——— КРАТКИЕ СООБЩЕНИЯ ———

УДК 536.21.+661.665.1+546.28

# ТЕПЛОПРОВОДНОСТЬ СИЛИЦИРОВАННОГО КАРБИДА КРЕМНИЯ ПРИ 1400-2200 К

© 2019 г. А. В. Костановский<sup>1,</sup> \*, М. Г. Зеодинов<sup>1</sup>, М. Е. Костановская<sup>1</sup>, А. А. Пронкин<sup>1</sup>

1Объединенный институт высоких температур РАН, Москва, Россия

\*E-mail: Kostanovskiy@gmail.com Поступило в редакцию 29.12.2017 г. После доработки 05.03.2018 г. Принято к печати 13.03.2018 г.

Представлены результаты экспериментального исследования теплопроводности силицированного карбида кремния в диапазоне температур 1400–2200 К.

DOI: 10.1134/S0040364419010150

### введение

Силицированный карбид кремния является высокотемпературным материалом. Он производится в России и используется, как правило, при изготовлении нагревателей, работающих на воздухе при температурах T = 300-1400 К. В инертной среде силицированный SiC может работать и при более высоких температурах. Исследования теплопроводности SiC проводились в середине прошлого века, и полученные результаты существенно отличаются друг от друга. Теплопроводность силицированного SiC в широком диапазоне температур, по-видимому, не изучалась.

Целью данной работы является определение теплопроводности силицированного SiC в интервале T = 1400-2200 К. Данная задача решается стационарным методом двух цилиндров, использованным ранее для изучения теплопроводности графита марки DE-24 [1].

#### ЭКСПЕРИМЕНТ

Кратко представим основные особенности методики и экспериментальной реализации метода двух цилиндров. Исходное одномерное дифференциальное уравнение теплопроводности в цилиндрических координатах в предположении постоянных свойств материала и постоянной объемной мощности внутренних источников теплоты  $q_v$  имеет вид

$$k\left(\frac{\partial^2 T}{\partial r^2} + \frac{1}{r}\frac{\partial T}{\partial r}\right) + q_v = 0, \qquad (1)$$

где k — коэффициент теплопроводности, r — текущий радиус. Аналитическое решение уравнения (1) для случая, когда теплота отводится через наружную поверхность цилиндра, записывается следующим образом:

$$T = T_{r_2} + \frac{q_v r_2^2}{4k} \left[ 1 + \left(\frac{r_1}{r_2}\right)^2 2 \ln\left(\frac{r}{r_2}\right) - \left(\frac{r}{r_2}\right)^2 \right].$$
 (2)

Здесь  $r_1$  и  $r_2$  — радиусы внутренней и внешней поверхностей соответственно. Если удельные тепловые потоки с поверхности двух образцов имеют одинаковое значение  $(q_{r2})_1 = (q_{r2})_2 = q_s$ , то равны и температуры этих поверхностей  $(T_{r2})_1 = (T_{r2})_2 = T_s (r_2 = \text{idem})$ . Тогда может быть найден перепад температур на первом и втором  $\Delta T_i$  (i = 1, 2) образцах:

$$\Delta T_{i} = (T_{r1})_{i} - (T_{r2})_{i} = (q_{s}/k)A_{i}, \qquad (3)$$

где *A<sub>i</sub>* – геометрические коэффициенты

$$A_{i} = (r_{2})_{i} \left[ 1 - \frac{2(r_{1})_{i}^{2}}{(r_{2})_{i}^{2} - (r_{1})_{i}^{2}} \ln(r_{2}/r_{1})_{i} \right]$$

Решая систему уравнений (2) и (3), можно найти коэффициент теплопроводности и значение температуры на внешней поверхности образцов  $T_{r2}$ :

$$k = \frac{q_s (A_1 - A_2)}{(T_{r_1})_1 - (T_{r_1})_2},$$

$$[T_{r_2}]_i = (T_{r_1})_i - (q_s/k) A_i.$$
(4)

Обработка экспериментальных данных сводится к построению кривых  $q_s = f(T_{r1})$  для двух образцов. При одинаковых значениях плотностей теплового потока  $(q_{r2})_1 = (q_{r2})_2 = q_s$  можно определить температуры  $(T_{r1})_1$  и  $(T_{r1})_2$  и по формулам (4) рассчитать *k* и  $T_{r2}$ .

Экспериментальные образцы силицированного карбида кремния чистотой не менее 98% представляли собой полые цилиндрические трубки длиной 33.5 мм и диаметрами D/d = 8.2/3.5 мм (образец № 1), 8.2/3.84 (№ 2). Предварительные



Зависимости теплопроводности карбида кремния от температуры, построенные по различным данным: 1 - силицированный SiC, 2 - SiC [6], 3 - SiC [7], 4 - SiC [8], 5 - SiC [9], 6 - Si [9].

эксперименты позволили определить длину изотермического участка, в центре которого было изготовлено отверстие диаметром 1.1 мм и длиной, равной толщине цилиндра. Данное отверстие и внутренняя полость цилиндра служили моделью абсолютно черного тела (АЧТ), которая использовалась для определения температуры внутренней поверхности цилиндра. На торцах полого цилиндра были установлены заглушки с целью повышения степени совершенства модели АЧТ. Температура модели измерялась через окно камеры автоматическим микропирометром с диаметром пятна визирования 0.3 мм, работающим на длине волны 0.65 мкм. Для определения действительной температуры внутренней поверхности цилиндра вводились поправки на поглощение в стекле окна камеры и на совершенство геометрических размеров модели АЧТ. Поправка на степень совершенства модели АЧТ составила 1.5% при T = 2200 К и была получена на основе решения [2], в котором модель рассматривается как изотермическая трубка с отверстием в центре боковой поверхности. Определяющая температура принята равной среднеарифметическому значению температур внутренней и внешней поверхностей образца № 2.

Принципиальная схема установки включает в себя камеру, газовакуумную и диагностическую системы. Образец закреплялся горизонтально между токоподводами. Камера заполнялась аргоном высокой чистоты до давления 0.1-0.15 МПа. Образец нагревался постоянным электрическим током. Эксперимент проводился в режиме пошагового увеличения подводимой к образцу мощности и с выдержкой до наступления стационарного режима. Для измерения падения напряжения на изотермическом участке были использованы два "точечных" зонда, описание конструкции которых приведено в [3]. Расстояние между центрами зондов составило  $l_{\rm pr} = 9.48$  мм для образца № 1 и  $l_{\rm pr} = 9.11$  мм для № 2. При расчете плотности теплового потока вводились поправки на увеличение  $r_2 + \Delta r_2(T)$  и расстояния между зондами  $l_{\rm pr} + \Delta l_{\rm pr}(T)$ в результате нагрева. Температурная зависимость

относительного удлинения изучаемого силицированного SiC была получена ранее [4]. Оценка выполнения одномерного приближения для поля температур экспериментального участка проводилась по выражению  $l_{\rm pr}/R_v \ge 1$ , где  $R_v$  – обобщенный радиус сплошного цилиндра, который находится как отношение объема между зондами к соответствующей площади поверхности полого цилиндра [5]. Оценка показала, что  $l_{\rm pr}/R_v =$  $= 9.48/(2 \times 0.94) = 5.0$  для образца № 1 и  $l_{\rm pr}/R_v = 5.2$ для № 2. Длина изотермического участка больше расстояния  $l_{\rm pr}$ , поэтому можно предположить, что одномерное приближение для поля температуры при проведении экспериментов на обоих образцах выполняется.

#### РЕЗУЛЬТАТЫ

Результаты определения коэффициента теплопроволности силицированного SiC метолом двух цилиндров представлены на рисунке. Для сравнения на рисунке приведены данные для несилицированного SiC. Силицированный карбид кремния и SiC имеют падающую температурную зависимость теплопроводности. При 1400 К значения k силицированного SiC близки к результатам работы [9]. но значительно превышают данные [6]. При повышении температуры в диапазоне 1600-2200 К величины к практически совпадают с результатами [6]. Теоретическая работа [7] позволила обосновать механизм теплопроводности SiC решеточной составляющей – рассеянием фононов на фононах. Несмотря на то что значения k в [7] превышают экспериментальные значения, температурная зависимость оказывается правильной.

После экспериментов было проведено изучение рентгеновских дифракционных спектров на установке ДРОН-2 двух поперечных сечений образца до и после нагрева. Все спектры показали дифракционные линии, принадлежащие SiC и свободному кремнию. Максимальное содержание свободного кремния до нагрева составляло 45 об. % и после эксперимента уменьшилось до 35 об. %. Эти результаты показывают, что количество свободного кремния в изучаемом материале даже после эксперимента было достаточно высоким.

На рисунке приведены данные теплопроводности кремния, которые позволяют предположить, что свободный кремний может приводить к повышению теплопроводности силицированного SiC по сравнению с "чистым" SiC. Тот факт, что после эксперимента доля свободного кремния в образцах силицированного карбида кремния уменьшается, может объяснить более резкую падающую зависимость k(T) изучаемого материала, чем у образцов "чистого" SiC, и зависимость, полученную теоретически [7]. Суммарная неопределенность значений k составляет ~14% при 1400 К и понижается до ~11% при 2200 К.

## ЗАКЛЮЧЕНИЕ

Экспериментальные результаты о теплопроводности силицированного карбида кремния отечественного производства в области температур 1400—2200 К получены, по-видимому, впервые. Данные по теплопроводности могут быть полезными при проектировании изделий из силицированного карбида кремния отечественного производства.

Работа выполнена при финансовой поддержке РФФИ (грант № 15-08-06279).

## СПИСОК ЛИТЕРАТУРЫ

- 1. Костановский А.В., Зеодинов М.Г., Костановская М.Е. Теплопроводность и излучательная способность графита DE-24 при температурах 2300—3000 К // Изм. техн. 2010. № 12. С. 38.
- 2. Латыев Л.Н., Петров В.А., Чеховской В.Я., Шестаков Е.Н. Излучательные свойства твердых матери-

алов. Спр. / Под ред. Шейндлина А.Е. М.: Энергия, 1974. 472 с.

- 3. Костановский А.В., Зеодинов М.Г., Костановская М.Е., Пронкин А.А. Удельное электрическое сопротивление силицированного карбида кремния // ТВТ. 2018. Т. 56. № 5. С. 841.
- 4. Костановский А.В., Зеодинов М.Г., Костановская М.Е., Пронкин А.А. Относительное удлинение силицированного карбида кремния при температурах 1150– 2500 К // ТВТ. 2018. Т. 56. № 2. С. 310.
- 5. *Лыков А.В.* Теория теплопроводности. М.: Высшая школа, 1967. 599 с.
- 6. Чиркин В.С. Теплофизические свойства материалов ядерной техники. М.: Атомиздат, 1968. 484 с.
- Парфенова И.И., Таиров Ю.М., Цветков В.Ф. Теплопроводность карбида кремния в области температур 300–3000 К // Физика и техника полупроводников. 1990. Т. 24. № 1. С. 258.
- 8. *Munro R.G.* Material Properties of a Sintered α-SiC // J. Phys. Shem. 1997. V. 26. № 5. P. 1195.
- Thermophysical Properties of High Temperature Solid Materies / Ed. Touloukian Y.S. N.Y.–London: Collier–Macmillan Ltd., 1967. V. 5. 687 p.