МАТЕРИАЛЫ ДЛЯ ТОПЛИВНЫХ ЭЛЕМЕНТОВ НА БАЗЕ КОБАЛЬТИТОВ БАРИЯ И СТРОНЦИЯ, СИНТЕЗИРОВАННЫХ НА СОЛНЕЧНОЙ ПЕЧИ

© 2023 г. М. С. Пайзуллаханов^{а,} *, О. Р. Парпиев^а, У. Р. Саломов^b, Ж. З. Шерматов^а, Г. Ш. Каримова^c, С. С. Сабиров^d

а Институт материаловедения Академии наук Республики Узбекистан,

ул. Чингиза Айтматова, д. 26, г. Ташкент, 100085 Республика Узбекистан

^b Ферганский политехнический институт, Ферганская ул., д. 86, г. Фергана, 150107 Республика Узбекистан

^с Национальный научно-исследовательский институт возобновляемых источников энергии,

ул. Чингиза Айтматова, д. 26, г. Ташкент, 100085 Республика Узбекистан

^d Ферганский филиал Ташкентского университета информационных технологий,

Ферганская ул., д. 100, г. Фергана, 150107 Республика Узбекистан

*e-mail: fayz@bk.ru

Поступила в редакцию 12.10.2022 г. После доработки 16.11.2022 г. Принята к публикации 25.11.2022 г.

Изучены материалы на основе перовскитовых структур кобальтитовых составов стронция $SrCoO_{3-\delta}$ и бария $BaCoO_{3-\delta}$, полученные синтезом из расплава стехиометрической смеси оксида кобальта с карбонатами стронция $Co_2O_3 + SrCO_3$ или бария $Co_2O_3 + BaCO_3$ в потоке концентрированного солнечного излучения высокой (150 BT/cm²) плотности на солнечной печи с последующей закалкой в воде и спеканием при температуре 1300 К. Гексагональные кобальтиты бария и стронция имели развитую тонкую микроструктуру (зерна в виде плотно упакованных многогранников разной формы размером 2–5 мкм), полупроводниковый характер электрической проводимости и низкий коэффициент термического расширения (в среднем $12.6 \times 10^{-6} \text{ K}^{-1}$) в интервале температур 300–1100 К. Изменение электрического сопротивления материалов обусловлено высоким сродством ионов кобальта к кислороду, вызывающим сорбцию кислорода и, как следствие, приводящим к изменениям электронной структуры ионов кобальта в результате зарядовых переходов $2Co^{3+} = Co^{2+} + Co^{4+}$. Это обстоятельство указывает на возможность использования материалов на основе кобальтитов бария и стронция в качестве селективных абсорберов, кислородных мембран или катодных материалов для изготовления твердооксидных топливных элементов при производстве электрической энергии, а также материалов для хранения водорода.

Ключевые слова: кобальтиты бария и стронция, солнечная печь, плавление, расплав, закалка, спекание, керамика, твердооксидные топливные элементы, абсорберы кислорода, зарядовые переходы **DOI:** 10.56304/S0040363623050041

Перовскитовые кобальтиты стронция SrCoO_{3-δ} и бария ВаСоО_{3-δ} обладают широким спектром электронных и магнитных характеристик. Они представляют большой интерес в плане их использования в качестве катодного или анодного материала для твердооксидных топливных элементов, кислородопроницаемой, воздухоразделительной или ионно-электронной мембраны для переноса кислорода, а также электронного, ионного и смешанного проводников. Например, в [1] показано, что наночастицы Ва₂Со₉О₁₄ могут быть применены для хранения водорода. В [2] кобальтиты, полученные твердофазным синтезом, проявили каталитические свойства по разделению воды на кислород и водород при определенных температурах.

Особенность таких соединений — зависимость их токопроводящих свойств от концентрации анионных вакансий [3]. При этом синтез при высоких давлениях позволяет получить идеальную кислородную стехиометрию ($\delta = 0$). Например, SrCoO₃, полученный при давлении 600 МПа [4, 5], представляет собой перовскит с простой кубической структурой. Оксиды SrCoO_{3- δ}, изготовленные при давлении 0.1 МПа в атмосфере воздуха, демонстрируют приблизительную стехиометрию Sr₂Co₂O₅ (или SrCoO_{2.5}). Наблюдаемые высокотемпературные браунмиллеритоподобные

структуры, так называемые "высокотемпературные фазы", и гексагональные структуры, названные "низкотемпературными фазами", стабилизируются вследствие переходов порядок – беспорядок кислородных вакансий. Полное упорядочение вакансий с образованием фазы браунмиллерита устанавливается в течение несколько секунд при закалке после высокотемпературного (обычно 1300 K) твердофазного синтеза [1–7].

Следует отметить, что кобальтитовые соединения щелочно-земельных металлов очень чувствительны к содержанию кислорода, что существенно влияет на их физико-химические свойства. Например, $SrCoO_{3-\delta}$ является ферромагнетиком при температуре Кюри 200 K, а $SrCoO_{2.5-\delta}$ проявляет антиферромагнитные свойства при температуре Нееля 570 K [8–10].

В последнее время все больше внимания уделяется кобальтиту бария благодаря его полупроводниковым характеристикам [11–16]. Материалы, полученные на основе $BaCoO_{3-\delta}$ и легированные некоторыми другими редкоземельными элементами (Y, Sc, Nd), обладают небольшим удельным сопротивлением при низких температурах и могут быть использованы в качестве термисторов.

Необходимо отметить, что в материаловедении весьма популярны солнечные установки на базе зеркально концентрирующих систем. Применение устройств (лазеров, плазматронов, электронно-лучевых или дуговых ламп), создающих потоки квантов световых излучений и/или частиц, обладающих большой энергией и высокой плотностью, для модификации поверхности и обработки материалов позволяет создавать неравновесные микроструктуры, которые могут быть использованы для изготовления материалов, чувствительных к высокотемпературному окислению или восстановлению. Солнечные установки обладают уникальными возможностями по обработке металлических (сварка и наплавка, обработка поверхности, покрытие и упрочнение поверхности, а также порошковая металлургия) и неметаллических (керамика, фуллерены, углеродные нанотрубки) материалов [17, 18].

Целью данной работы являются получение материалов, предназначенных для использования в топливных элементах, на основе кобальтитов бария и стронция, синтезированных из расплава на солнечной печи, и исследование их кристаллической структуры, микроструктуры и электрических свойств.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Из смесей оксида кобальта с карбонатом бария BaCO₃ + Co₂O₃ или карбонатом стронция SrCO₃ + Co₂O₃ в стехиометрическом соотношении после измельчения до частиц размером 63 мкм формовали полусухим прессованием при давлении 100 МПа образцы в виде цилиндров диаметром 20 мм, которые устанавливали на водоохлаждаемый плавильный агрегат, находящийся на фокальной плоскости солнечной печи [19]. На образец направляли концентрированный поток солнечного излучения плотностью *Q* примерно 150 Вт/см², определенный в соответствии с законом Стефана – Больцмана:

$$Q = \varepsilon \sigma T^4$$
.

где ε — интегральная поглощательная способность тела; *T* — температура; σ — постоянная Стефана — Больцмана, равная 5.67 × 10⁻⁸ Вт/(м² · K).

При Q = 150 Вт/см² температура нагретого образца составляла 2200 К. При такой температуре происходило его плавление. Капли расплава падали в воду, охлаждались со скоростью 10^3 К/с и растрескивались на мелкие стеклоподобные частицы произвольной формы. Далее плавленый материал мололи в агатовой ступке до тонины 60 мкм, сушили в сушильном шкафу при 700 К, формовали образцы в виде цилиндров диаметром 8 мм и высотой 15 мм. Обжиг образцов проводили при температуре 1300 К с последующим произвольным охлаждением.

Рентгенофазовый анализ образцов выполняли на установке ДРОН-3М с анодом из меди с Каизлучением в геометрии отражения Брэгга – Брентано при $\lambda = 1.5418$ Å, $20 \le 2\theta \le 60^{\circ}$ (здесь λ – длина волны излучения; 2θ – угол Брэгга). Щелевая система была выбрана такой, чтобы пучок рентгеновских лучей полностью находился в пределах образца во всем диапазоне 2θ .

Температурный коэффициент термического расширения определяли с помощью катетометра в интервале температур 300—1250 К. Электрическое сопротивление измеряли четырехконтактным методом при 300—1300 К. Коэффициент термического расширения образцов определяли дилатометрическим методом в воздушной среде.

Относительную плотность образцов ρ , представляли в виде отношения плотности материала образца ρ_m к плотности дистиллированной воды $\rho_{d,w} = 0.98$ г/см³ при нормальных условиях:

$$\rho_r = \frac{\rho_m}{\rho_{d.w}}.$$

Относительная плотность $BaCoO_3$ составляла 4.87 г/см³, $SrCoO_3 - 4.64$ г/см³.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

На рис. 1 приведена рентгенограмма кобальтита стронция, т.е. зависимость интенсивности отражения *I* от угла Брэгга 20. Для кобальтита

Рис. 1. Рентгенограмма кобальтита стронция SrCoO₃, полученного из расплава на солнечной печи

стронция структура определена в гексагональной пространственной группе P63/mmc с параметрами решетки a = b = 5.652 Å, c = 4.762 Å. Атомы Ba, Co и O располагались в положениях 2d, 2a и 6h соответственно. У кобальтита бария также наблюдалась гексагональная структура с параметрами решетки a = b = 9.511 Å, c = 12.287 Å.

На рис. 2 представлены микроснимки, полученные с помощью сканирующего электронного микроскопа (СЭМ-микроснимки), кобальтитов бария и стронция, изготовленных закалкой расплава на солнечной печи. На микроснимках видны темные пятна различной формы, которые соответствуют кристаллитам — зернам кобальтитовых материалов. Анализ СЭМ-микроснимков BaCoO_{3-δ} показывает, что его зерна имеют тонкую микроструктуру. Средний размер зерна керамики составляет 2–5 мкм. Относительная плотность

образцов равна 94%. Плотная микроструктура позволила получить хорошую воспроизводимость электрических характеристик керамики.

Температурная зависимость электрического сопротивления ρ образцов, приведенная на рис. 3, обнаруживает его экспоненциальное уменьшение с ростом температуры в интервале 300–1200 К. В то же время среднее значение коэффициента термического расширения образцов материала α в температурном интервале 300–1273 К составляло 12.6 × 10⁻⁶ K⁻¹ (рис. 4). Видно, что с ростом температуры обжига наблюдается повышение коэффициента термического расширения.

Полученные результаты свидетельствует о том, что кобальтиты ВаСоО₃ и СаСоО₃, обладающие высоким электрическим сопротивлением (35-75 Ом · см) и низким коэффициентом термического расширения (в среднем $12.6 \times 10^{-6} \text{ K}^{-1}$). могут быть использованы как термоэлектрические материалы в интервале температур 300-1100 К [20-22]. Кроме того, изменение электрического сопротивления обусловлено высоким сродством ионов кобальта к кислороду. С увеличением температуры происходит сорбция атмосферного кислорода (окисление), что вызывает зарядовые переходы на ионах кобальта $2Co^{3+} = Co^{2+} + Co^{4+}$. Это указывает на возможность использования таких материалов в качестве кислородных мембран или катодных материалов для твердооксидных топливных элементов.

выводы

1. Технология, включающая в себя плавление на солнечной печи стехиометрической смеси оксида кобальта с карбонатами бария или стронция, закалку расплава в воде, измельчение, отливку и формование с последующим спеканием при 1300 К, позволяет получить материал на основе

Рис. 2. СЭМ-микроснимки кобальтитов бария (а) и стронция (б), полученных закалкой расплава на солнечной печи

Рис. 3. Температурные зависимости электрического сопротивления кобальтитов бария (*1*) и стронция (*2*) в температурном интервале 300–1200 К

Рис. 4. Зависимость коэффициента термического расширения образцов от температуры обжига

гексагональных кобальтитов бария и стронция с развитой тонкой микроструктурой (зерна размером 2–5 мкм).

2. Состав, кристаллическая структура и микроструктурные особенности придают материалам характер полупроводника, обладающего высоким электрическим сопротивлением (35–75 Ом \cdot см) и низким коэффициентом термического расширения (в среднем 12.6 × 10⁻⁶ K⁻¹) в интервале температур 300–1100 К.

3. Кобальтиты бария и стронция как селективные абсорберы кислорода могут быть использованы в топливных элементах в качестве катодных материалов при производстве электрической энергии.

СПИСОК ЛИТЕРАТУРЫ

- 1. **Barium** cobaltite nanoparticles: Sol-gel synthesis and characterization and their electrochemical hydrogen storage properties / Fateme Sadat Razavi, Morteza Hajizadeh-Oghaz, Omid Amiri, Maryam Sadat Morassaei // Int. J. Hydrogen Energy. 2021. V. 46. Is. 1. P. 886–895. https://doi.org/10.1016/j.ijhydene.2020.09.196
- Aswathy M.N., Arun M. Umarji. Rare earth barium cobaltites: potential candidates for low-temperature oxygen separation // SN Appl. Sci. 2020. Published online: 19 Febr. 2020. V. 2. No. 3. https://doi.org/10.1007/s42452-020-22181
- Oxygen-vacancy-related structural phase transition of Ba_{0.8}Sr_{0.2}Co_{0.8}Fe_{0.2}O_{3-δ} / Zhèn Yáng, J. Martynczuk, K. Efimov, A.S. Harvey, A. Infortuna, P. Kocher, L.J. Gauckler // Chem. Mater. 2011. V. 23. No. 13. P. 3169–3175.
 - https://doi.org/10.1021/cm200373r
- 4. Ram Krishna Hona, Farshid Ramezanipour. Disparity in electrical and magnetic properties of isostructural oxygen-deficient perovskites $BaSrCo_2O_{6-\delta}$ and $BaSrCoFeO_{6-\delta} // J$. Mater. Sci.: Mater. Electronics. 2018. V. 29. No. 16. P. 13464–13473. https://doi.org/10.1007/s10854-018-9471-8
- Structural stability and oxygen permeability of BaCo_{1-x}NbO_{3-x} ceramic membranes for air separation / Chengzhang Wu, Yongqian Gai, Jianfang Zhou, Xia Tang, Yunwen Zhang, Weizhong Ding, Chenghua Sun // J. Alloys and Compounds. 2015. No. 638. P. 38–43.

https://doi.org/10.1016/j.jallcom.2015.03.056

- Raveau Bernard, Seikh Md. Motin. Magnetic and physical properties of cobalt perovskites // Handbook of Magnetic. 2015. No. 23. P. 161–289. https://doi.org/10.1016/B978-0-444-63528-0.00003-6
- Hanskarl Müller-Buschbaum. On the crystal chemistry of alkaline earth- and rare earth-oxocobaltates // Zeitschrift für anorganische und allgemeine Chemie. 2013. V. 639. No. 15. P. 2715–2735. https://doi.org/10.1002/zaac.201300243
- Phase relation and oxygen nonstoichiometry of perovskite-like compounds SrCoO_x (2.29 ≤ x ≤ 2.80) / J. Takeda, R. Kanno, T. Takeda, O. Yamamoto, M. Takano, Y. Bando // J. Anorg. Allg. Chem. 1986. V. 540–541. P. 259–270. https://doi.org/10.1002/zaac.19865400929
- Taguchi H., Shimada M., Koizumi M. The effect of oxygen vacancy on the magnetic properties in the system SrCoO_{3-δ} (0 < δ < 0.5) // J. Solid State Chem. 1979. V. 29. P. 221–225. https://doi.org/10.1016/0022-4596(79)90227-5
- Preparation and physicochemical study of BaCoO_{3-x} and SrCoO_{3-x} compounds / O.V. Godzhieva, N.V. Porotnikov, G.E. Nikiforova, E.A. Tishchehko // J. Inorg. Chem. 1990. V. 35. No. 1. P. 24–26.
- 11. Wang X.L., Sakurai H., Takayama-Muromachi E. Synthesis, structures, and magnetic properties of novel Roddlesden–Popper homologous series $Sr_{n+1}Co_nO_{3n+1}$ ($n = 1, 2, 3, 4, and \infty$) // J. Appl. Phys. 2005. V. 97. No. 10. P. 519.

https://doi.org/10.1063/1.1855534

 Oxygen-vacancy-related structural phase transition of Ba_{0.8}Sr_{0.2}Co_{0.8}Fe_{0.2}O_{3-delta} / Z.Q. Deng, W.S. Yang, W. Liu, C.S. Chen // J. Solid State Chem. 2006. V. 179. P. 362.

https://doi.org/10.1021/cm200373r

- 13. In situ templating synthesis of conic $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-\delta}$ perovskite at elevated temperature / Wei Zhou, Ran Ran, Wanqin Jin, Shao Zongping // Bull. Mater. Sci. 2009. V. 32. No. 4. P. 407–412. https://doi.org/10.1007/s12034-009-0059-z
- 14. Fabrication and thermosensitive characteristics of $BaCoO_{3-\delta}$ ceramics for low temperature negative temperature coefficient thermistor / Zhenhua Hu, Huimin Zhang, Junhua Wang, Long Chen // J. Mater. Sci.: Mater. Electronics. 2017. V. 28. No. 8. P. 6239–6244. https://doi.org/10.1007/s10854-016-6304-5
- Synthesis and properties of the structurally one-dimensional cobalt oxide Ba_{1-x}Sr_xCoO_{3-d} / K. Yamaura, H.W. Zandbergen, K. Abe, R.J. Cava // J. Sol. State Chem. 1999. V. 146. No. 1. P. 96–102.
- Felser C., Yamaura K., Cava R.J. The electronic band structure of BaCoO₃ // J. Sol. State Chem. 1999. V. 146. P. 411–416.
- 17. Herranz G., Rodríguez G.P. Uses of concentrated solar energy in materials science // Solar Energy. Ed. by Radu D. Rugescu. Intech Open, Croatia, 2010.

- Concentrated solar energy applications in materials science and metallurgy / D. Fernández-González, Ruiz-Bustinza, C. González-Gascac, J. Piñuela Novala, J. Mochón-Castaños, J. Sancho-Gorostiaga, L. Felipe Verdeja // Solar Energy. 2018. V. 170. P. 520–540. https://doi.org/10.1016/j.solener.2018.05.065
- Akbarov R.Y., Paizullakhanov M.S. Characteristic features of the energy modes of a large solar furnace with a capacity of 1000 kW// Appl. Solar Energy. 2018. V. 54. No. 2. P. 99–109. / https://doi.org/10.3103/S0003701X18020020
- 20. Koumoto K., Terasaki I., Murayama N. Oxide thermoelectrics. India: Trivandrum, 2002.
- Synthesis, structural, magnetic and electrical study of BaSrCo₂O₅, a highly disordered cubic perovskite / K. Boulahya, J.C. Ruiz-Morales, M. Hernando, J.M. Gonzalez-Calbet, M. Parras // ChemInform. 2009. V. 40. No. 33. P. 2818–2828. https://doi.org/10.1002/chin.200933020
- 22. An investigation of the polytypical structure of $Sr_{0.2}Ba_{0.8}CoO_{3-\delta}$ by neutron powder diffraction / C. de la Calle, J. Antonio Alonso, A. Aguadero, M.T. Fernández-Díaz, F. Porcher // Zeitschrift für Kristallographie-Crystalline Materials. 2010. V. 225. Is. 5. P. 209–215. https://doi.org/10.1524/zkri.2010.1247

Renewable Energy Sources, Hydropower Materials for Fuel Cells Based on Barium and Strontium Cobaltites Synthetized on a Solar Furnace

M. S. Paizullahanov^{a, *}, O. R. Parpiev^a, U. R. Salomov^b, Zh. Z. Shermatov^a, G. Sh. Karimova^c, and S. S. Sabirov^d

^a Institute of Materials Science, Academy of Sciences of the Republic of Uzbekistan, Tashkent, 100085 Republic of Uzbekistan

tashkeni, 100085 Republic of Ozbekislan

^b Fergana Polytechnic Institute, Fergana, 150107 Republic of Uzbekistan

^c National Research Institute of Renewable Energy Sources, Tashkent, 100085 Republic of Uzbekistan

^d Fergana Branch of the Tashkent University of Information Technologies, Fergana, 150107 Republic of Uzbekistan

*e-mail: fayz@bk.ru

Abstract—Study was carried out on materials based on perovskite structures of cobaltite compositions of strontium SrCoO_{3- δ} and barium BaCoO_{3- δ}, obtained by synthesis from a melt of a stoichiometric mixture of cobalt oxide with strontium carbonates Co₂O₃ + SrCO₃ or barium Co₂O₃ + BaCO₃ in a stream of high (150 W/cm²) density concentrated solar radiation in a solar furnace, followed by quenching in water and sintering at a temperature of 1300 K. Hexagonal barium and strontium cobaltites had a developed fine microstructure (grains in the form of densely packed polyhedrons of various shapes 2–5 µm in size), a semiconductor character of electrical conductivity, and a low thermal expansion coefficient (average 12.6 × 10⁻⁶ K⁻¹) in the temperature range 300–1100 K. The change in the electrical resistance of materials is due to the high affinity of cobalt ions for oxygen, which causes oxygen sorption and, as a result, leads to changes in the electronic structure of cobalt ions, as a result of charge transitions 2Co³⁺ = Co²⁺ + Co⁴⁺. This circumstance indicates the possibility of using materials based on barium and strontium cobaltites as selective absorbers, oxygen membranes, or cathode materials for the manufacture of solid-oxide fuel cells in the production of electrical energy as well as materials for hydrogen storage.

Keywords: barium and strontium cobaltites, solar furnace, melting, hardening, sintering, ceramics, solid-oxide fuel cells, oxygen absorbers, charge transitions