УДК 544.3

НОВАЯ ОЦЕНКА ТЕПЛОТЫ ПЛАВЛЕНИЯ ОСМИЯ

© 2019 г. Л. Р. Фокин^{1,} *, Е. Ю. Кулямина¹, В. Ю. Зицерман¹

¹Объединенный институт высоких температур РАН, Москва, Россия *E-mail: lfokin@mail.ru Поступила в редакцию 30.03.2018 г. После доработки 23.04.2018 г.

Принята к печати 05.06.2018 г.

Значение теплоты плавления осмия $\Delta H_m = 57.85 \text{ кДж/моль}$, приводимое в справочной литературе, было получено около 35 лет назад далекой экстраполяцией по температуре опытных данных об энтропии плавления ГЦК- и ГПУ-элементов Периодической системы. С использованием разработанной Б.Д. Суммом корреляции экспериментальных данных о поверхностном натяжении, теплоте плавления и структуре поверхностного слоя для осмия получена новая оценка $\Delta H_m = 30-40 \text{ кДж/моль}$, которая вдвое ниже справочной величины.

DOI: 10.1134/S0040364419010071

введение

Осмий — один из немногих элементов Периодической системы с N < 100, для которого отсутствует экспериментально определенная теплота плавления ΔH_m . Распространенная оценка значения ΔH_m (Os, 1 атм) ~ 57.8 кДж/моль из современной справочной литературы по термодинамическим свойствам веществ [1, 2] противоречит ряду фактов и закономерностей, что вызывает необходимость ее пересмотра.

Осмий – 5*d*-элемент Периодической системы. Электронная оболочка атома [Xe] $4f^{14}5d^{6}6s^{2}$. Кристаллическая решетка при нормальном давлении имеет ГПУ-структуру. Осмий является одним из четырех элементов Периодической системы (Ta, W, Re, Os) с температурой плавления $T_{m}^{0} >$ > 3000 K. Оценки температуры плавления осмия лежат в пределах 3306–3400 K [1–3]. Примем значение 3306 K [2], полагая, что возможная неопределенность в этой величине никак не повлияет на оценку теплоты плавления.

Упомянутая оценка теплоты плавления осмия появилась в 70-х годах прошлого века. В те годы были проведены измерения теплоты плавления ряда тугоплавких металлов при температуре выше 2000 К с применением методов левитационной калориметрии и импульсного нагрева проводников током [4]. Это позволило расширить область различных корреляций теплоты плавления элементов с типом кристаллической решетки (ОЦК, ГЦК и т.п.) и различными термодинамическими параметрами. Такого типа корреляция в виде зависимости энтропии плавления металла от температуры плавления $\Delta S_m(T_m^0) = \Delta H_m/T_m^0$ была рас-

смотрена в [5] и затем в расширенном виде в [6]. Для металлов с ГЦК- и ГПУ-решеткой с учетом новых опытных данных для тугоплавких металлов платиновой группы Rh (ГЦК, 2273 K), Ru (ГПУ, 2607 K), Ir (ГЦК, 2719 K) корреляция $\Delta S_m(T_m^0)$ в широком интервале температур (1770– 2720 K) имела вид линейной зависимости. Именно экстраполяция этой зависимости на более высокие температуры дала оценки энтропии плавления Os (ГПУ, 3306 K) $\Delta S_m = 19 \text{ Дж/(моль K)}$ и Re (ГПУ, 3458 K) $\Delta S_m = 20 \text{ Дж/(моль K)}$ и соответственно оценки ΔH_m (Os) = 63 кДж/моль и ΔH_m (Re) = 69 кДж/моль, для которых опытные данные по теплоте плавления отсутствовали (см. рисунок).

Что касается рения, то уже в 1986 г. с помощью метода импульсного нагрева проводника током были проведены измерения энтальпии в твердой и жидкой фазах и определена теплота плавления $\Delta H_m = 33 \pm 5 \ \kappa \mbox{Дж/моль}$ [7]. Новые результаты измерений, выполненных тем же методом в 1988— 1993 гг., лежат в границах 28.5-33.5 кДж/моль [8-10]. Наконец, в [11] методом левитационной калориметрии была определена теплота плавления рения $\Delta H_m = 34.4 \pm 2 \text{ кДж/моль}$. Все эти опытные данные создают надежную базу для принятия величины ΔH_m рения. Сегодня в справочной литературе приводится оценка $\Delta H_m =$ = 34.07 кДж/моль, предложенная в обзоре [1], выполненном для Scientific Group Thermodata Europe (SGTE) с учетом дополнительного анализа опытных данных [12]. Это значение в два раза ниже оценки теплоты плавления рения, полученной при экстраполяции опытных данных в [5].

Фрагмент зависимости $\Delta S_m(T_m^0)$ из [5] со скорректированным значением ΔS_m (Re): *1* – элементы с ОЦКрешеткой, *2* – с ГЦК-решеткой, *3* – с ГПУ-решеткой, *4* – экстраполяция для Os и Re, *5* – Re, данная работа.

Этот факт ставит под сомнение универсальность всей корреляции. Во всяком случае, теперь можно считать совершенно неоправданным ее применение к Os, учитывая отсутствие для него опытных данных, а также соседнее положение Re и Os в Периодической системе.

Есть достаточно весомые основания отказаться от принятой на сегодняшний день оценки (63 кДж/моль), которая с небольшой корректировкой (до 57.9 кДж/моль) фигурирует во всей справочной литературе [2, 13].

В 1988–1989 гг. Г.Р. Раманаускасом при работе над диссертацией был выполнен цикл исследований калорических свойств Os, Ir, Ru. В ИВТ РАН им были проведены измерения энтальпии методом смешения в интервале температур от комнатной до значений, близких к температурам плавления, а в Институте неорганической химии СО РАН при его участии – теплоемкости методом адиабатической калориметрии в интервале от криогенных температур до 320 К [14]. Хотя печь позволяла поддерживать температуру до 3500-3600 К, для осмия область высоких температур оказалась недоступна – как сказано в [14], "измерить энтальпию выше 3000 К не удалось по тем причинам, что осмий образует сплав с вольфрамом, который выше 3000 К плавится, и вольфрамовые проволочки подвески образца в печи разрушаются". Новые экспериментальные исследования энтальпии и теплоты плавления осмия отсутствуют, так что вопрос о достоверности справочной величины ΔH_m (Os) = 57.9 кДж/моль остается открытым.

Отсутствие опытных данных для Os при том, что для Re предсказание по методу Каца—Чеховского [5, 6] резко отклоняется от измеренной величины, побудило к поиску другой возможности априорного расчета ΔH_m . За основу принят подход, связывающий теплоту плавления металлов с данными по поверхностному натяжению σ_m и плотности жидкой фазы ρ_{lm} в точке плавления с учетом того, что обе эти величины для Os измерены достаточно надежно.

Надо иметь в виду два важных обстоятельства. Во-первых, в последние десятилетия были проведены практически для всех тугоплавких металлов измерения в жидкой фазе поверхностного натяжения и плотности при температуре плавления T_m^0 . В первую очередь это работа [15], выполненная с использованием метода электронного пучка для нагрева образцов. Метод лазерного нагрева капель металлов, подвешенных в электростатическое поле, применялся в лабораториях США и Японии для измерения комплекса свойств вблизи точки плавления: плотности, поверхностного натяжения, теплоемкости и вязкости в перегретом и переохлажденном состояниях [16]. Принципиально важно, что результаты этих измерений, проведенных в разных лабораториях с интервалом около 20 лет, согласуются между собой для плотности в пределах 2%, для поверхностного натяжения – в пределах 5%.

Во-вторых, уже в 1998 г. с использованием метода малоуглового рассеяния рентгеновских лучей была определена при комнатной температуре толщина поверхностного слоя ртути [17], а позже галлия и ряда сплавов [18]. Как показал анализ этих опытных данных, поверхностный слой имеет квазикристаллическую слоистую структуру (surface layering) толщиной 1.5–2.5 параметра решетки. Рассмотренные выше опытные данные, особенно по структуре и толщине пограничного слоя, явились мощным импульсом для проведения новых экспериментальных и теоретических исследований поверхностных свойств металлов, включая поиск новых корреляций поверхностного натяжения и других свойств.

ПОВЕРХНОСТНОЕ НАТЯЖЕНИЕ И ТЕПЛОТА ПЛАВЛЕНИЯ

В [19] опубликованы результаты согласования опытных данных о поверхностном натяжении большой группы металлов с опытными данными по теплоте плавления и параметрам решетки. Поскольку поверхностное натяжение имеет смысл энергетической характеристики поверхностного слоя (Дж/м²), для корреляции свойств в точке плавления было предложено соотношение

Элемент	T_m^0 , K	ΔH_m , кДж/моль	<i>ρ_{sm}</i> , г/см ³	d, Å	σ _{<i>m</i>} , мДж/м ²	Ζ
ГПУ-решетка						
Cd	594	6.2	8.3	4.3	627	3.3
Zn	693	7.3	6.8	3.8	768	2.65
Mg	923	8.47	1.65	4.95	589	2.0
Ru	2607	38.6	11.0	3.5	2180	1.5
Re	3458	34.1	19.1	3.5	2614	2.1
ГЦК-решетка						
Pb	601	4.773	10.69	4.95	447	3.33
Al	933	10.7	2.41	3.54	912	2.45
Ag	1234	11.3	9.32	4.09	916	2.09
Au	1337	12.6	17.2	3.92	1170	2.48
Cu	1358	13.3	8.04	3.61	1320	1.98
Pd	1828	16.4	10.24	3.90	1445	2.04
Со	1768	16.2	8.0	3.54	1965	2.25
Ni	1728	17.5	7.91	3.52	1750	1.92
Pt	2041	22.2	18.81	3.92	1707	1.85
Rh	2237	26.2	10.65	3.80	1940	1.69
Ir	2719	41.1	19.4	3.84	2140	1.22

Исходные данные и оценки параметра Z для металлов

$$\sigma_m = Z \Delta H_m \rho_{sm} d = ZQ, \tag{1}$$

где *d* – параметр решетки, ρ_{sm} – плотность твердой фазы, $Q = \Delta H_m \rho_{sm} d$ имеет смысл избыточной энтальпии на единицу площади одного слоя квазирешетки поверхностности, Z – число слоев. Строго говоря, связь характеристик квазикристаллической решетки со свойствами твердой и жидкой фаз носит условный характер и все допущения должны проявиться в том, насколько в процессе согласования данных параметр Z будет отличаться от нескольких единиц. В [19] рассмотрены зависимости $\sigma_m = f(Q)$ для щелочных металлов, группы элементов с ОЦК-решеткой от Ва до Мо, ГЦК-решеткой от Рb до Rh. Для представленных групп веществ все зависимости имели линейный характер и оценки параметра Z составляли: для щелочных металлов ~3.7, для элементов с ОЦК-решеткой ~2.5, с ГЦК-решеткой ~2. Результаты корреляций при Z = 2-3.5 подтвердили справедливость рассматриваемой модели пограничного слоя вблизи температуры плавления и обоснованность применения реальных параметров твердой фазы ΔH_m , ρ_{sm} , *d* при построении корреляций.

Из-за проблемы оценки теплоты плавления ГПУ осмия предварительно по методике [19] нами были проведены расчеты параметра Z других ГПУ-металлов. В качестве исходных данных были приняты следующие значения: ΔH_m из [1], ρ_{lm} и σ_m (плотность и поверхностное натяжение жидкости при температуре плавления) из [15] при ориентировочной оценке $\rho_{sm} = 1.04\rho_{lm}$.

Открытым является вопрос, какую форму принимает ГПУ-решетка кристалла в квазикристаллическом поверхностном слое. Известно, например, что структура пленки рения, выращенной методом химического осаждения из паровой фазы (CVD), имеет самые причудливые формы в зависимости от типа прекурсора, материала подложки, температуры и т.п. [20]. Поэтому для величины параметра решетки квазикристалла поверхностного слоя здесь принималась примитивная оценка d = (a + c)/2, где a и c – параметры ГПУ-решетки [21]. Результаты оценок Z для металлов представлены в таблице.

Опыт показывает, что многие закономерности для веществ с плотноупакованными ГПУ и ГЦК кристаллическими решетками имеют общий характер (см. рисунок и работу [5]). Поэтому с учетом новых экспериментальных данных [15, 16] по поверхностному натяжению и плотности в точке плавления в таблице приведены аналогичные оценки параметра Z для группы ГЦК-металлов. В качестве исходных данных приняты значения ΔH_m из [1, 2], ρ_{sm} и σ_m из [15, 16] и параметров решетки d из [21].

Анализируя данные таблицы, получим в качестве среднего значения Z = 2 при довольно большой неопределенности ± 0.7 . При этом в качестве других свойств осмия, использованных при расчете, приняты значение параметра решетки d = 3.5 Å [21], а также экспериментальные значения $\rho_{lm} = 19.1 \text{ г/см}^3$ и $\sigma_m = 2480 \text{ мДж/м}^2$, полученные в [16] методом лазерного зондирования висящей капли. Далее, распространив это значение (Z = 2) на осмий, нетрудно получить посредством корреляции (1) оценку энтальпии плавления ΔH_m (Os) ~ 32 кДж/моль. Соответствующее значение энтропии плавления составляет $\Delta S_m(T_m^0)$ (Os) ~ 9.8 Дж/(моль K), т.е. вдвое ниже, чем в [5, 6] и в справочной литературе [1, 2, 13].

ЗАКЛЮЧЕНИЕ

В пользу новой оценки можно привести еще один факт. Ранее в статьях авторов по свойствам осмия [22, 23] для расчета начального наклона линии плавления с помощью уравнения Клапейрона—Клаузиуса использовалась полуэмпирическая зависимость для скачка объема ΔV_m , предложенная в [24] при анализе кривых плавления металлов

$$\Delta V_m = \frac{\beta_m T_m^0 V_s(T_m^0) \Delta S_m}{\mu C_p(T_m^0)}.$$
(2)

В правой части (2) приведены данные в точке плавления по теплоемкости $C_p(T_m^0)$, коэффициенту термического расширения β_m и объему твердой фазы $V_s(T_m^0)$, а также параметр µ, которые были определены на основании предварительного анализа опытных данных. В [22, 23] для энтальпии плавления осмия принято старое значение ΔS_m (Os) = 19 Дж/(моль K) [5, 6]. При этом для скачка объема получена оценка ΔV_m = $= 0.806 \text{ см}^3/\text{моль}$ и в относительных единицах величина ~9%, которая превышала типичное для тугоплавких металлов значение 4-5%. Использование в (2) новой оценки энтропии плавления дает для скачка объема величину $\delta(\Delta V_m) \sim 4.5\%$, которая представляется более естественной. При этом оцененный в [22, 23] начальный наклон линии плавления $dT_m^0/dp = 41 \text{ K}/\Gamma\Pi a$ не меняется. Надо отметить, что этот результат близок к значению $dT_m^0/dp = 49 \text{ K}/\Gamma\Pi a$, полученному при расчете линии плавления осмия методом квантовой молекулярной динамики в [25].

Предварительная информация о новой оценке теплоты плавления осмия была представлена в 2017 г. на XXI конференции по химической термодинамике в России (Новосибирск) [26]. Новая оценка теплоты плавления осмия вдвое ниже справочного значения, полученного около 35 лет назад методом экстраполяции данных. Этот уникальный случай, касающийся фундаментальной физико-химической характеристики одного из элементов Периодической системы, требует экспериментального разрешения.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Dinsdale A.T.* SGTE Data for Pure Elements // Calphad. 1991. V. 15. № 4. P. 317.
- CRC Handbook of Chemistry and Physics. 94th ed. / Ed. Haynes W.M. Ch. 12. Thermal and Physical Properties of Metals. Boca Raton: CRC Press, 2014.
- 3. Arblaster J.W. The Thermodynamic Properties of Osmium on ITS-90 // Calphad. 1995. V. 19. № 3. P. 349.
- 4. *Чеховской В.Я.* Энтальпия, теплоемкость, теплота и энтропия плавления некоторых тугоплавких металлов // Обзоры по теплофизическим свойствам веществ. 1979. № 6(20). 97 с.
- Katz S.A., Chekhovskoi V.Ya. Entropies of Fusion of Metallic Elements // High Temp.-High Press. 1979. V. 11. № 6. P. 629.
- Кац С.А., Чеховской В.Я. Закономерности изменения энтропии плавления металлов // ЖФХ. 1980. Т. 54. № 3. С. 768.
- 7. *Pottlacher G., Neger T., Jager H.* Thermodynamical Measurements on Solid and Liquid Rhenium // Int. J. Thermophys. 1986. V. 7. № 1. P. 149.
- Доломанов Л.А., Ковалев К.С., Лебедев С.В., Савватимский А.И. Электросопротивление рения в твердом и жидком состояниях в зависимости от энтальпии и теплота его плавления // ТВТ. 1988. Т. 26. № 3. С. 492.
- 9. *Hixson R.S., Winkler M.A.* Thermodynamic Properties of Molybdenum and Rhenium // Int. J. Thermophys. 1992. V. 13. № 3. P. 477.
- Thevenin Th., Arles L., Boivineau M., Vermeulen J.M. Thermophysical Properties of Rhenium // Int. J. Thermophys. 1993. V. 14. № 3. P. 441.
- 11. *Lin R., Frohberg M.G.* Experimental Measurements of the Enthalpy of Solid and Liquid Rhenium // High Temp.–High Press. 1992. V. 24. № 5. P. 537.
- Saunders N., Miodownic A.P., Dinsdale A.T. Metastable Lattice Stability for the Elements // Calphad. 1988.
 V. 12. № 4. P. 351.
- 13. *Dinsdale A.T.* SGTE Data for Pure Elements // Landolt–Bernsein. New Series, Gr. IV, 1999. V. 19B. Elements. P. 1.
- 14. *Чеховской В.Я., Раманаускас Г.Р.* Калорические свойства осмия, иридия, родия и рутения в диапазоне температур 0 К-*T*_{пл} // Обзоры по теплофизическим свойствам веществ. 1989. № 4(78). 29 с.
- 15. Физическая химия неорганических материалов. Т. 2. Поверхностное натяжение и термодинамика металлических расплавов / Под ред. Еременко В.Н. Киев: Наукова думка, 1988. 192 с.
- 16. *Paradis P.-F., Ishikawa T., Koike N.* Physical Properties of Equilibrium and Nonequilibrium Liquid Osmium Measured by Levitation Techniques // J. Appl. Phys. 2006. V. 100. № 10. 103523.

65

- 17. DiMas E., Tostmann H., Osko B.M. et al. X-ray Reflectivity Study of Temperature-dependent Surface Layering in Liquid Hg // Phys. Rev. B. 1998. V. 58. № 20. R13419.
- Gonsalez D.J., Gonsalez L.E., Stott M.J. Surface Structure in Simple Liquid Metals: An Orbital-free Firstprinciples Study // Phys. Rev. B. 2006. V. 74. № 1. 014207.
- Сумм Б.Д. Новые корреляции поверхностного натяжения с объемными свойствами жидкостей // Вестн. Моск. ун-та. Сер. 2. Химия. 1999. Т. 40. № 6. С. 400.
- Гельфонд Н.В., Морозова Н.Б., Филатов У.С. и др. Структура рениевых покрытий, полученных методом CVD // Журн. структ. химии. 2009. Т. 30. № 6. С. 1179.
- Свойства элементов. Ч. 1. Физические свойства / Под ред. Самсонова Г.В. М.: Металлургия, 1976. 600 с.

- 22. *Кулямина Е.Ю., Зицерман В.Ю., Фокин Л.Р.* Осмий кривая плавления и согласование высокотемпературных данных // ТВТ. 2015. Т. 53. № 1. С. 141.
- 23. *Кулямина Е.Ю., Зицерман В.Ю., Фокин Л.Р.* Расчет кривых плавления методом согласования термодинамических данных. Тугоплавкие металлы платиновой группы (Ru, Os, Ir) // ЖТФ. 2017. Т. 87. № 1. С. 59.
- 24. *Цагарейшвили Д.И.* Методы расчета термических и упругих свойств кристаллических неорганических веществ. Тбилиси: Мецниереба, 1977. 262 с.
- Burakovsky L., Burakovsky N., Preston D.L. Ab initio Melting Curve of Osmium // Phys. Rev. B. 2015. V. 92. 174102.
- Fokin L.R., Kulymina E.Yu., Zitsermann V.Yu. The Errors Incurred in the Reference Data on Heat of Fusion for Refractory Metals // XXI Int. Conf. Chem. Thermodyn. in Russia. Novosibirsk, 2017. P. 208.