__ УПРАВЛЕНИЕ В СТОХАСТИЧЕСКИХ СИСТЕМАХ ____ И В УСЛОВИЯХ НЕОПРЕДЕЛЕННОСТИ

УЛК 623.465.756

НАВЕДЕНИЕ БЕСПИЛОТНОГО ЛЕТАТЕЛЬНОГО АППАРАТА С ТЕПЛОВИЗИОННЫМ КОРРЕЛЯЦИОННО-КОНТРАСТНЫМ АЛГОРИТМОМ АВТОСОПРОВОЖДЕНИЯ В УСЛОВИЯХ ИНФОРМАЦИОННОГО ПРОТИВОЛЕЙСТВИЯ¹

© 2023 г. В. А. Болдинов^{a,*}, В. А. Бухалёв^b, А. А. Скрынников^{a,c}, Б. Л. Шапиро^b

^аМосковский авиационный ин-т (национальный исследовательский ун-т), Москва, Россия ^bМосковский научно-исследовательский телевизионный ин-т, Москва, Россия ^cГосударственный научно-исследовательский ин-т авиационных систем, Москва, Россия

> *e-mail: viktorboldinov@mail.ru Поступила в редакцию 11.05.2023 г.

После доработки 30.06.2023 г. Принята к публикации 31.07.2023 г.

Рассматривается задача построения алгоритма автосопровождения наземного объекта для системы наведения беспилотного летательного аппарата. В состав системы наведения входят следящий тепловизионный координатор цели с комбинированным корреляционно-контрастным алгоритмом пеленгации и бесплатформенная инерциальная навигационная система. Наведение происходит в условиях информационного противодействия, вызывающего случайные перерывы информации и случайные изменения мощности помех, которые фиксируются соответствующими индикаторами. Получен комбинированный помехоустойчивый алгоритм автосопровождения, использующий показания индикаторов перерывов информации и мощности помех и измерения углов пеленга и основанный на теории систем со случайной скачкообразной структурой. Приведен пример, иллюстрирующий работу алгоритма и демонстрирующий удовлетворительную точность автосопровождения.

DOI: 10.31857/S0002338823060045, EDN: GPTPAT

Введение. Алгоритмы автосопровождения в тепловизионных и телевизионных системах наведения (СН) беспилотных летательных аппаратов (БПЛА) на наземные объекты можно разделить на два класса: контрастные и корреляционные.

В контрастных алгоритмах происходит выделение некоторых элементов изображения по контрасту с окружающим фоном, формирование из них объектов, которые могут рассматриваться в качестве гипотетических целей, выбор одного из них как цели наведения, формирование угла рассогласования между направлениями на цель и продольной оси следящего координатора для выполнения автосопровождения и наведения БПЛА [1].

В корреляционных алгоритмах угол рассогласования определяется по критерию максимального совпадения наблюдаемого изображения с эталоном, первоначально записанным в памяти компьютера и периодически обновляемым в процессе наведения. При этом совпадение текущего наблюдаемого изображения и эталона формируется на основе определения их взаимной корреляционной функции [2].

В состав СН входит бесплатформенная инерциальная навигационная система (БИНС), которая работает либо автономно, либо корректируется с командного пункта или системой спутниковой навигации. Информационное противодействие наведению БПЛА приводит к увеличению мощности помех в измерительных каналах вплоть до полного прекращения поступления информации об угловых координатах цели [2-4].

В статье рассматривается задача построения комбинированного корреляционно-контрастного алгоритма автосопровождения при наведении БПЛА на наземный объект по заданной траектории в условиях информационного противодействия.

¹ Работа выполнена при финансовой поддержке Российского научного фонда (проект № 22-29-00708).

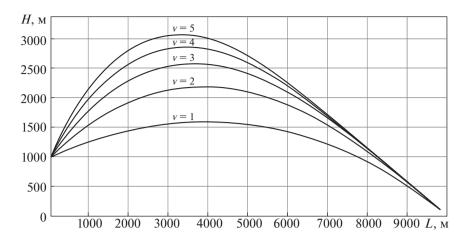


Рис. 1. Требуемые траектории наведения БПЛА в вертикальной плоскости

1. Постановка задачи. Математическая формулировка задачи имеет следующий вид. Требуемая траектория БПЛА в вертикальной плоскости описывается формулами [4]

$$\overline{\varepsilon}(t) = (\overline{\varepsilon}_0 - \overline{\varepsilon}_n) \left(\frac{\tau}{t_n}\right)^{\nu} + \overline{\varepsilon}_n, \quad \overline{\omega}(t) = \frac{\nu}{t_n} (\overline{\varepsilon}_0 - \overline{\varepsilon}_n) \left(\frac{\tau}{t_n}\right)^{\nu-1}$$
(1.1)

и проходит через две точки с углами наклона: $\overline{\epsilon}(t) = \overline{\epsilon}_0$ при t = 0 и $\overline{\epsilon}(t) = \overline{\epsilon}_n$ при $t = t_n$, где $\overline{\epsilon}(t)$ и $\overline{\omega}(t)$ — требуемые угол и угловая скорость линии визирования; t_n — конечный момент времени наведения; $\tau = t_n - t$ — время, оставшееся до конца наведения; $\tau = t_n - t$ — время, оставшееся до конца наведения; $\tau = t_n - t$ — время, оставшееся до конца наведения; $\tau = t_n - t$ — время, оставшееся до конца наведения; $\tau = t_n - t$ — время, отавшееся до конца наведения; $\tau = t_n - t$ — время, отавшееся до конца наведения; $\tau = t_n - t$ — время, отавшееся до конца наведения; $\tau = t_n - t$ — время, отавшееся до конца наведения; $\tau = t_n - t$ — время тории, $\tau = t_n - t$ — время, отавшееся до конца наведения; $\tau = t_n - t$ — время тории, $\tau = t_n - t$ — время тории $\tau = t_n - t$ — время тории, $\tau = t_n - t$ — время тории $\tau = t_n - t$ — время тории, $\tau = t_n - t$ — время тории $\tau = t_n - t$ — время тории, $\tau = t_n - t$ — время тории $\tau = t_n - t$ — время тории

Формулы (1.1) эквивалентны системе уравнений [4]:

$$\dot{\overline{\varepsilon}}(t) = \overline{\omega}(t), \quad \dot{\overline{\omega}}(t) = \tau^{-1}(t)(1 - v)\overline{\omega}(t), \tag{1.2}$$

$$\overline{\varepsilon}(0) = \overline{\varepsilon}_0, \quad \overline{\varepsilon}(t_n) = \overline{\varepsilon}_n, \quad \overline{\omega}(0) = t_n^{-1} v(\overline{\varepsilon}_n - \overline{\varepsilon}_0), \quad \overline{\omega}(t_n) = 0.$$
 (1.3)

Реальная траектория отличается от требуемой и описывается уравнениями [4]

$$\dot{\varepsilon}(t) = \omega(t), \quad \dot{\omega}(t) = \tau^{-1}(t) \left[2\omega(t) + u(t) + \xi(t) \right], \tag{1.4}$$

с начальными условиями $\varepsilon(0) = \overline{\varepsilon}_0$, $\omega(0) = \overline{\omega}(0)$, где $\xi(t)$ — центрированный гауссовский белый шум с интенсивностью G(t); u(t) — параметр управления БПЛА, определяемый формулой [4]

$$u(t) = -\left[\tau^{-1}(t)c_{\varepsilon}\hat{\varepsilon}^{o}(t) + c_{\omega}\hat{\omega}^{o}(t) + (v+1)\overline{\omega}(t)\right]. \tag{1.5}$$

В законе управления (1.5) c_{ε} и c_{ω} — параметрически оптимизированные постоянные коэффициенты, а $\hat{\varepsilon}^{\circ}(t)$ и $\hat{\omega}^{\circ}(t)$ — оценки переменных $\varepsilon^{\circ}(t) \triangleq \varepsilon(t) - \overline{\varepsilon}(t)$ и $\omega^{\circ}(t) \triangleq \omega(t) - \overline{\omega}(t)$.

В угломерных каналах следящего координатора цели измеряются сигналы $z^{i}(t)$, i=1,2:

$$z^{1}(t) = \delta(s^{(1)}(t), 2)[\epsilon(t) - \hat{\epsilon}(t)] + \sqrt{Q^{(1)}(\sigma^{(1)}(t))}\zeta^{(1)}(t),$$

$$z^{2}(t) = \delta(s^{(2)}(t), 2)[\epsilon(t) - \hat{\epsilon}(t)] + \tau^{-1}\sqrt{Q^{(2)}(\sigma^{(2)}(t))}\zeta^{(2)}(t),$$
(1.6)

где i=1 — номер контрастного пеленгатора, i=2 — номер корреляционного пеленгатора; $\hat{\epsilon}(t)$ — оценка угла $\epsilon(t)$, совпадающая с углом продольной оси координатора, которая оценивается

в координаторе на основании априорных данных и текущих измерений мощности сигнала $z^{(i)}(t)$;

$$\delta(s^{(i)}(t), 2) = \begin{cases} 0 & \text{при } s^{(i)}(t) = 1, \\ 1 & \text{при } s^{(i)}(t) = 2 \end{cases}$$

— символ Кронекера, описывает перерывы поступления информации; $s^{(i)}(t)$ (или в дискретной форме $s_k^{(i)} = s^{(i)}(t_k)$, где t_k — моменты времени, соответствующие дискретным моментам при $k = \overline{0,n}$) — индекс структуры перерывов — марковская цепь [4, 5] с двумя альтернативными состояниями, заданная априорными вероятностями переходов из состояния $s_k^{(i)}$ в состояние $s_{k+1}^{(i)}$: $q_k^{(i)}\left(s_{k+1}^{(i)}\middle|s_k^{(i)}\right)$, $s_k^{(i)} = 1,2$, где $s_k^{(i)} = 2$ — наличие, а $s_k^{(i)} = 1$ — отсутствие информации о координатах цели в сигнале измерения $z^{(i)}(t_k)$; $\zeta^{(i)}(t)$ — центрированный гауссовский белый шум с единичной интенсивностью; $\sqrt{Q^{(i)}(\sigma^{(i)}(t))}$ — коэффициент усиления белого шума $\zeta^{(i)}(t)$: $Q^{(i)}(\sigma^{(i)}(t) = j) = Q^{(ij)}$, $j = \overline{1, N^{(i)}}$; $\sigma^{(i)}(t)$ (или в дискретной форме $\sigma_k^{(i)} = \sigma^{(i)}(t_k)$, $\sigma_k^{(i)} = \overline{1, N^{(i)}}$) — марковская цепь с вероятностями переходов, равными $\phi_k^{(i)}\left(\sigma_{k+1}^{(i)}\middle|\sigma_k^{(i)}\right)$ при $\sigma_{k+1}^{(i)} \neq \sigma_k^{(i)}$ и

$$\varphi_k^{(i)}(\sigma_{k+1}^{(i)} = j \, \Big| \sigma_k^{(i)} = j) = 1 - \sum_{\nu=1, \nu \neq j}^{N^{(i)}} \varphi_k^{(i)}(\nu \, | j). \tag{1.7}$$

Структура $s^{(i)}(t)$ наблюдается с помощью индикатора, выходной сигнал которого $r^{(i)}(t)$ (или в дискретной форме $r_k^{(i)} = r^{(i)}(t_k)$) — условная марковская цепь, заданная условными вероятностями переходов при фиксированном $s_k^{(i)}$: $\pi_{k+1}^{(i)}(r_{k+1}^{(i)}|r_k^{(i)},s_{k+1}^{(i)})$.

Разница в формулах для $z^{(1)}(t)$ и $z^{(2)}(t)$ в (1.6) объясняется различным характером ошибок измерения в контрастных и корреляционных пеленгаторах: в первых отношение "сигнал—шум" по мере приближения к цели увеличивается приблизительно прямо пропорционально квадрату дальности до цели, а в корреляционных пеленгаторах, наоборот, уменьшается обратно пропорционально квадрату дальности вследствие роста дисперсии ошибки измерения угла рассогласования $\varepsilon(t) - \hat{\varepsilon}(t)$, вызванной периодической перезаписью эталона изображения.

Структура $\sigma^{(i)}(t)$ наблюдается с помощью индикатора $\rho^{(i)}(t)$ (или в дискретной форме $\rho_k^{(i)} = \rho^{(i)}(t_k)$) — условная марковская цепь с $N^{(i)}$ состояниями: $\rho_k^{(i)} = \overline{1,N^{(i)}}$, заданная условными вероятностями переходов $\psi_{k+1}^{(i)}\left(\rho_{k+1}^{(i)}\left|\rho_k^{(i)},\sigma_{k+1}^{(i)}\right.\right)$.

Вероятности переходов индикаторов перерыва информации и индикаторов мощности помех описываются формулами (верхний индекс i опущен для простоты записи):

$$\pi_{k+1}(r_{k+1}|r_k,s_{k+1}) = \begin{cases} 1 - \pi_{k+1}^r, & r_{k+1} \neq r_k, \\ \pi_{k+1}^r, & r_{k+1} = r_k, \end{cases}$$
(1.8)

$$\pi_{k+1}^r = \pi_k^r e^{-\Delta t/T_r} + (1 - e^{-\Delta t/T_r}) \overline{\pi}_{k+1}^r (r_{k+1} | s_{k+1}), \quad r_k, s_k = 1, 2,$$

$$\psi_{k+1}(\rho_{k+1}|\rho_k,\sigma_{k+1}) = \begin{cases}
1 - \pi_{k+1}^{\rho}, & \rho_{k+1} \neq \rho_k, \\
\pi_{k+1}^{\rho}, & \rho_{k+1} = \rho_k,
\end{cases}$$
(1.9)

$$\pi_{k+1}^{\rho} = \pi_k^{\rho} e^{-\Delta t/T_{\rho}} + (1 - e^{-\Delta t/T_{\rho}}) \overline{\pi}_{k+1}^{\rho} \left(\rho_{k+1} \middle| \sigma_{k+1} \right), \quad \rho_k, \quad \sigma_k = \overline{1, N},$$

где T_r, T_ρ — параметры инерционности индикаторов — постоянные времени $(T_\mu, \mu = r, \rho)$ апериодических звеньев, описывающих переходный процесс в виде экспоненты при смене показаний

индикатора μ); $\overline{\pi}_{k+1}^r(\bullet)$ — установившиеся значения правильных (при $r_{k+1}=s_{k+1},\; \rho_{k+1}=\sigma_{k+1})$ и ошибочных решений (при $r_{k+1}\neq s_{k+1},\; \rho_{k+1}\neq \sigma_{k+1})$ индикатора.

Требуется построить алгоритм автосопровождения цели, основанный на измерениях угловых координат $z^{(i)}(t)$ и показаниях индикаторов перерывов информации $r^{(i)}(t)$ и индикаторов мощности помех $\rho^{(i)}(t)$ в контрастном (i=1) и корреляционном (i=2) пеленгаторах, а также на показаниях БИНС.

- **2. Алгортм автосопровождения.** Приближенно-оптимальный алгоритм, базирующийся на теории систем со случайной скачкообразной структурой (ССС) [4, 5] состоит из следующих блоков:
- 1) классификаторы перерывов информации, вычисляющие вероятности перерывов $\hat{p}_k^{(i)}(s_k^{(i)});$
- 2) идентификаторы перерывов информации, определяющие оценки $\hat{s}^{(i)}(t)$ состояний $s^{(i)}(t)$;
- 3) классификаторы и идентификаторы мощности помех, расчитывающие оценки $\hat{Q}^{(i)}(t)$, i=1,2;
- 4) фильтр, вычисляющий оценку $\hat{\epsilon}(t)$ угла визирования цели $\epsilon(t)$.

Алгоритм описывается следующими уравнениями.

1. Кассификатор перерывов информации:

$$\hat{p}_{k+1}^{(i)}(1) = \left[1 + \frac{\tilde{p}_{(k+1)}^{(i)}(2)\pi_{k+1}^{(i)}\left(r_{k+1}^{(i)}\left|r_{k}^{(i)},2\right)\right]^{-1}}{\tilde{p}_{(k+1)}^{(i)}(1)\pi_{k+1}^{(i)}\left(r_{k+1}^{(i)}\left|r_{k}^{(i)},1\right)\right]^{-1}}, \quad \hat{p}_{k+1}^{(i)}(2) = 1 - \hat{p}_{k+1}^{(i)}(1),$$

$$\tilde{p}_{k+1}^{(i)}(1) = q_{k}^{(i)}(1|1)\hat{p}_{k}^{(i)}(1) + q_{k}^{(i)}(1|2)\hat{p}_{k}^{(i)}(2), \quad \tilde{p}_{k+1}^{(i)}(2) = 1 - \tilde{p}_{k+1}^{(i)}(1).$$

$$(2.1)$$

2. Идентификатор перерывов информации:

$$s^{(i)}(t) = \begin{cases} 1 & \text{при} & \hat{p}^{(i)}(1) \ge p_{\text{nop}}^{(i)}, \\ 2 & \text{при} & \hat{p}^{(i)}(1) < p_{\text{nop}}^{(i)}, \end{cases}$$

$$\hat{p}^{(i)}(1) = \hat{p}_{k+1}^{(i)}(1) + \frac{\hat{p}_{k}^{(i)}(1)}{2}, \quad i = 1, 2,$$

$$(2.2)$$

где $p_{\text{пор}}^{(i)}$ — пороговое значение вероятности.

3. Классификатор мощности помех:

$$\hat{P}_{k+1}^{(i)}(\sigma_{k+1}^{(i)}) = \frac{\tilde{P}_{k+1}^{(i)}(\sigma_{k+1}^{(i)})\psi_{k+1}^{(i)}(\rho_{k+1}^{(i)}|\rho_{k}^{(i)},\sigma_{k+1}^{(i)})}{\sum_{\sigma_{k+1}^{(i)}} \tilde{P}_{k+1}^{(i)}(\sigma_{k+1}^{(i)})\psi_{k+1}^{(i)}(\rho_{k+1}^{(i)}|\rho_{k}^{(i)},\sigma_{k+1}^{(i)})},$$

$$\tilde{P}_{k+1}^{(i)}(\sigma_{k+1}^{(i)}) = \sum_{\sigma_{k}^{(i)}} \phi_{k+1}^{(i)}(\sigma_{k+1}^{(i)}|\sigma_{k}^{(i)})\hat{P}_{k}^{(i)}(\sigma_{k}^{(i)}), \quad \sigma_{k}^{(i)} = \overline{1,N}.$$
(2.3)

4. Идентификатор мощности помех:

$$\hat{Q}_{k}^{(i)} = \sum_{\sigma_{k}^{(i)}} \hat{P}_{k}^{(i)}(\sigma_{k}^{(i)}) Q_{k}^{(i)}(\sigma_{k}^{(i)}), \quad \sigma_{k}^{(i)} = \overline{1, N},
\hat{Q}^{(i)}(t) = \hat{Q}_{k+1}^{(i)} + \frac{\hat{Q}_{k}^{(i)}}{2}.$$
(2.4)

5. Фильтр:

$$\hat{\varepsilon}(t) = \hat{\omega}(t) + \delta(\hat{s}^{(1)}(t), 2)k_{\varepsilon}^{(1)}(t)\tau^{-1}z^{(1)}(t) + \delta(\hat{s}^{2}(t), 2)k_{\varepsilon}^{(2)}(t)z^{(2)}(t), \tag{2.5}$$

$$\dot{\hat{\omega}}(t) = \tau^{-1}[2\hat{\omega}(t) + u(t)] + \delta(\hat{s}^{(1)}(t), 2)k_{\omega}^{(1)}(t)\tau^{-2}z^{(1)}(t) + \delta(\hat{s}^{(2)}(t), 2)(k_{\omega}^{(2)}(t) + \tau^{-1}k_{\varepsilon}^{(2)})z^{(2)}(t),$$

$$k_{\varepsilon}^{(1)}(t) = \sqrt{0.5(1 + \sqrt{1 + 16\gamma(t)})}, \quad k_{\omega}^{(1)}(t) = 0.5(1 + k_{\varepsilon}^{(1)}(t))k_{\varepsilon}^{(1)}(t),$$

ИЗВЕСТИЯ РАН. ТЕОРИЯ И СИСТЕМЫ УПРАВЛЕНИЯ № 6 2023

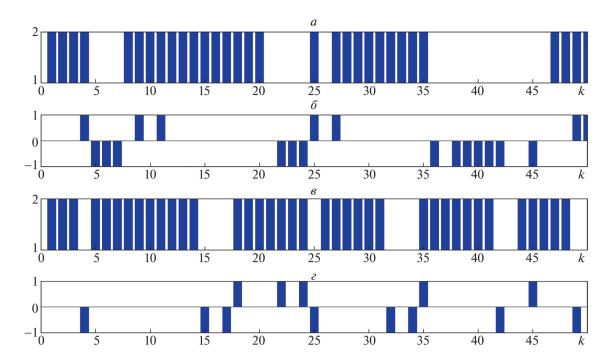


Рис. 2. Структура перерывов информации и их распознавание в контрастном и корреляционном пеленгаторах

$$k_{\varepsilon}^{(2)}(t) = \sqrt{2k_{\omega}^{(2)}(t)}, \quad k_{\omega}^{(2)}(t) = \sqrt{G^{(2)}(t)/\hat{Q}^{(2)}(t)},$$

$$\gamma(t) \triangleq G^{(1)}(t)\tau^{2}/\hat{Q}^{(1)}(t),$$

где $\delta(\bullet)$ — символ Кронекера, а u(t) определяется формулами (1.1) и (1.5), где $\varepsilon^0(t) \triangleq \hat{\varepsilon}(t) - \overline{\varepsilon}(t)$; $\hat{\omega}^0(t) \triangleq \hat{\omega}(t) - \overline{\omega}(t)$.

3. Пример. Рассмотрим пример представленной задачи при следующих исходных данных: $\Delta f = 0.1 \; \Gamma \mathrm{u}, \; \Delta t = 0.1 \; \mathrm{c}, \; s_k^{(i)} = 1, \; 2, \; \sigma_k^{(i)} = 1, \; 2, \; Q_k^{(i)} = [Q_{\min}^{(i)}, Q_{\max}^{(i)}].$

Результаты имитационного математического моделирования представлены на рис. 2-5.

На графиках рис. 2 изображено: a — перерывы информации в контрастном пеленгаторе, где $s_k^{(1)}=1$ — "есть перерыв", а $s_k^{(1)}=2$ — "нет перерыва"; δ — распознавание перерывов информации $\Delta s_k^{(1)}=s_k^{(1)}-\hat{s}_k^{(1)}$, где $\Delta s_k^{(1)}=0$ — "правильные решения", $\Delta s_k^{(1)}=1$ — "пропуск сигнала", а $\Delta s_k^{(1)}=-1$ — "ложная тревога"; ϵ , ϵ — результаты, аналогичные ϵ и ϵ , только для второго (корреляционного) пеленгатора.

На графиках рис. З отображено: a — структура изменения мощности помех в контрастном пеленгаторе, где $\sigma_k^{(1)}=1$ — "минимальная мощность помех $Q_{\min}^{(1)}$ ", а $\sigma_k^{(1)}=2$ — "максимальная мощность помех $Q_{\max}^{(1)}$ "; δ — распознавание мощности помех в контрастном пеленгаторе $\Delta\sigma_k^{(1)}=\sigma_k^{(1)}-\hat{Q}_k^{(1)}$, где $\Delta\sigma_k^{(1)}=0$ — "правильные решения", а $\Delta\sigma_k^{(1)}=1$ — "ошибочные решения"; e, e — результаты, аналогичные e0, только для корреляционного пеленгатора.

На графиках рис. 4 рассмотрены помехи (ошибок измерений) в контрастном ($\zeta_k^{(1)}$) и корреляционном ($\zeta_k^{(2)}$) пеленгаторах, представляющие собой центрированные гауссовские белые шумы с мощностью $Q_k^{(1)}$ и $Q_k^{(2)}$ соответственно.

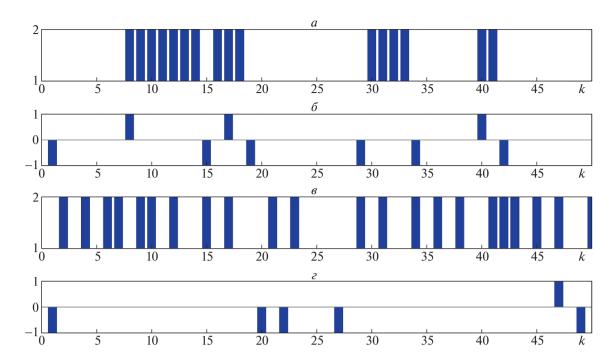


Рис. 3. Структура изменения мощности помех и распознавание изменения мощности помех в контрастном и корреляционном пеленгаторах

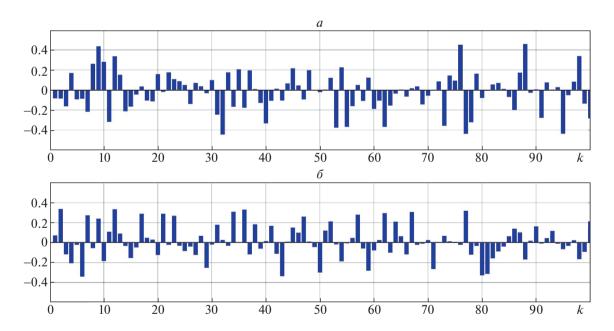


Рис. 4. Помехи в контрастном и корреляционном пеленгаторах

На рис. 5 приведены траектории полета БПЛА в вертикальной плоскости с углом пеленга цели ε_k (траектория 1) и его оценкой $\hat{\varepsilon}_k$ (траектория 2), полученной разработанным корреляционно-контрастным алгоритмом автосопровождения цели тепловизионной СН БПЛА.

Заключение. Предложен метод построения приближенно-оптимального алгоритма автосопровождения неподвижного наземного объекта комбинированной СН БПЛА. СН включает в себя контрастный и корреляционный тепловизионные пеленгаторы и БИНС, которые могут

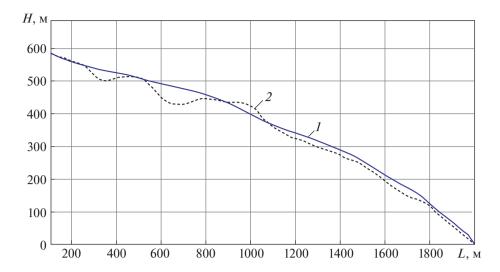


Рис. 5. Траектории наведения БПЛА с текущим углом пеленга и его оценкой

работать как вместе, так и по отдельности в зависимости от условий применения и характеристик информационного противодействия.

Противодействие приводит к значительному и неточно определяемому изменению отношения "сигнал—шум" вплоть до перерывов в поступлении информации о координатах объекта. Алгоритм автосопровождения, построенный на основе теории систем ССС, обладает свойством сходимости оценок угловых координат объекта в указанных условиях.

СПИСОК ЛИТЕРАТУРЫ

- 1. Ллойд Дж. Системы тепловидения. М.: Мир, 1978.
- 2. *Бухалёв В.А., Болдинов В.А., Сухачев А.Б., Шапиро Б.Л.* Управление беспилотным летательным аппаратом с тепловизионным корреляционным координатором в условиях низкочастотных помех // Информационно-измерительные и управляющие системы. 2019. № 7. Т. 17. С. 13—20.
- 3. *Баханов Л.Е., Давыдов А.Н., Корниенко В.Н. и др.* Системы управления вооружением истребителей. Основы интеллекта многофункционального самолета. Под ред. Федосова Е.А. М.: Машиностроение, 2005. 400 с.
- 4. *Бухалёв В.А., Скрынников А.А., Болдинов В.А.* Алгоритмическая помехозащита беспилотных летательных аппаратов, М.: ФИЗМАТЛИТ, 2018. 192 с.
- 5. *Бухалёв В.А.* Распознавание, оценивание и управление в системах со случайной скачкообразной структурой. М.: Наука. ФИЗМАТЛИТ, 1996. 287 с.