$$\frac{\partial h(t-\tau;u(\tau))}{\partial t} = ah(t-\tau;u(\tau)), \quad \tau \le t,$$
(1.6)

где a = const. Тогда совокупность выражений (1.4)–(1.6) может быть записана в виде обыкновенного дифференциального уравнения первого порядка относительно функции $\Delta C(t)$:

$$\frac{d}{dt}\Delta C(t) = a\Delta C(t) + \varphi(u(t))\frac{du}{dt}$$
(1.7)

с нулевым начальным условием $\Delta C(0) = 0$. В этом уравнении выполнена замена обозначений $h(0;u(t)) = \varphi(u(t))$. Предположим, что $\varphi(u(t)) \neq 0$ на интервале наблюдений. По условиям устойчивости решений уравнения (1.7) рассматриваются только отрицательные значения параметра a < 0.

Решая уравнение (1.7) с нулевым начальным условием и входным сигналом $\phi(u(\tau))\dot{u}(\tau)$, получим

$$\Delta C(t) = \int_{0}^{t} e^{a(t-\tau)} \varphi(u(\tau)) \dot{u}(\tau) d\tau.$$
(1.8)

Функция $\varphi(u(\tau))$ является неизвестной. Предположим, что на интервале [0, *T*] функция $\varphi(u(t))$ допускает аппроксимацию ее полиномом по u(t) с неизвестными коэффициентами:

$$\varphi(u(t)) = \sum_{m=0}^{M} K_m^{(u)} u^m(t),$$

где $K_m^{(u)}$ — неизвестные коэффициенты полинома; M — наивысшая степень полинома, задается исследователем в процессе решения задачи идентификации.

Подстановка функции $\phi(u(t))$ в (1.8) приводит к выражению

$$\Delta C(t) = \sum_{m=0}^{M} K_{m}^{(u)} \int_{0}^{t} e^{a(t-\tau)} u^{m}(\tau) \dot{u}(\tau) d\tau.$$
(1.9)

Вычислим интеграл в (1.9) по частям, получим

$$\Delta C(t) = \sum_{m=0}^{M} \frac{K_m^{(u)}}{m+1} [u^{m+1}(t) - u^{m+1}(0)e^{at}] + a\Delta C^*(t), \qquad (1.10)$$

где

$$\Delta C^*(t) = \int_0^t e^{a(t-\tau)} v_u(\tau) d\tau; \quad v_u(\tau) = \sum_{m=0}^M \frac{K_m^{(u)}}{m+1} u^{m+1}(\tau)$$

что является решением линейного дифференциального уравнения

$$\frac{d}{dt}\Delta C^*(t) = a\Delta C^*(t) + v_u(t), \quad \Delta C^*(0) = 0.$$

В отличие от (1.9) выражение (1.10) не содержит производной процесса u(t), которая либо не наблюдается в натурном эксперименте, либо вычисляется с большими погрешностями. Поэтому выражение (1.10) является предпочтительным для получения различных расчетных соотношений.

Выполняя в (1.10) замену переменной u(t) на $\alpha(t)$ и $\omega_z(t)$, получим систему выражений, описывающих динамические поправки (1.2) коэффициента аэродинамической подъемной силы:

$$\Delta c_{y_{\text{ДИН}}}(t, \dot{\alpha}, \dot{\omega}_{z}) = \frac{b_{a}}{V} [\Delta c_{y1}(t, \dot{\alpha}) + \Delta c_{y2}(t, \omega_{z})];$$

$$\Delta c_{y1}(t, \dot{\alpha}) = \sum_{m=0}^{M_{\alpha}} \frac{K_{m}^{(\alpha)}}{m+1} [\alpha^{m+1}(t) - \alpha^{m+1}(0)e^{a_{\alpha}t}] + a_{\alpha}\Delta c_{y1}^{*}(t);$$

$$\Delta c_{y2}(t, \omega_{z}) = \sum_{m=0}^{M_{\omega}} \frac{K_{m}^{(\omega)}}{m+1} [\omega_{z}^{m+1}(t) - \omega_{z}^{m+1}(0)e^{a_{\omega}t}] + a_{\omega}\Delta c_{y2}^{*}(t);$$

$$\frac{d}{dt}\Delta c_{y1}^{*}(t) = a_{\alpha}\Delta c_{y1}^{*}(t) + v_{\alpha}(t), \quad \Delta c_{y1}^{*}(0) = 0;$$

$$\frac{d}{dt}\Delta c_{y2}^{*}(t) = a_{\omega}\Delta c_{y2}^{*}(t) + v_{\omega}(t), 4\Delta c_{y2}^{*}(0) = 0,$$
(1.11)

где все обозначения понятны из предыдущего текста. Здесь параметры $a_{\alpha}, a_{\omega}, K_m^{(\alpha)}, K_m^{(\omega)}, M_{\alpha}$ и M_{ω} неизвестны и должны определяться в процессе решения задачи идентификации по полетным данным.

Совокупность выражений (1.1) и (1.11) образует замкнутую систему уравнений и определяет все поправки коэффициента аэродинамической подъемной силы на произвольном неустановившемся режиме полета. Уравнения зависят только от наблюдаемых в полете переменных и не содержат скрытых переменных. Ниже на примере обработки тестовых полетов магистрального самолета показано, что математическая модель (1.11) справедлива как в стационарных, так и в нестационарных условиях полета.

Для определения неизвестных параметров в выражениях (1.1) и (1.11) по полетным данным применим частотно-временной метод [8] (см. Приложение). Вычислим на множестве частот Ω

ИЗВЕСТИЯ РАН. ТЕОРИЯ И СИСТЕМЫ УПРАВЛЕНИЯ № 6 2021

финитные преобразования Фурье F_T (с учетом обозначений, указанных ниже) всех составляющих поправок коэффициента аэродинамической подъемной силы:

$$\begin{split} s_{k} &= j\omega_{k}; \quad j = \sqrt{-1}; \\ \mathscr{F}_{\Delta cy}(s_{k}) &= \mathscr{F}_{T}(c_{y} - c_{y\infty}(\alpha, M, \delta_{\mathrm{KOH}\varphi})) = \mathscr{F}_{\Delta cy\infty}(s_{k}) + \mathscr{F}_{\Delta cy \operatorname{JUH}}(s_{k}); \\ \mathscr{F}_{\Delta cy\infty}(s_{k}) &= \sum_{i} c_{i}\mathscr{F}_{gi}(s_{k}); \quad \mathscr{F}_{\Delta cy \operatorname{JUH}}(s_{k}) = \frac{b_{a}}{V} \big[\mathscr{F}_{\Delta cy1}(s_{k}) + \mathscr{F}_{\Delta cy2}(s_{k}) \big]; \\ \mathscr{F}_{\Delta cy1}(s_{k}) &= \frac{1}{s_{k} - a_{\alpha}} \bigg\{ \sum_{m=0}^{M_{\alpha}} \frac{K_{m}^{(\alpha)}}{m+1} [\alpha^{m+1}(T) - \alpha^{m+1}(0) + s_{k}\mathscr{F}_{T}(\alpha^{m+1}(t))] - \Delta c_{y1}(T) \bigg\}; \\ \mathscr{F}_{\Delta cy2}(s_{k}) &= \frac{1}{s_{k} - a_{\omega}} \bigg\{ \sum_{m=0}^{M_{\omega}} \frac{K_{m}^{(\omega)}}{m+1} [\omega_{z}^{m+1}(T) - \omega_{z}^{m+1}(0) + s_{k}\mathscr{F}_{T}(\omega_{z}^{m+1}(t))] - \Delta c_{y2}(T) \bigg\}, \end{split}$$

где $\Delta c_{y1}(T), \Delta c_{y2}(T)$ – значения $\Delta c_{y1}(t), \Delta c_{y2}(t)$ в конечный момент времени *T*.

Таким образом, вектор неизвестных параметров θ имеет вид

$$\theta = (c_1, c_2, \dots; a_{\alpha}, a_{\omega}; K_0^{(\alpha)}, \dots, K_{M_{\alpha}}^{(\alpha)}; K_0^{(\omega)}, \dots, K_{M_{\omega}}^{(\omega)}; \Delta c_{y1}(T), \Delta c_{y2}(T)).$$

Множество допустимых значений параметров определяется условиями устойчивости решений дифференциальных уравнений $a_{\alpha} < 0$, $a_{\omega} < 0$, остальные параметры могут принимать любые значения. В зависимости от полетной конфигурации некоторые параметры могут отсутствовать.

Сформируем невязку и критерий метода наименьших квадратов (МНК) в частотной области

$$\varepsilon(s_k, \theta) = F_{\Delta cy}(s_k) - F_{\Delta cy\infty}(s_k) - F_{\Delta cy \, \text{дин}}(s_k);$$

$$J(\theta) = (\lambda_{\alpha} a_{\alpha})^2 + (\lambda_{\omega} a_{\omega})^2 + \sum_{i=1}^{N_g} (\lambda_i c_i)^2 + \sum_{\omega_k} \varepsilon(-s_k, \theta) \varepsilon(s_k, \theta),$$

где $\lambda_{\alpha}, \lambda_{\omega}, \lambda_i$ — весовые коэффициенты, подбираются опытным путем; заранее верхний предел суммирования указать не представляется возможным, суммирование ведется по всем доступным частотам ω_k . Первые три слагаемых в критерии $J(\theta)$ служат для регуляризации решения задачи идентификации. Решение о включении регуляризирующих составляющих принимается в процессе решения задачи идентификации.

Задача идентификации неизвестных параметров сводится к задаче минимизации критерия МНК:

$$\hat{\theta} = \arg\min_{\theta \in \Theta} J(\theta),$$
 (1.12)

которая решается методами нелинейного математического программирования (например, программой fmincon математического пакета MATLAB).

На множестве частот Ω финитное преобразование Фурье постоянных, которые могут входить в составляющие коэффициента подъемной силы в установившемся движении самолета, равны нулю (см. ПРИЛОЖЕНИЕ). Поэтому для полной оценки всех постоянных дополнительно необходимо решить задачу идентификации во временной области на уже вычисленных оценках поправок $\Delta \hat{c}_{v\infty}(\alpha, M, \delta_{\text{конф}})$ и $\Delta \hat{c}_{v,\text{дин}}(t, \dot{\alpha}, \dot{\omega}_z)$.

2. Идентификация коэффициента подъемной силы ближнемагистрального самолета. Рассмотрим идентификацию коэффициента подъемной силы ближнемагистрального самолета по полетным данным. Тестовые полеты проводились по программе исследований устойчивости и управляемости самолета в процессе его выхода на большие углы атаки в различных полетных конфигурациях. Тестовый маневр заключался в выводе самолета на большие углы атаки при сохранении балансировки по моменту тангажа, т.е. $\dot{\omega}_z \sim 0$. Балансировка нарушалась только на коротких временных интервалах, когда самолет возвращался к условиям полета на малых углах атаки. Все тестовые маневры выполнялись на высотах примерно H = 5000 м и числах $M = 0.3 \cdots 0.4$. На рис. 1 показан пример полетных данных во взлетной конфигурации $\delta_{np} = 24^\circ$; $\delta_{3akp} = 16^\circ$. Далее рассмотрим определение математической модели только динамической поправки $\Delta c_{y,auh}(t, \dot{\alpha}, \dot{\omega}_z)$.

Рис. 1. Полетные данные во взлетной конфигурации $\delta_{np} = 24^\circ$; $\delta_{3akp} = 16^\circ (\omega_z - yгловая скорость тангажа; <math>\alpha - y$ гол атаки; $\phi - y$ гол установки горизонтального оперения; $\delta_{B} - y$ гол отклонения руля высоты)

Измерялись все переменные движения и параметры полетной конфигурации. Полетный коэффициент подъемной силы $c_v^*(\alpha, M, \delta_{\text{конф}})$ (без учета тяги двигателя) вычислялся по формуле

$$c_{y}^{*}(\alpha, M, \delta_{\text{кон}\phi}) = c_{y}(\alpha, M, \delta_{\text{кон}\phi}) + c_{P}\sin(\alpha + \phi_{P}) = \frac{mgn_{y}}{qS},$$
(2.1)

где c_y — коэффициент аэродинамической подъемной силы; c_P — коэффициент тяги двигателей; φ_P — угол установки двигателей в плоскости *OXY* связанной системы координат. Для каждой полетной конфигурации известны продувки в аэродинамической трубе (АДТ) и, следовательно, априорные значения коэффициента подъемной силы в установившемся движении $c_{y\infty}(\alpha, M, \delta_{\text{конф}})$, которые можно принять за начальное приближение.

Требуется по измеренным данным, полученным в тестовом полете, уточнить значение коэффициента подъемной силы в установившемся движении и идентифицировать составляющую $\Delta c_{y_{\text{дин}}}(t, \dot{\alpha}, \dot{\omega}_z)$, обусловленную нестационарными аэродинамическими эффектами.

Рассматривались следующие полетные конфигурации самолета: крейсерская, взлетная, заход на посадку, посадка. Поправку $\Delta c_{v\infty}(\alpha, M, \delta_{\text{конф}})$ будем искать в виде

$$\Delta c_{\nu\infty}(\alpha, M, \delta_{\kappa_{0H}\phi}) = (c_1 + c_2 |\alpha|)\alpha + (c_3 + c_4 |\delta_{\rm B}|)\delta_{\rm B}$$

В процессе решения задачи идентификации были выбраны следующие порядки полиномов $M_{\alpha} = M_{\omega} = 4$; определялись оценки неизвестных параметров $(c_1, ..., c_4, a_{\alpha}, a_{\omega})$, коэффициентов полиномов $(K_0^{(\alpha)}, ..., K_4^{(\alpha)}; K_0^{(\omega)}, ..., K_4^{(\omega)})$ и дополнительных параметров $(\Delta c_{y1}(T), \Delta c_{y2}(T))$; все углы и угловые скорости имеют размерности рад и рад/с соответственно.

Результаты идентификации коэффициента подъемной силы самолета по полетным данным с учетом конфигурации, статических и динамических поправок показаны на рис. 2–6. На рис. 2, *a*–6, *a* помечены следующие данные: полетные данные – сплошная линия светлого оттенка, вычисленная по формуле (2.1); оценка коэффициента подъемной силы в установившемся движении с учетом поправки $\Delta \hat{c}_{y0} + \Delta \hat{c}_{y\infty}(\alpha, M, \delta_{\text{конф}})$ – пунктирная линия; оценка коэффициента подъемной силы $\hat{c}_{y}^{*}(\alpha, M, \delta_{\text{конф}})$ в неустановившемся движении – сплошная линия. На рис. 2, *б*–6, *б* показаны

Рис. 2. Коэффициент подъемной силы (*a*) и динамические поправки (*б*) в установившемся полете на малых углах атаки (крейсерская конфигурация)

Рис. 3. Коэффициент подъемной силы (а) и динамические поправки (б) (крейсерская конфигурация)

оценки динамических поправок: сплошная линия – динамическая поправка $\Delta \hat{c}_{y1}(t, \dot{\alpha})$; пунктирная линия – динамическая поправка $\Delta \hat{c}_{y2}(t, \dot{\omega}_z)$.

На рис. 2, *а* представлен коэффициент подъемной силы и его оценки в области малых углов атаки при безотрывном обтекании, полностью совпадающие с аэродинамическими продувками. На рис. 2, *б* даны оценки динамических поправок. Видно, что динамическая поправка $\Delta \hat{c}_{v2}(t, \dot{\omega}_z) = 0$, а

Рис. 4. Коэффициент подъемной силы (*a*) и динамические поправки (*б*), где взлет $\delta_{np} = 24^{\circ}$; $\delta_{3akp} = 16^{\circ}$

Рис. 5. Коэффициент подъемной силы (*a*) и динамические поправки (*б*), где заход на посадку $\delta_{np} = 24^{\circ}; \delta_{3akp} = 25^{\circ}$

поправка $\Delta \hat{c}_{yl}(t, \dot{\alpha})$ имеет порядок 10^{-3} и ее влиянием на оценку коэффициента подъемной силы можно пренебречь.

На рис. 3, a-6, a показаны коэффициент подъемной силы и его оценки в диапазоне изменения углов атаки $0 < \alpha \le 35^\circ$ с учетом полетной конфигурации. Разность сплошной и штриховой линий на рис. 3, a-6, a указывает на влияние нестационарных аэродинамических эффектов на

ИЗВЕСТИЯ РАН. ТЕОРИЯ И СИСТЕМЫ УПРАВЛЕНИЯ № 6 2021

Рис. 6. Коэффициент подъемной силы (*a*) и динамические поправки (δ), где посадка $\delta_{\text{пр}} = 24^\circ$; $\delta_{3akp} = 34^\circ$

аэродинамические характеристики самолета. Возврат самолета на малые углы атаки происходит с потерей подъемной силы. Наблюдается аэродинамический гистерезис (рис. 3, *a*; 4, *a*; 6, *a*). На рис. 5, *a* показана аэродинамическая нестационарность в виде автоколебаний по коэффициенту подъемной силы при гармоническом изменении угла атаки: автоколебания возникают как на малых, так и на больших углах атаки.

Соизмеримые динамические поправки, обусловленные $\dot{\alpha}$ и $\dot{\omega}_z$ приведены на рис. 3, б. На остальных рассмотренных тестовых режимах полета (см. рис. 4, δ –6, δ) динамические поправки, обусловленные $\dot{\omega}_z$, практически отсутствуют (т.е. на тестовом режиме самолет сбалансирован в продольном движении). Поэтому динамические поправки оценки коэффициента подъемной силы целиком определяются угловой скоростью угла атаки $\dot{\alpha}$.

В табл. 1 и 2 приведены оценки коэффициентов полиномов по $\alpha(t)$ и $\omega_z(t)$, упорядоченные по возрастанию степени полинома, и коэффициенты поправок, полученные на выбранных тестовых маневрах. Регуляризирущая добавка в критерии МНК имела вид $(0.1a_{\alpha})^2 + (0.05a_{\omega})^2$.

Коэффициенты первой строки табл. 1 соответствуют динамической поправке $\Delta c_{y_{\text{дин}}}(t, \dot{\alpha}, \dot{\omega}_z)$, которая является откликом линейной динамической системы только на входные сигналы $\dot{\alpha}(t)$

n/m	Полетная конфигурация самолета								
	крейсерская		взлетная		заход на посадку		посадка		
	$K_m^{(\alpha)}$	$K_m^{(\omega)}$	$K_m^{(\alpha)}$	$K_m^{(\omega)}$	$K_m^{(lpha)}$	$K_m^{(\omega)}$	$K_m^{(\alpha)}$	$K_m^{(\omega)}$	
0	-50.25	-84.32	207.2	-1.09	453.67	-123.25	-127.7	-35.4	
1	297.5	-43.23	125.8	1.77	-245.6	1.84	680.4	1668	
2	80.9	-0.38	78.6	-0.081	-236.9	0.46	-58.7	44.3	
3	10.75	-0.012	20.9	-0.06	-122.7	-0.008	-364.7	1.7	
4	-1.95	0.005	-5.09	0	-60.56	-0.035	-353.0	0.4	

Таблица 1. Оценки коэффициентов полиномов

Параметр	Полетная конфигурация самолета							
Параметр	крейсерская	взлетная	заход на посадку	посадка				
c_{l}	2.75	1.04	0.19	-1.02				
c_2	-5.24	-1.21	-1.18	-0.47				
c_3	-0.22	-1.46	-1.31	-1.26				
c_4	0.77	13.14	7.37	7.1				
a_{lpha}	-0.20	-4.64	-8.77	-2.22				
a_{ω}	-0.20	-4.70	-4.70	-0.009				

Таблица 2. Оценки коэффициентов поправок

и $\dot{\omega}_{z}(t)$ [2, 3]. Это частный случай описания нестационарных аэродинамических эффектов при безотрывном обтекании [6], соответсвующее выражение имеет вид

$$\Delta c_{y_{\text{ДИН}}}(t, \dot{\alpha}, \dot{\omega}_{z}) = \frac{b_{a}}{V} \int_{0}^{t} h_{\alpha}(t-\tau) \frac{d\alpha}{d\tau} d\tau + \frac{b_{a}}{V} \int_{0}^{t} h_{\omega_{z}}(t-\tau) \frac{d\omega_{z}}{d\tau} d\tau.$$

Заключение. Предложен новый подход к описанию математической модели нелинейных и нестационарных аэродинамических эффектов, обусловленных интенсивным изменением в полете угла атаки самолета и угловой скорости тангажа в продольном движении. Подход основан на применении аэродинамических переходных функций. Новизна подхода заключается в том, что структура аэродинамических переходных функций фиксируется и подбираются входные сигналы, нелинейные по углу атаки и угловой скорости тангажа. Получена замкнутая система уравнений, зависящая только от наблюдаемых в полете переменных. На примере обработки полетных данных магистрального самолета показано, что система уравнений приемлемо описывает как аэродинамический гистерезис, так и автоколебания по коэффициенту подъемной силы при гармоническом изменении угла атаки. Задача идентификации неизвестных параметров решалась частотно-временным методом.

Представленные численные результаты идентификации нестационарного аэродинамического коэффициента подъемной силы относятся только к рассмотренным данным натурного эксперимента и не могут быть обобщены на все полетные случаи.

ПРИЛОЖЕНИЕ

Частотно-временной метод идентификации служит для вычисления оценок параметров динамических систем по наблюдаемым данным [8]. К особенностям метода в задаче идентификации математических моделей динамики летательных аппаратов по полетным данным, которая рассматривается как задача параметрической оптимизации, относятся:

• замена дифференциальных уравнений динамической системы на алгебраические выражения;

• простота вычислений частотных характеристик наблюдаемых переменных в присутствии измерительных шумов;

• возможность независимого и неупорядоченного выбора точек частотного диапазона для каждой пары входного и выходного сигналов;

• возможность применения к идентификации неустойчивых динамических систем.

Частотные методы идентификации дают возможность построить совокупность математических моделей различной целевой направленности, имеющих свои достоинства и недостатки, свои области применимости. Метод основан на переходе в частотную область с помощью финитного преобразования Фурье на специально выбранном дискретном множестве частот. Дискретное

множество частот, на которых вычисляется финитное преобразование Фурье функции $x(t), t \in [0, T]$, имеет вид

$$\Omega = \left\{ \omega_k : \omega_k = \frac{2\pi}{T} k, k = \overline{1, K} \right\},\tag{\Pi.1}$$

где $K \leq Tf_N$; $f_N = 1/2h$ – частота Найквиста; h – шаг измерений.

Нетрудно видеть, что на этом множестве частот выполнено условие

 $e^{-j\omega_k T} = e^{-j2\pi k} = 1, \quad \forall \omega_k \in \Omega.$

Формулы финитного преобразования Фурье функции x(t) на дискретном множестве частот (П.1) с учетом граничных условий принимают вид

$$\begin{aligned} X_T(j\omega) &= \mathcal{F}_T(x(t)) = \mathcal{F}_x(j\omega) = \int_0^t x(t)e^{-j\omega t}dt; \\ \mathcal{F}_T(C) &= 0; \quad \mathcal{F}_T\left(\frac{dx(t)}{dt}\right) = j\omega X_T(j\omega) + \Delta x; \\ \mathcal{F}_T\left(\int_0^t x(\tau)d\tau\right) &= \frac{1}{j\omega} \left[X_T(j\omega) - \int_0^T x(\tau)d\tau\right]; \\ \mathcal{F}_T(e^{at}) &= \frac{e^{aT} - 1}{a - j\omega}; \quad \Delta x = x(T) - x(0). \end{aligned}$$
(II.2)

Здесь необходимо отметить следующие полезные свойства финитного преобразования Фурье на множестве частот $\Omega \ni \omega$:

1) $\forall C \neq 0$ имеет место равенство $\mathcal{F}_T(C) = 0$ на Ω , что указывает на эквивалентность $\forall C \neq 0$ и нуля;

2) влияние граничных значений переходных процессов на финитное преобразование Фурье определяется только их разностью Δx и не зависит от частоты $\omega_{\ell}, \forall k \in \overline{1, K}$.

Интеграл Фурье таблично заданной функции $x(t), t \in [0, T]$ рекомендуется вычислять по формулам Филона [11]. В монографии [8] приведена соответствующая программа на языке математического пакета MATLAB.

СПИСОК ЛИТЕРАТУРЫ

- 1. Канышев А.В., Корсун О.Н., Овчаренко В.Н., Стуловский А.В. Идентификация аэродинамических коэффициентов продольного движения и оценка погрешностей бортовых измерений на закритических углах атаки. Изв. РАН. ТиСУ. 2018. № 3. С. 33–47.
- 2. *Tobak M*. On The use of the Indicial Function Concept in the Analysis of Unsteady Motions of Wings and Wingtail Combinations // NACA. Report 1188. 1954.
- 3. *Tobak M., Schiff L.B.* On the Formulation of the Aerodynamic Characteristics in Aircraft Dynamics // NASA. TR R-456. Washington. 1976.
- 4. *Klein V., Morelli E.A.* Aircraft System Identification. Theory and Practice. Education Series. Hampton: AIAA. 2006. C. 499.
- 5. Гоман М.Г. Математическое описание аэродинамических сил и моментов на неустановившихся режимах обтекания с неединственной структурой // Тр. ЦАГИ. 1983. Вып. 2195. С. 14–27.
- 6. Аэродинамика, устойчивость и управляемость сверхзвуковых самолетов / Под ред. Г.С. Бюшгенса. М.: Наука. Физматлит, 1998.
- 7. Jategaonkar R.V. Flight Vehicle System Identification: A Time Domain Methodology. Arlington: AIAA, Inc., Reston., 2006. C. 410.
- 8. Овчаренко В.Н. Аэродинамические характеристики летательных аппаратов. Идентификация по полетным данным. М.: ЛЕНАНД, 2019. 236 с.
- 9. Игнатьев Д.И., Храбров А.Н. Использование искусственных нейронных сетей для моделирования динамических эффектов аэродинамических коэффициентов трансзвукового самолета // Уч. зап. ЦАГИ. 2011. Т. XLII. № 6. С. 84–91.
- 10. *Кузьмин П.В., Мелешин Б.А., Шелюхин Ю.Ф., Шуховцов Д В.* Инженерная модель нестационарных продольных аэродинамических характеристик на больших углах атаки // Уч. зап. ЦАГИ. 2015. Т. 46. № 4. С. 61–70.
- 11. Бахвалов Н.С. Численные методы. М.: Наука, 1973.