——— МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ——

УДК 531.36

О КОЛЕБАНИЯХ ВЕТРОЭНЕРГЕТИЧЕСКОЙ УСТАНОВКИ С НЕСКОЛЬКИМИ ПОДВИЖНЫМИ МАССАМИ, ИСПОЛЬЗУЮЩЕЙ ЭФФЕКТ ГАЛОПИРОВАНИЯ¹

© 2023 г. Б. Я. Локшин^а, Ю. Д. Селюцкий^{а,*}

^аНИИ механики МГУ, Москва, Россия *e-mail: seliutski@imec.msu.ru Поступила в редакцию 18.04.2023 г. После доработки 02.05.2023 г. Принята к публикации 05.06.2023 г.

Рассматривается цепочка из нескольких тел, которые могут перемещаться поступательно вдоль некоторой горизонтальной прямой. Соседние тела связаны друг с другом пружинами. Один конец цепочки закреплен, а на другом находится тело, представляющее собой прямоугольный параллелепипед квадратного сечения. Система помещена в горизонтальный стационарный поток среды, перпендикулярный указанной прямой. В предположении, что поток воздействует только на параллелепипед, исследуется динамика этой системы как потенциального рабочего элемента ветроэнергетической установки колебательного типа, использующей эффект галопирования. Для разного количества тел в цепочке, различных значениях скорости потока и внешней нагрузки изучаются периодические режимы в системе. Показано, в частности, что увеличение числа тел в цепочке позволяет увеличить максимальную мощность, которая может быть получена с помощью устройства, и уменьшить критическую скорость, при которой возникают колебания. Предложена схема регулирования нагрузочного сопротивления, направленная на обеспечение перехода на колебательный режим с максимальной мощностью.

DOI: 10.31857/S0002338823050116, **EDN:** OIXVFO

Введение. Известно, что при определенных условиях тела "плохообтекаемой" формы (типа призмы, цилиндра и т.п.) могут совершать поступательные колебания в направлении поперек набегающего потока. Это явление получило название галопирования. Его возникновение связано с тем, что при определенной ориентации плохообтекаемого тела относительно набегающего потока аэродинамические силы создают отрицательное демпфирование.

В отличие от колебаний, индуцированных сходом вихрей с поверхности тела, галопирование достаточно эффективно описывается в рамках квазистатического подхода, когда аэродинамические силы считаются зависящими только от текущих значений фазовых координат и скоростей тела. С помощью этого подхода в [1] был получен критерий возникновения галопирующих колебаний обледеневших проводов. В работах [2, 3] было показано, что квазистатический подход позволяет обеспечить достаточно точное описание данного явления для прямоугольного параллелепипеда. Вообще говоря, галопированию подвержены плохообтекаемые тела с разной формой поперечного сечения. В этом обзоре мы ограничимся только работами, в которых рассматриваются тела, имеющие острые кромки (призмы и т.п.).

В [3, 4] показано, что в определенном диапазоне скоростей набегающего потока существуют два притягивающих цикла (имеет место гистерезис амплитуды колебаний). Эти результаты согласуются с экспериментами. Следует отметить, что аэродинамические характеристики исследуемых в этих работах призм таковы, что возникновение галопирования сопровождается мягкой потерей устойчивости. В [5] исследована взаимосвязь между характером зависимости коэффициента поперечной аэродинамической силы от угла атаки и количеством притягивающих предельных циклов, а также размером зоны гистерезиса. Установлено, что при определенных формах зависимости возможна "жесткая" потеря устойчивости. В [6] проведено исследование зави-

¹ Исследование выполнено при поддержке РНФ (грант № 22-29-00472).

симости амплитуд предельных циклов при галопировании от скорости потока для прямоугольных параллелепипедов разного удлинения.

Аэродинамические силы, действующие на прямоугольные параллелепипеды, изучались в целом ряде экспериментальных работ. В частности, в [7, 8] приведены результаты измерений аэродинамических сил, действующих на параллелепипеды с квадратным сечением, в зависимости от угла атаки (причем в [8] исследуется также конфигурация, в которой к параллелепипеду прикреплена плоская пластина). В [9] описаны эксперименты, в которых измерялась непосредственно нестационарная аэродинамическая сила, возникающая при галопировании прямоугольного параллелепипеда, и предложен эмпирический подход для моделирования этой силы.

С точки зрения обеспечения прочности конструкций и снижения их износа, необходимо предотвращать возникновение галопирования или, по крайней мере, уменьшать его интенсивность. В ряде работ рассматриваются различные способы достижения этой цели, например, [10–12].

Однако уже достаточно давно было предложено (в частности, в [13]) использовать галопирование тел для преобразования энергии потока в электричество. Растущий интерес к различным системам, основанным на использовании возобновляемой энергии, привел к появлению исследований, рассматривающих различные варианты таких ветроэнергетических установок. В [14. 15) рассматриваются системы, в которых галопирующее тело (призма) соединено с линейным генератором на постоянном магните, и исследуется влияние параметров (в частности, ориентации призму относительно потока) на характеристики колебаний. В других работах (например, [16– 19]) изучаются системы, в которых электричество вырабатывается с помощью пьезоэлементов. Так, для прямоугольного параллелепипеда, консольно закрепленного в потоке с помощью упругой балки, в [17] предложено аналитическое решение, приближенно описывающее колебания в системе, а в [18] анализируется влияние формы балки на характеристики колебаний. В [19] проведено экспериментальное исследование влияния формы поперечного сечения призмы на выходную мощность и отмечено, что максимальная мощность была достигнута в случае, когда это сечение имеет воронкообразную форму. В [20] обсуждается влияние закруглений углов призмы с квадратным сечением и угла атаки на мощность, получаемую при галопировании, и отмечается, что закругление углов приводит к некоторому уменьшению мощности, но делает систему менее чувствительной к изменению угла атаки.

В [21–23] рассматриваются системы, в которых к плохообтекаемому телу, совершающему галопирующие колебания в потоке, прикреплено еще одно тело, которое не взаимодействует с потоком. Показано, что при определенных схемах соединения тел можно обеспечить уменьшение критической скорости потока (при которой теряется устойчивость равновесия) и увеличить выходную мощность.

В работе исследуется динамика галопирующей ветроэнергетической установки, содержащей несколько последовательно соединенных пружинами подвижных масс и линейный генератор. Анализируется влияние параметров системы на область устойчивости равновесия. Проводится численное и аналитическое исследование периодических режимов. Изучается влияние количества звеньев, скорости потока и внешнего сопротивления на выходную мощность системы. Обсуждается возможность регулирования нагрузки с целью максимизации мощности, отбираемой у потока.

1. Постановка задачи. Рассмотрим цепочку из *n* тел M_1 , ..., M_n (рис. 1), которые могут двигаться поступательно вдоль некоторой неподвижной горизонтальной прямой ℓ . Все тела, кроме *n*-го, представляют собой материальные точки, а тело M_n – прямоугольный параллелепипед, основанием которого является квадрат. Боковые грани параллелепипеда вертикальны, причем две из них перпендикулярны прямой ℓ . Соседние тела в цепочке соединены друг с другом линейноупругими пружинами. Тело M_1 соединено пружиной с некоторой неподвижной точкой O, лежащей на прямой ℓ . К телу M_n жестко прикреплен постоянный магнит, который расположен внутри катушки индуктивности. Катушка включена в электрическую цепь, которая содержит также нагрузочное сопротивление R. При перемещении тела M_n магнит двигается внутри катушки, и в цепи индуцируется электрический ток.

Система помещена в стационарный поток среды, скорость которого на бесконечности равна V, горизонтальна и перпендикулярна прямой ℓ . Будем считать, что поток воздействует только на тело M_n .

Рис. 1. Схема цепочки тел, совершающих галопирующие колебания (вид сверху).

Введем в горизонтальной плоскости неподвижную систему координат *OXY*, ось абсцисс *OX* которой направим вдоль скорости набегающего потока, а ось ординат — вдоль прямой ℓ . Выберем в качестве обобщенных координат ординаты $Y_1, ..., Y_{n-1}$ точек $M_1, ..., M_{n-1}$ и ординату Y_n центра масс параллелепипеда M_n .

Будем предполагать, что поток действует только на параллелепипед, причем это воздействие сводится к силе лобового сопротивления **D** и боковой силе **L**, приложенным в геометрическом центре *G* параллелепипеда. Сила **D** направлена против воздушной скорости V_a точки *G* (т.е. скорости относительно набегающего потока), сила **L** – перпендикулярно ей. Воспользуемся квазистатическим подходом, т.е. будем считать, что аэродинамические силы зависят только от мгновенных значений фазовых координат и скоростей тела (применимость этого подхода для широкого спектра задач движения тела в среде обсуждается, в частности, в [24, 25]). Тогда величины сил **D** и **L** определяются следующими соотношениями:

$$D = \frac{\rho S}{2} V_a^2 C_d(\alpha), \qquad L = \frac{\rho S}{2} V_a^2 C_l(\alpha),$$

$$V_a = \sqrt{V^2 + \dot{Y}_a^2}, \qquad \alpha = \operatorname{arctg} \frac{\dot{Y}_a}{V}.$$
(1.1)

Здесь р — плотность среды, S — площадь боковой грани параллелепипеда, C_d и C_l — безразмерные коэффициенты, которые считаются зависящими только от мгновенного угла атаки α — угла между вектором V_a и внешней нормалью к соответствующей грани параллелепипеда.

Процессы в электрической цепи будем описывать аналогично [14, 26]:

$$L_{c}\dot{I} = C\dot{Y}_{n} - (R + R_{c})I, \qquad (1.2)$$

где I — ток в цепи, L_c и R_c — индуктивность и внутреннее сопротивление катушки, C — коэффициент электромеханического взаимодействия.

С учетом соотношений (1.1) и (1.2) полную систему уравнений динамики рассматриваемой электромеханической системы можно записать следующим образом:

Рис. 2. Зависимость коэффициента C_v от скорости тела.

$$m_{i}\dot{Y}_{i} + K_{i}(Y_{i} - Y_{i-1}) + H_{i}(\dot{Y}_{i} - \dot{Y}_{i-1}) + K_{i+1}(Y_{i} - Y_{i+1}) + H_{i+1}(\dot{Y}_{i} - \dot{Y}_{i+1}) = 0, \quad i = \overline{1, n-1},$$

$$m_{n}\ddot{Y}_{n} + K_{n}(Y_{n} - Y_{n-1}) + H_{n}(\dot{Y}_{n} - \dot{Y}_{n-1}) = \frac{\rho S}{2}(V^{2} + \dot{Y}_{n}^{2})(C_{i}(\alpha)\cos\alpha - C_{d}(\alpha)\sin\alpha) - CI, \quad (1.3)$$

$$L_{c}\dot{I} = C\dot{Y}_{n} - (R + R_{c})I.$$

Здесь m_i — масса тела M_i , K_i и H_i — коэффициенты жесткости и демпфирования пружины, соединяющей тела M_i и M_{i+1} . Кроме того, $Y_0 \equiv 0$.

Для сокращения записи введем следующее обозначение:

$$C_v = C_l(\alpha) \cos \alpha - C_d(\alpha) \sin \alpha.$$

Зависимости коэффициента C_y поперечной аэродинамической силы от угла атаки определялись для разных прямоугольных параллелепипедов в целом ряде экспериментальных работ. На рис. 2 точками показаны экспериментальные данные из работы [8]. Будем аппроксимировать функцию C_y полиномом пятой степени от величины \dot{Y}_n/V :

$$C_{y} = C_{y1} \frac{\dot{Y}_{n}}{V} + C_{y3} \left(\frac{\dot{Y}_{n}}{V}\right)^{3} + C_{y5} \left(\frac{\dot{Y}_{n}}{V}\right)^{5}, \qquad (1.4)$$

где $C_{v1} > 0, C_{v5} < 0.$

Сплошной линией на рис. 2 изображена аппроксимационная кривая (1.4) при следующих значениях коэффициентов:

$$C_{y1} = 1.6, \quad C_{y3} = 17.5, \quad C_{y5} = -272.3.$$
 (1.5)

Из рис. 2 видно, что качество аппроксимации достаточно хорошее. В дальнейшем будем считать, что $C_{y3} > 0$, а при численном моделировании будем пользоваться значениями (1.5).

Введем безразмерные величины следующим образом:

$$\tau = t \sqrt{\frac{K_n}{M}}, \quad y_i = \frac{Y_i}{b}, \quad \iota = \frac{IR_c}{Cb} \sqrt{\frac{M}{K_n}}, \quad \mu_i = \frac{m_i}{M}, \quad k_i = \frac{K_i}{K_n}, \quad i = \overline{1, n-1},$$

$$v = \frac{V}{b} \sqrt{\frac{M}{K_n}}, \quad h_i = \frac{H_i}{\sqrt{MK_n}}, \quad \mu = \frac{\rho Sb}{2M}, \quad L = \frac{L_c}{R_c} \sqrt{\frac{K_n}{M}}, \quad r = \frac{R}{R_c}, \quad \chi = \frac{C^2}{R_c \sqrt{MK_n}}.$$
(1.6)

ИЗВЕСТИЯ РАН. ТЕОРИЯ И СИСТЕМЫ УПРАВЛЕНИЯ № 5 2023

Здесь $M = m_1 + m_2 + ... + m_n$ — масса всей системы, b — характерный размер параллелепипеда (например, длина стороны основания). Параметр μ характеризует относительную плотность среды.

С учетом (1.6), уравнения динамики системы в безразмерном виде будут выглядеть так:

$$\mu_{i}y_{i}'' + k_{i}(y_{i} - y_{i-1}) + h_{i}(y_{i}' - y_{i-1}') + k_{i+1}(y_{i} - y_{i+1}) + h_{i+1}(y_{i}' - y_{i+1}') = 0, \quad i = 1, n-1,$$

$$\mu_{n}y_{n}'' + (y_{n} - y_{n-1}) + h_{n}(y_{n}' - y_{n-1}') = \mu(v^{2} + y_{n}'^{2}) \left(C_{y1}\frac{y_{n}'}{v} + C_{y3}\left(\frac{y_{n}'}{v}\right)^{3} + C_{y5}\left(\frac{y_{n}'}{v}\right)^{5} \right) - \chi \iota, \quad (1.7)$$

$$L\iota' = y_{n}' - (r+1)\iota.$$

Здесь штрихом обозначена производная по безразмерному времени, а $k_n = 1$.

Чтобы несколько упростить параметрический анализ системы (1.7), будем в дальнейшем считать, что массы всех материальных точек равны (т.е. $\mu_1 = \ldots = \mu_{n-1} = \mu_0$), а все пружины между материальными точками и между точками O и M_1 одинаковы: $k_1 = \ldots = k_{n-1} = k_0$ и $h_1 = \ldots = h_{n-1} = h_0$.

Будем считать, что индуктивность весьма мала. Тогда в последнем уравнении возникает малый параметр при старшей производной. В дальнейшем ограничимся рассмотрением вырожденной в смысле Тихонова системы:

$$\mu_{0}y_{i}^{"} + k_{i}\left(y_{i} - y_{i-1}\right) + h_{i}(y_{i}^{'} - y_{i-1}^{'}) + k_{i+1}\left(y_{i} - y_{i+1}\right) + h_{i+1}(y_{i}^{'} - y_{i+1}^{'}) = 0, \quad i = 1, n-1,$$

$$\mu_{n}y_{n}^{"} + \left(y_{n} - y_{n-1}\right) + h_{n}(y_{n}^{'} - y_{n-1}^{'}) = \mu\left(v^{2} + y_{n}^{'2}\right)\left(C_{y_{1}}\frac{y_{n}^{'}}{v} + C_{y_{3}}\left(\frac{y_{n}^{'}}{v}\right)^{3} + C_{y_{5}}\left(\frac{y_{n}^{'}}{v}\right)^{5}\right) - \frac{\chi}{r+1}y_{n}^{'}, \quad (1.8)$$

$$\iota = \frac{y_{n}^{'}}{r+1}.$$

Система (1.8), очевидно, имеет единственную неподвижную точку, а именно тривиальную.

2. Устойчивость и периодические решения. Линеаризуем систему (1.8) в окрестности тривиального равновесия. Получим

$$\mathbf{M}\mathbf{y}'' + \mathbf{B}\mathbf{y}' + \mathbf{A}\mathbf{y} = 0, \tag{2.1}$$

где

Здесь $\tilde{\chi} = \chi/(r+1)$.

Легко показать (например, методом математической индукции), что главные миноры A_i и B_i , $i = \overline{1, n}$, матриц **A** и **B** определяются следующими формулами:

$$A_{i} = (i+1)k_{0}^{i}, \quad i = \overline{1, n-2}, \quad A_{n-1} = k_{0}^{n-1} + (n-1)k_{0}^{n-2}, \quad A_{n} = \det \mathbf{A} = k_{0}^{n-1},$$

$$B_{i} = (i+1)h_{0}^{i}, \quad i = \overline{1, n-2}, \quad B_{n-1} = h_{0}^{n-1} + (n-1)h_{n}h_{0}^{n-2},$$

$$B_{n} = \det \mathbf{B} = h_{0}^{n-2} (h_{n}h_{0} + (-C_{y1}v\mu + \tilde{\chi})(h_{0} + (n-1)h_{n})).$$

Заметим, что все $A_i > 0$, а если

$$v < v_1(\tilde{\chi}) = \frac{h_n h_0}{\left(h_0 + (n-1)h_n\right) C_{yl} \mu} + \frac{\tilde{\chi}}{C_{yl} \mu},$$

то и все $B_i > 0$, значит, имеет место полная диссипация, и тривиальное равновесие асимптотически устойчиво. Отметим, что $C_{yl} > 0$, следовательно, v_l растет с ростом $\tilde{\chi}$.

Характеристический полином системы (2.1) имеет вид

$$f(\lambda) = \sum_{i=0}^{2n} p_i \lambda^i,$$

причем $p_0 = \det \mathbf{A} = k_0^{n-1}$ и, кроме того,

$$p_1 = -C_{y_1}v\mu + \tilde{\chi} + h_n$$
 при $n = 1$

И

$$p_1 = \mu_0^{n-1} (-C_{yl} \nu \mu + \tilde{\chi} + h_n) + \mu_n \mu_0^{n-2} (h_n + h_0(2n-3)) \quad при \quad n > 1.$$

Формулы для остальных коэффициентов p_i достаточно громоздки при n > 1 и здесь не приводятся.

Из выражения для свободного члена видно, что при $k_0 \neq 0$ характеристический полином не имеет нулевых корней и поэтому возможна только потеря устойчивости колебательного типа. Заметим также, что если скорость потока достаточно велика, так что

$$v > v_2(\tilde{\chi}) = \frac{\mu_n (h_n + h_0(2n-3)) \operatorname{sgn}(n-1)}{\mu_0 C_{yl} \mu} + \frac{\tilde{\chi} + h_n}{C_{yl} \mu},$$

то $p_1 < 0$ и имеет место неустойчивость.

Видно, что $v_1(\tilde{\chi}) \le v_2(\tilde{\chi})$, причем равенство достигается только в случае n = 1. Соответственно существует такое $v_1(0) \le v_0 \le v_2(0)$, что при $\tilde{\chi} = 0$ и $v < v_0$ равновесие асимптотически устойчиво, а при $v > v_0$ – неустойчиво.

Рассмотрим ситуацию, когда коэффициенты демпфирования пружин, плотность среды и коэффициент электромеханического взаимодействия малы:

$$h_0 \sim h_n \sim \chi \sim \mu, \quad \mu \ll 1. \tag{2.2}$$

Предположим, кроме того, что

$$C_{y1} \sim 1, \quad C_{y3} \sim \mu^{-1}, \quad C_{y5} \sim \mu^{-2}.$$
 (2.3)

Будем считать, что остальные параметры являются величинами порядка единицы. Введем вспомогательный малый параметр $\varepsilon = \sqrt{\mu}$ и найдем периодические решения системы следующего вида:

$$y_i = \varepsilon a_i \sin \omega \tau + \varepsilon^3 b_i \cos \omega \tau, \quad i = 1, n - 1, \quad y_n = \varepsilon a_n \sin \omega \tau.$$
 (2.4)

Воспользовавшись методом гармонического баланса, составим уравнения для определения неизвестных коэффициентов *a_i*, *b_i* и частоты ω:

$$-\mu_{i}a_{i}\omega^{2} + (k_{i} + k_{i+1})a_{i} - k_{i}a_{i-1} - k_{i+1}a_{i+1} = 0, \quad i = 1, n-1, \quad -\mu_{n}a_{n}\omega^{2} + a_{n} - a_{n-1} = 0,$$

$$-\mu_{i}\mu b_{i}\omega^{2} + (h_{i} + h_{i+1})\omega a_{i} - h_{i}\omega a_{i-1} - h_{i+1}\omega a_{i+1} + (k_{i} + k_{i+1})\mu b_{i} - k_{i}\mu b_{i-1} - k_{i+1}\mu b_{i+1} = 0, \quad (2.5)$$

$$i = \overline{1, n-1}, \quad -\frac{5\mu^3 \omega^3 C_{y5}}{8v^3} a_n^5 - \frac{3\mu^2 \omega^3 C_{y3}}{4v} a_n^3 - \mu \omega v C_{y1} a_n - h \omega a_{n-1} + h \omega a_n + \frac{\chi \omega}{r+1} a_n - \mu b_{n-1} = 0.$$

ИЗВЕСТИЯ РАН. ТЕОРИЯ И СИСТЕМЫ УПРАВЛЕНИЯ № 5 2023

Здесь принято $a_0 = b_0 = b_n = 0$.

Первые n - 1 уравнений системы (2.5) образуют замкнутую систему линейных уравнений относительно величин a_i , $i = \overline{1, n - 1}$. Разрешив ее и подставив результат в *n*-е уравнение (2.5), как нетрудно видеть, получим уравнение относительно частоты ω , не содержащее величины a_n . Из структуры уравнений ясно также, что это уравнение будет совпадать с уравнением на собственные частоты рассматриваемой системы в случае, когда все силы, кроме потенциальных, равны нулю. Отметим, что величины b_i не зависят от скорости потока v, поскольку она входит только в последнее уравнение (2.5).

Таким образом, величины ω , найденные из этого уравнения (левая часть которого представляет собой полином степени *n* от ω^2), зависят только от параметров μ_0 , μ_n и k_0 . Соответственно частоты циклов рассматриваемого типа не будут изменяться, в частности, при изменении параметров *v* и *r* (или $\tilde{\chi}$).

Для каждого положительного значения ω из уравнений с номерами n + 1, ..., 2n - 1 системы (2.5) можно найти коэффициенты $b_1, ..., b_{n-1}$ и подставить эти величины в последнее уравнение (2.5). В результате получим биквадратное уравнение относительно a_n , имеющее следующую структуру:

$$-\frac{5\mu^3\omega^5 C_{y5}}{8v^3}a_n^4 - \frac{3\mu^2\omega^3 C_{y3}}{4v}a_n^2 + \tilde{\chi}\omega - \mu C_{y1}\omega v + X = 0.$$
(2.6)

Здесь X имеет порядок μ и зависит от частоты ω и параметров системы, но не зависит от величин $\tilde{\chi}$ и v.

Будем считать, что $C_{yl} > 0$, $C_{y3} > 0$, $C_{y5} < 0$ (такая ситуация имеет место, в частности, для параллелепипеда, исследованного в [8]).

В случае, когда у характеристического полинома имеется пара корней с нулевой вещественной частью, свободный член в левой части (2.6) равен нулю. Заметим, что этот член зависит от $\tilde{\chi}$ и *v* линейно. Таким образом, он может обратиться в нуль при изменении одного из этих параметров только один раз, поэтому смена характера устойчивости при этом может произойти лишь однажды (разумеется, при условии, что соблюдаются соотношения (2.2), (2.3)). Отметим, что с увеличением $\tilde{\chi}$ свободный член возрастает, а с ростом *v* – убывает.

Выберем такую скорость потока, что при $\tilde{\chi} = 0$ имеет место неустойчивость (например, $v > v_2(0)$). При достаточно больших значениях $\tilde{\chi}$ (таких, что выбранное значение v меньше $v_1(\tilde{\chi})$) равновесие асимптотически устойчиво. Следовательно, при некотором значении $\tilde{\chi}_*$ происходит потеря устойчивости, и вещественная часть одной из пар комплексно-сопряженных корней характеристического полинома обращается в ноль (поскольку потеря устойчивости, как было отмечено выше, может быть только колебательной). Пусть модуль мнимой части этой пары корней при $\tilde{\chi} = \tilde{\chi}_*$ равен ω_* . В этой ситуации имеет место бифуркация Андронова–Хопфа, так что уравнение (2.6) должно иметь нулевой корень.

При $\tilde{\chi} < \tilde{\chi}_*$ свободный член (2.5) отрицателен, поэтому это уравнение имеет единственный положительный корень. Этому корню отвечает некоторый цикл рассматриваемого типа с частотой ω_* (назовем его цикл 1). При $\tilde{\chi} = \tilde{\chi}_*$ происходит бифуркация Андронова—Хопфа, и из равновесия рождается цикл (цикл 2). Но характер устойчивости равновесия меняется с неустойчивости на асимптотическую устойчивость, поэтому цикл 2 является отталкивающим (за исключением вырожденных случаев, требующих отдельного рассмотрения). При величинах $\tilde{\chi}$, больших $\tilde{\chi}_*$, но достаточно близких к этому значению, уравнение (2.5) имеет два положительных корня, так что в системе имеется два цикла данного типа. Очевидно, что при некотором $\tilde{\chi} = \tilde{\chi}_{**} > \tilde{\chi}_*$ дискриминант уравнения (2.6) обратится в нуль. При этом циклы 1 и 2 сольются. Соответственно цикл 1 в общем случае должен быть притягивающим. При дальнейшем увеличении $\tilde{\chi}$ дискриминант уравнения (2.6) станет отрицательным, так что циклы рассматриваемого типа с частотой ω_* исчезнут.

Рис. 3. Границы области устойчивости в зависимости от числа тел в цепочке

Таким образом, бифуркация Андронова–Хопфа является субкритической. С точки зрения отбора энергии потока, это представляется благоприятным ввиду расширения диапазона значений скорости, в котором существует притягивающий цикл. Заметим, что для тел с другими аэродинамическими характеристиками (например, такими, что $C_{y3} < 0$) бифуркация будет суперкритической и эволюция циклов при изменении параметра $\tilde{\chi}$ окажется несколько иной.

3. Численное моделирование. Проведем численное исследование влияния параметров системы на устойчивость положения равновесия и на характеристики циклов. При расчетах будем варьировать количество тел *n*, скорость потока *v* и нагрузочное сопротивление *r*, а для остальных безразмерных параметров будем использовать следующие значения:

$$k_0 = 0.7$$
, $\mu = h = h_0 = \chi = 0.01$.

На рис. 3 представлены границы области неустойчивости тривиального равновесия на плоскости параметров (r, v) для систем с различным числом тел (область неустойчивости расположена выше соответствующей кривой).

Видно, что с увеличением внешнего сопротивления (т.е. с уменьшением нагрузки) критическое значение скорости, при котором происходит потеря устойчивости, монотонно уменьшается. Кроме того, монотонное уменьшение критической скорости происходит с ростом количества тел в системе. Таким образом, увеличение количества тел в цепочке позволяет расширить диапазон скоростей потока, в котором равновесие неустойчиво и можно ожидать существования колебательных режимов.

Заметим, что для любого *n* существуют такие значения v^* и v^{**} скорости потока (такие, что $v^* < v^{**}$), что при $v < v^*$ равновесие асимптотически устойчиво при всех *r*, а при $v > v^{**}$ – неустойчиво при всех *r*. Для всех *v* из интервала (v^*, v^{**}) равновесие неустойчиво для всех *r*, больших некоторого критического значения *r*_c, и асимптотически устойчиво при $r < r_c$.

Для изучения влияния параметров на характеристики периодических движений, возникающих в системе, было проведено численное интегрирование безразмерных уравнений движения (1.8). На рис. 4 представлены зависимости амплитуды колебаний параллелепипеда от величины сопротивления *r* при разных значениях скорости потока и разном числе тел в цепочке. Неустойчивые циклы обозначены серыми квадратиками. Линиями изображены приближенные решения, полученные из системы (2.5).

Как следует из рис. 4, при достаточно малых значениях v и r периодические решения отсутствуют. Однако увеличение скорости потока приводит к тому, что циклы существуют при всех значениях сопротивления. Потеря устойчивости (в тех случаях, когда она имеет место) оказывается "жесткой". Отметим также, что амплитуда параллелепипеда на притягивающих циклах монотонно растет с ростом r, стремясь к некоторому предельному значению, зависящему от скорости потока (это нетрудно видеть и из уравнения (2.6)).

Рис. 4. Амплитуда колебаний параллелепипеда в зависимости от нагрузочного сопротивления для разного числа тел в цепочке и разных скоростей потока

Рис. 5. Амплитуда колебаний параллелепипеда в зависимости от скорости потока для разного числа звеньев в цепочке и разных значений сопротивления

Таким образом, качественные выводы, полученные на основе приближенных уравнений для периодических движений, отражают особенности поведения периодических решений, найденных путем численного интегрирования уравнений движения.

В то же время приближенное решение дает несколько заниженное значение амплитуды по сравнению с результатами численного интегрирования уравнений движения. Это рассогласование возрастает с увеличением скорости потока и числа тел в цепочке. Данное обстоятельство, по-видимому, связано с тем, что при сравнительно больших *v* и *n* необходимо учитывать члены следующего порядка малости.

Зависимость амплитуды A_n колебаний параллелепипеда от скорости потока для цепочек, состоящих из 1, 3 и 5 тел, и разных величин сопротивления приведена на рис. 5. Притягивающие циклы изображены черным цветом, отталкивающие — серым. Амплитуда колебаний параллелепипеда увеличивается с увеличением количества тел в цепочке, что представляется вполне естественным.

Отметим, что вне достаточно узкого интервала вблизи значения скорости потока, при котором происходит слияние притягивающего и отталкивающего циклов, амплитуда колебаний параллелепипеда на притягивающем цикле практически линейно растет с увеличением скорости (это согласуется, в частности, с результатами [6]). **4.** Средняя мощность и регулирование нагрузки. Одной из важнейших характеристик ветроэнергетической установки является средняя за период мощность, которую она может вырабатывать. В данном случае будем рассчитывать эту мощность (безразмерную) по следующей формуле:

$$P_{av} = \frac{1}{T} \int_{0}^{T} \iota^{2} r dt = \frac{1}{T} \int_{0}^{T} \left(\frac{y'_{n}}{r+1} \right)^{2} r dt.$$
(4.1)

Здесь Т – период колебаний.

Добиться максимизации мощности при фиксированной скорости потока можно за счет надлежащего регулирования величины нагрузочного сопротивления. Такой подход представляется достаточно перспективным для малых ветроэнергетических установок различных типов (например, [27]).

Поскольку $P_{av} = 0$ при r = 0 и $P_{av} \to 0$ при $r \to \infty$, то существует значение сопротивления (обозначим его r_{opt}), при котором мощность достигает максимума. Оценим величину r_{opt} . Из (2.4) и (3.1) имеем

$$P_{av} = \frac{1}{2} \frac{\mu \omega^2 a_n^2 r}{\left(r+1\right)^2}.$$

Обозначим $a_n^2 = z$. Продифференцировав (2.6) по r, получим

$$-\frac{5\mu^{3}\omega^{5}C_{y5}}{4v^{3}}zz_{r}^{\prime}-\frac{3\mu^{2}\omega^{3}C_{y3}}{4v}z_{r}^{\prime}-\frac{\chi\omega}{(r+1)^{2}}=0.$$

Отсюда

$$z'_{r} = \frac{4\chi v}{(r+1)^{2} \mu^{2} \omega^{2}} \left(-5C_{y5} \frac{\mu \omega^{2}}{v^{2}} z - 3C_{y3} \right)^{-1}.$$
(4.2)

Для притягивающего цикла (который отвечает большему из корней (2.6)) имеем $z'_r > 0$. Нетрудно показать, используя аналогичные выкладки и соображения, что $z''_r < 0$.

Продифференцируем теперь P_{av} по r:

$$\frac{dP_{av}}{dr} = \frac{\mu\omega^2}{2(r+1)^2} \left(z'_r r + z \frac{1-r}{1+r} \right).$$

Отсюда видно, что максимум P_{av} достигается при $r = r_{opt} > 1$. При этом чем меньше $z'_r|_{r=1}$, тем ближе оптимальное значение сопротивления $r_{opt} \kappa 1$ (т.е. к внутреннему сопротивлению катушки).

Из (2.6) следует, что при больших значениях v имеем $z \sim v^2$, а из (4.2) вытекает, что $z'_r \sim v$. Поэтому с ростом скорости потока величина r_{opt} будет уменьшаться, стремясь к 1.

Вычислим теперь P_{av} , используя результаты численного интегрирования уравнений движения системы при разных значениях параметров r, n и v. Результаты расчетов приведены на рис. 6.

Рисунок 6 показывает, что величина r_{opt} практически не зависит от количества тел в цепочке. Кроме того, она достаточно слабо зависит от скорости потока и близка к единице, причем ее отличие от единицы уменьшается с ростом v.

При этом для всех рассмотренных значений скорости потока разница между $P_{av}(r_{opt}) = P_{max}$ и $P_{av}(r)$ на интервале $1 \le r \le 1.25$ не превышает 2% от P_{max} . Поэтому для практических целей, повидимому, можно полагать $r_{opt} = 1$.

На рис. 7 представлена зависимость P_{max} от числа тел в цепочке при разных скоростях потока (v = 1, 2, 3).

ИЗВЕСТИЯ РАН. ТЕОРИЯ И СИСТЕМЫ УПРАВЛЕНИЯ № 5 2023

Рис. 6. Средняя за период мощность в зависимости от нагрузочного сопротивления при разных значениях *n* и *v*

Рис. 7. Максимальная мощность в зависимости от числа тел в цепочке для разных значений скорости потока

Из рис. 7 следует, что система с тремя телами позволяет получить существенный выигрыш по мощности (порядка 50% для v = 1 и 30% для v = 3) по сравнению с системой с одним телом. Однако при дальнейшем увеличении *n* рост $P_{\rm max}$ заметно замедляется. Поэтому использовать длинные цепочки нецелесообразно (особенно в связи с возможными техническими сложностями, связанными с поддержанием работы длинной цепочки).

С учетом вышеизложенного регулирование нагрузочного сопротивления, направленное на максимизацию P_{av} , по-видимому, целесообразно осуществлять следующим образом. Если скорость потока находится в диапазоне от v^* до v^{**} и система уже совершает колебания, то следует выбирать сопротивление равным max (r_{opt}, r_c) , где r_c – значение сопротивления, при котором равновесие теряет устойчивость. Если $v > v^{**}$, то можно задавать $r = r_{opt}$.

Чтобы обеспечить как можно более быстрый переход в колебательный режим из состояния покоя в случае, когда $v^* < v < v^{**}$, следует выбрать максимально возможное значение r (например, разомкнуть цепь). После того, как система выйдет на режим, нужно уменьшить сопротивление до указанного выше значения.

Заключение. Проведено исследование динамики ветроэнергетической установки, работающей за счет галопирующих колебаний цепочки тел в потоке среды. Проанализировано влияние числа тел в цепочке, скорости потока и нагрузочного сопротивления на выходную мощность. Показано, что увеличение числа тел в цепочке позволяет уменьшить критическую скорость по-

тока, при которой в системе возникают колебания, а также повысить максимальную вырабатываемую мощность. Предложена схема регулирования нагрузочного сопротивления для получения максимальной мощности.

СПИСОК ЛИТЕРАТУРЫ

- 1. Den Hartog J.P. Transmission Line Vibration Due to Sleet // Trans. AIEE. 1932. V. 51. P. 1074–1086.
- Parkinson G.V., Brooks N.P.H. On the Aeroelastic Instability of Bluff Cylinders // ASME. J. Appl. Mech. 1961. V. 28. № 2. P. 252–258. https://doi.org/10.1115/1.3641663
- 3. *Parkinson G.V., Smith J.D.* The Square Prism as an Aeroelastic Non-Linear Oscillator // The Quarterly J. Mechanics and Applied Mathematics. 1964. V. 17. № 2. P. 225–239. https://doi.org/10.1093/gimam/17.2.225
- Luo S.C., Chew Y.T., Ng Y.T. Hysteresis Phenomenon in the Galloping Oscillation of a Square Cylinder // J. Fluids & Struct. 2003. V. 18. № 1. P. 103–118. https://doi.org/10.1016/S0889-9746(03)00084-7
- Barrero-Gil A., Sanz-Andrés A., Alonso G. Hysteresis in Transverse Galloping: The Role of the Inflection Points // J. Fluids & Struct. 2009. V. 25. № 6. P. 1007–1020. https://doi.org/10.1016/j.jfluidstructs.2009.04.008
- 6. *Люсин В.Д., Рябинин А.Н.* О галопировании призм в потоке газа или жидкости // Тр. ЦНИИ им. акад. А.Н. Крылова. 2010. Вып. 53 (337). С. 79–84.
- Bearman P.W., Gartshore I.S., Maull D.J., Parkinson G.V. Experiments on Flow-Induced Vibration of a Square-Section Cylinder // J. Fluids & Struct. 1987. V. 1. № 1. P. 19–34. https://doi.org/10.1016/s0889-9746(87)90158-7
- Sarioglu M., Akansu Y.E., Yavuz T. Flow Around a Rotatable Square Cylinder-Plate Body // AIAA Journal. 2006. V. 44. № 5. P. 1065–1072. https://doi.org/10.2514/1.18069
- Gao G.-Z., Zhu L.-D. Nonlinear Mathematical Model of Unsteady Galloping Force on a Rectangular 2: 1 Cylinder // J. Fluids & Struct. 2017. V. 70. P. 47–71. https://doi.org/10.1016/j.jfluidstructs.2017.01.013
- Abdel-Rohman M. Design of Tuned Mass Dampers for Suppression of Galloping in Tall Prismatic Structures // J. Sound & Vibr. 1994. V. 171. № 3. P. 289–299. https://doi.org/10.1006/jsvi.1994.1121
- Gattulli V., Di Fabio F., Luongo A. Simple and Double Hopf Bifurcations in Aeroelastic Oscillators with Tuned Mass Dampers // J. Franklin Institute. 2001. V. 338. P. 187–201. https://doi.org/10.1016/S0016-0032(00)00077-6
- 12. Selwanis M.M., Franzini G.R., Beguin C., Gosselin F.P. Wind Tunnel Demonstration of Galloping Mitigation with a Purely Nonlinear Energy Sink // J. Fluids & Struct. 2021. V. 100. P. 103169. https://doi.org/10.1016/j.jfluidstructs.2020.103169
- Barrero-Gil A., Alonso G., Sanz-Andres A. Energy Harvesting from Transverse Galloping // J. Sound & Vibr. 2010. V. 329. P. 2873–2883. https://doi.org/10.1016/J.JSV.2010.01.028
- 14. *Dai H.L., Abdelkefi A., Javed U., Wang L.* Modeling and Performance of Electromagnetic Energy Harvesting from Galloping Oscillations // Smart Mater. & Struct. 2015. V. 24. № 4. P. 045012. https://doi.org/10.1088/0964-1726/24/4/045012
- Hemon P., Amandolese X., Andrianne T. Energy Harvesting from Galloping of Prisms: A Wind Tunnel Experiment // J. Fluids & Struct. 2017. V. 70. P. 390–402. https://doi.org/10.1016/j.jfluidstructs.2017.02.006
- Javed U., Abdelkefi A., Akhtar I. An Improved Stability Characterization for Aeroelastic Energy Harvesting Applications // Comm. in Nonlin. Sci. & Num. Simul. 2016. V. 36. P. 252–265. https://doi.org/10.1016/j.cnsns.2015.12.001
- Tan T., Yan Z. Analytical Solution and Optimal Design for Galloping-Based Piezoelectric Energy Harvesters // Appl. Phys. Lett. 2016. V. 109. P. 253902. https://doi.org/10.1063/1.4972556
- Wang K.F., Wang B.L., Gao Y., Zhou J.Y. Nonlinear Analysis of Piezoelectric Wind Energy Harvesters with Different Geometrical Shapes // Arch. Appl. Mech. 2020. V. 90. P. 721–736. https://doi.org/10.1007/s00419-019-01636-8
- Zhao D., Hu X., Tan T., Yan Zh., Zhang W. Piezoelectric Galloping Energy Harvesting Enhanced by Topological Equivalent Aerodynamic Design // Energy Conv. & Manag. 2020. V. 222. P. 113260. https://doi.org/10.1016/j.enconman.2020.113260

локшин, селюцкий

- 20. *Zhang M., Abdelkefi A., Yu H., Ying X., Gaidai O., Wang J.* Predefined Angle of Attack and Corner Shape Effects on the Effectiveness of Square-Shaped Galloping Energy Harvesters // Applied Energy. 2021. V. 302. P. 117522. https://doi.org/10.1016/j.apenergy.2021.117522
- Vicente-Ludlam D., Barrero-Gil A., Velazquez A. Enhanced Mechanical Energy Extraction from Transverse Galloping Using a Dual Mass System // J. Sound & Vibr. 2015. V. 339. P. 290–303. https://doi.org/10.1016/j.jsv.2014.11.034
- Селюцкий Ю.Д. Динамика ветроэнергетической установки с двумя подвижными массами, использующей эффект галопирования // Изв. РАН. МТТ. 2023. № 2. С. 55–69. https://doi.org/10.31857/S0572329922100117
- Dosaev M. Interaction Between Internal and External Friction in Rotation of Vane with Viscous Filling // Appl. Math. Mod. 2019. V. 68. P. 21–28. https://doi.org/10.1016/j.apm.2018.11.002
- Wang Q., Goosen J., Van Keulen F. A Predictive Quasi-Steady Model of Aerodynamic Loads on Flapping Wings // J. Fluid Mech. 2016. V. 800. P. 688–719. https://doi.org/10.1017/jfm.2016.413
- Abohamer M.K., Awrejcewicz J., Starosta R., Amer T.S., Bek M.A. Influence of the Motion of a Spring Pendulum on Energy-Harvesting Devices // Appl. Sci. 2021. V. 11. P. 8658. https://doi.org/10.3390/app11188658
- 27. *Климина Л.А*. Метод формирования авторотаций в управляемой механической системе с двумя степенями свободы // Изв. РАН. ТиСУ. 2020. № 6. С. 3–14.