УДК 536.413+661.883.2+661.657.2

ТЕРМИЧЕСКОЕ РАСШИРЕНИЕ МИКРО- И НАНОКРИСТАЛЛИЧЕСКОГО HfB₂

© 2019 г. Д. Ю. Ковалев^{1, *}, С. П. Шилкин², С. В. Коновалихин¹, Г. В. Калинников², И. И. Коробов², С. Е. Кравченко², Н. Ю. Хоменко¹, Р. А. Андриевский²

¹ФГБУН Институт структурной макрокинетики и проблем материаловедения РАН, г. Черноголовка, Россия

²ΦГБУН Институт проблем химической физики РАН, г. Черноголовка, Россия *E-mail: kovalev@ism.ac.ru Поступила в редакцию 20.07.2017 г. После доработки 06.09.2017 г. Принята к печати 10.10.2017 г.

Методом высокотемпературной рентгенографии проведены исследования нано- и микрокристаллов диборида гафния в интервале температур 300–1500 К. Установлено, что нанокристаллы HfB_2 имеют бо́льший коэффициент теплового расширения по сравнению с микрокристаллами. Обнаружена анизотропия теплового расширения HfB_2 относительно осей ячейки.

DOI: 10.1134/S0040364419010265

введение

Диборид гафния HfB₂ является высокотемпературным керамическим материалом, обладающим уникальным комплексом свойств [1-3]. Благодаря высокой температуре плавления, коррозионной стойкости и твердости он является перспективным конструкционным материалом для тепловой защиты гиперзвуковых летательных аппаратов [4-6]. Теплофизические свойства консолидированных поликристаллических материалов на основе HfB2 исследованы достаточно подробно [7-10]. Однако в современном материаловелении прослеживается тенленция создания материалов с наноразмерными структурными составляющими. Нанокристаллические материалы представляют как фундаментальный научный интерес, с точки зрения взаимосвязи структурасвойства, так и практический интерес, обусловленный улучшением эксплуатационных свойств. Известно, что переход в наноструктурное состояние приводит к значительному повышению механических свойств и других характеристик, расширяя области применения материала [11, 12]. Обзор работ по синтезу, свойствам и стабильности наноструктурных TiB₂, ZrB₂ и HfB₂, проведенный в [13], показал ограниченность сведений о теплофизических свойствах этих объектов. Важным с эксплуатационной точки зрения свойством диборидов является величина коэффициента теплового расширения (КТР), его анизотропия и температурная зависимость. Сведения о КТР α диборидов титана, циркония и гафния исчерпываются данными для макрокристаллических объектов (табл. 1) [14—18]. Вместе с тем известно, что материалы в нанокристаллическом состоянии обладают бо́льшими значениями КТР по сравнению с крупнокристаллическими аналогами. Например, методом высокотемпературной рентгенографии показано, что КТР нанокристаллов карбида бора размером 55 нм увеличивается на 10% [19] по сравнению с микрокристаллами размером 300 нм.

Авторы связывают изменение КТР с увеличением поверхностной энергии кристаллической решетки нанокристаллического материала. КТР пленок Ni и Cu с размером зерна 25–35 нм также

Таблица 1. Коэффициенты термического расширения микрокристаллических TiB_2 , ZrB_2 и HfB_2

	α , 10 ⁻⁶ K ⁻¹	Источник
TiB ₂	4.8 (300–1300), 5.2 (1300–2300)	[14]
	$\alpha^a = 6.6, \alpha^c = 8.6$	[16]
ZrB ₂	6.2 (300–1300), 6.5 (1300–2300)	[14]
	$\alpha^a = 6.6 (300 - 1000), 7.65 (1000 - 2000)$	
	$\alpha^c = 6.78 (300 - 1000), 8.62 (1000 - 2000)$	
	6.2 (300–1300)	[15]
	6.83	[16]
	7.0	[17]
HfB ₂	6.6 (300–1300), 6.8 (1300–2300)	[14]
	7.15 (300–1270), 7.49 (300–1770)	[18]

Примечание. В скобках указан интервал температуры исследований; α^a и α^c – КТР по осям *a* и *c*.

оказывается выше, чем у крупнозернистых объектов [20]. На примере сульфидов свинца и серебра показано [21, 22], что в нанокристаллическом состоянии (размер зерен — 40—50 нм) значения КТР выше аналогичных величин для крупнокристаллических объектов примерно в 1.5—2 и 1.2— 1.3 раза соответственно. Это связывается с ростом ангармонизма атомных колебаний в нанокристаллах за счет увеличения поверхностей раздела.

Целью настоящей работы являются исследование методом высокотемпературной рентгенографии нанокристаллов диборида гафния и определение температурной зависимости коэффициента термического расширения.

МЕТОДИКА ЭКСПЕРИМЕНТА

Объектами исследования являлись наноразмерный и микрокристаллический порошки HfB₂. Нанодисперсный порошок HfB2 был получен при взаимодействии HfCl₄ с NaBH₄ в мольном соотношении 1:10 на протяжении 15 ч при температуре 1000 К в реакторе-автоклаве [23]. Первоначальное нагревание реакционной массы проводилось в вакууме 1.33×10^{-1} Па, а затем продолжалось в аргоне высокой чистоты (99.998%). Конечное давление в реакторе за счет выделившегося водорода не превышало 10 МПа. По результатам химического и энергодисперсионного анализов диборид гафния имел состав HfB_{2.02}. Удельная поверхность полученного порошка HfB_2 составила $S_{yg} = 30.6 \text{ м}^2/\text{г. B}$ качестве микрокристаллического порошка HfB₂ использовался товарный продукт квалификации Ч с удельной поверхностью $S_{\rm vn} = 0.35 \, {\rm m}^2/{\rm r}.$

Рентгенофазовый анализ исходных порошков проводился на дифрактометре ДРОН-3 с монохроматором на вторичном пучке. Регистрация спектра велась в режиме пошагового сканирования на излучении CuK_{α} в интервале углов $2\theta = 20^{\circ}-90^{\circ}$ с шагом съемки 0.02° и экспозицией 2 с в точке.

Температурные рентгенодифракционные исследования проводились на дифрактометре ARL Х'ТRА в геометрии Брегга-Брентано на отражение. Использовалась высокотемпературная камера HTK2000 "Anton Paar" к дифрактометру. Регистрация рентгенограмм осуществлялась полупроводниковым детектором Пельтье с энергетическим разделением $K_{\alpha 1 + 2}$ - и K_{β} -линий. Эксперименты проводились на трубке с Си-анодом при напряжении 40 кВ и токе 40 мА. Порошок HfB₂ ровным слоем наносился на поверхность вольфрамовой пластины-нагревателя. Толщина засыпки составляла около 100 мкм. Далее проводилось вакуумирование камеры до давления 2 × $\times 10^{-3}$ Па. При максимальной температуре (1500 K) остаточное давление в камере составляло 8×10^{-3} Па.

Для юстировки камеры проводилась регистрация рентгенограммы при комнатной температуре и по известному угловому положению дифракционных линий диборида гафния установка образца корректировалась относительно горизонтальной оси гониометра. Управление экспериментом осуществлялось с использованием программного обеспечения дифрактометра. Режим нагрева задавался контроллером Eurotherm 2604 с регистрацией температуры термопарой BP5\20, приваренной к нижней поверхности вольфрамового нагревателя. В образец HfB₂ в качестве эталона для контроля температуры добавлялся порошок гексагонального BN. КТР вдоль оси с элементарной ячейки BN [24], составляющий ~41.2 × 10⁻⁶ K⁻¹, позволяет определять температуру исследуемого образца с погрешностью ±5 К. Сопоставление измеряемой термопарой температуры нагревателя и температуры образца, рассчитанной по смещению дифракционной линии BN, показало расхождение в пределах 10-20 К. Для расчетов КТР HfB_2 использовалась температура, определенная по термическому расширению BN. Регистрация рентгенограмм проводилась в диапазоне температур 300–1500 К. Скорость нагрева между изотермическими участками – 100 К/мин. После достижения заданной температуры следовала выдержка в течение 4 мин, далее проводилась регистрация рентгенограммы в режиме пошагового сканирования в интервале углов $2\theta = 24^{\circ} - 45^{\circ}$, с шагом съемки 0.02° и временем набора 1 с в точке.

Для расчета метрики ячейки в высокотемпературных сьемках использовались три отражения HfB₂: 001, 100, 101. Обработка экспериментальных данных осуществлялась методом Ритвельда в комплексе программ "Буревестник". Уточнялись параметры решетки и тепловые параметры атомов. Для рентгенограмм при T > 1070 К также уточнялись параметры решетки продуктов окисления HfB₂ – тетрагональной и моноклинной фаз двуокиси гафния. Рассчитанные в процессе уточнения взвешенный и профильный *R*-факторы находятся в интервалах $R_{wp} = 8.3-9.6\%$, $R_p = 6.5-7.3\%$. Расчет КТР проводился в программе TEV 1.01, позволяющей определять тензор термического расширения по дифракционным данным [25].

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

На рис. 1 представлены рентгенограммы исходных порошков нано- и микрокристаллов HfB₂. Диборид гафния кристаллизуется в гексагональной сингонии, пространственная группа — *P6/mmm*. Параметры решетки синтезированного диборида гафния соответствуют данным базы файлов порошковой дифракции PDF-2 (табл. 2). Оценка размеров областей когерентного рассеяния по формуле Шеррера показала, что их величина составляет 15 нм.

Рис. 1. Рентгенограммы нанокристаллического (а), микрокристаллического (б) и из базы данных HfB_2 (в) при T = 298 K.

Анализ высокотемпературных дифракционных данных показал, что нанокристаллический HfB_2 начинает интенсивно взаимодействовать с остаточным кислородом воздуха при температуре более 1270 К с формированием фазы HfO_2 . Остаточного давления воздуха (5–8) × 10^{-3} Па оказывается достаточно для окисления нанокристаллов HfB_2 . При нагреве до 1500 К наблюдается практически полное окисление нанокристаллического HfB_2 за время регистрации рентгенограммы. Типичная последовательность рентгенограмм при изотермическом отжиге нанокристаллического HfB_2 при температуре 1270 К представлена на рис. 2.

Микрокристаллический диборид гафния также взаимодействует с остаточным кислородом при температуре выше 1273 К, однако из-за меньшей удельной поверхности скорость его окисления заметно ниже, чем у нанокристаллического HfB₂.

Температурные зависимости параметров решетки *а* и *с* нано- и микрокристаллического HfB₂

Рис. 2. Рентгенограммы нанокристаллического HfB₂ при нагреве.

представлены на рис. 3. Экспериментальные результаты показывают, что параметры ячейки увеличиваются с ростом температуры нелинейно, т.е. КТР зависит от температуры.

Аппроксимация температурных зависимостей параметров решетки полиномом второй степени дает следующие выражения для микрокристаллического HfB₂:

$$a(T) = 3.1348 + 1.4236 \times 10^{-5}T + 5.1579 \times 10^{-9}T^{2},$$

$$c(T) = 3.4677 + 1.7927 \times 10^{-5}T + 4.6791 \times 10^{-9}T^{2}.$$

Коэффициент детерминации R^2 при аппроксимации экспериментальных данных полиномом второй степени составляет $R^2 = 0.999$ и 0.997 для *а* и *с* соответственно. Значения α_a и α_c , полученные с помощью линейной аппроксимации, т.е. в предположении отсутствия температурной зависимости КТР в исследуемом диапазоне температур, представлены в табл. 3. Среднее значение

Параметр, Å	Нанокристаллический HfB ₂	Микрокристаллический HfB ₂	PDF2 card*	
			№ 000-75-1049	№ 000-38-1398
а	3.141	3.1396	3.1400	3.14245
С	3.467	3.4714	3.4700	3.47602

Таблица 2. Параметры элементарной ячейки HfB₂

* Номер карточки базы PDF2 Международного центра дифракционных данных (ICDD – International Center of Diffraction Data).

Рис. 3. Температурная зависимость параметров решетки a (а) и c (б) нанокристаллического (1) и микрокристаллического (2) HfB₂.

Рис. 4. Кристаллическая структура HfB₂.

КТР рассчитывалось для кристаллов гексагональной сингонии по формуле $\alpha_{av} = (2\alpha_a + \alpha_c)/3$.

Значение КТР микрокристаллов HfB_2 соответствует данным [18], где на основе дилатометрических измерений в диапазоне температур 300–1770 К КТР составил $\alpha = 7.49 \times 10^{-6} \ K^{-1}.$

Полученные результаты свидетельствуют о наличии анизотропии термического расширения HfB₂: вдоль оси с КТР выше, чем вдоль оси а. Анизотропию КТР можно объяснить особенностями строения кристаллов HfB₂ (рис. 4). Атомы Нf образуют плоскости, параллельные плоскостям 110. 101 и 011 ячейки (плоскости 1 и 3 на рис. 4). Эти плоскости разделены плоскостями из атомов В. Однако в направлении 0с плоскости из атомов Hf разделены одной плоскостью из атомов В (плоскость 2). В направлениях 0а и 0с плоскости из атомов Hf разделены двумя плоскостями из атомов В (плоскости 4). Последнее предполагает реализашию более жесткой структуры вдоль осей а и b ячейки. В пользу этого говорит и различие расстояний между плоскостями 1 в разных направлениях: вдоль осей а и b ячейки это расстояние равно 3.14 Å, а вдоль оси c - 3.47 Å. В результате расстояние между плоскостями и атомами Hf вдоль осей *а* и *b* ячейки равно сумме металлических радиусов атомов Hf 3.16 Å [26]. В направлении оси *с* расстояние между плоскостями Hf на 0.3 Å больше суммы металлических радиусов. Кроме того, плоскости 4 связаны между собой прочными ковалентными связями В-В с длиной связи 1.81 Å. Связи такой длины обнаружены в кристаллах карбила бора и его аналогах, облалающих высокой твердостью и химической стойкостью [27]. Расстояние между плоскостями 3 равно 0.91 Å. Все сказанное выше предполагает более высокую жесткость структуры в направлениях осей а и b ячейки, по сравнению с направлением оси с ячейки, что приводит к анизотропии КТР HfB₂.

Для нанокристаллического HfB₂ аппроксимация температурной зависимости параметров решетки полиномом второй степени дает следующие выражения:

$$a(T) = 3.1357 + 1.8465 \times 10^{-5}T + 3.0384 \times 10^{-9}T^{2},$$

$$c(T) = 3.4694 - 1.4672 \times 10^{-5}T + 3.1037 \times 10^{-8}T^{2}.$$

Значения R^2 составили 0.989 и 0.993 для параметров решетки *а* и *с* соответственно.

Таким образом, HfB_2 в нанокристаллическом состоянии обладает бо́льшим КТР по сравнению с микрокристаллическим аналогом. Подобный характер изменения КТР у HfB_2 типичен для на-

	α_a	α_c	α_{av}	Т, К
Нанокристаллический HfB ₂	7.40	9.88	8.23	300-1100
Микрокристаллический HfB ₂	7.37	7.48	7.41	300-1500
HfB ₂ [18]	_	_	7.49	300-1770

Таблица 3. КТР (α , 10⁻⁶ K⁻¹) HfB₂

нокристаллического состояния [19–22] и связан с повышением поверхностной энергии материала при увеличении дисперсности.

ЗАКЛЮЧЕНИЕ

Методом высокотемпературной рентгенографии проведены исследования нано- и микрокристаллического диборида гафния в температурном интервале 300—1500 К. Установлено, что метрика ячейки увеличивается с ростом температуры нелинейно. Впервые определены коэффициенты теплового расширения HfB_2 в направлении кристаллографических осей *a* и *c*. Показано, что HfB_2 в нанокристаллическом состоянии обладает бо́лышим КТР по сравнению с микрокристаллическим аналогом. Обнаружена существенная анизотропия КТР вдоль кристаллографических осей *a* и *c* для наноразмерного HfB_2 , что указывает на преимущественный рост ангармонизма атомных колебаний в нанокристаллах в направлении оси *c*.

Работа выполнена при поддержке гранта РФФИ (№ 17-03-00040).

СПИСОК ЛИТЕРАТУРЫ

- 1. Simonenko E.P., Sevast'yanov D.V., Simonenko N.P., Sevast'yanov V.G., Kuznetsov N.T. Promising Ultra High Temperature Ceramic Materials for Aerospace Applications // Rus. J. Inorg. Chem. 2013. V. 58. № 14. P. 1669.
- Upadhya K., Yang J.M., Hoffman W.P. Materials for Ultra-high Temperature Structural Applications // Am. Ceram. Soc. Bull. 1997. V. 76. P. 51.
- Fahrenholtz W.G., Hilmas G.E., Talmy I.G., Zaykoski J.A. Refractory Diborides of Zirconium and Hafnium // J. Am. Ceram. Soc. 2007. V. 90. P. 1347.
- Opeka M.M., Talmy I.G., Zaykoski J.A. Oxidation-Based Materials Sselection for 2000°C + Hypersonic Aero Surfaces: Theoretical Considerations and Historical Experience // J. Mater. Sci. 2004. V. 39. P. 5887.
- Monteverde F., Bellos A., Scatteia L. Processing and Properties of Ultra-high Temperature Ceramics for Space Applications // Mater. Sci. Eng. 2008. V. A485. P. 415.
- Savinoa R., Stefano Fumo M.D., Silvestron L., Sciti D. Arc-jet Testing on HfB₂ and HfC-based Ultra-high Temperature Ceramic Materials // J. Eur. Ceram. Soc. 2008. V. 28. P. 1899.
- Vajeeston P., Ravindran P., Ravi C., Asokamani R. Electronic Structure, Bonding, and Ground State Properties of AlB₂-Type Transition Metal Diborides // Phys. Rev. B. 2001. V. 63. P. 04115.
- Cutle R.A. Engineering Properties of Borides // Ceramics and Glasses: Engineered Materials Handbook. V. 4 / Ed. Schneider S.J.Jr. Ohio: ASM International, 1991. P. 787.
- Chase M.W.Jr. NIST-JANAF Thermochemical Tables. N.Y.: American Chemical Society and the American Institute of Physics, Woodbury, 1998. 1961 p.

- Wuchina E., Opeka M., Causey S., Buesking S., Spain J., Cull A, Routbort J., Guitierrez-Mora F. Designing for Ultrahigh-temperature Applications: the Mechanical and Thermal Properties of HfB₂, HfC_x, and α-Hf(N) // J. Mater. Sci. 2004. V. 39. P. 5939.
- Андриевский Р.А. Наноструктурные дибориды титана, циркония и гафния: синтез, свойства, размерные эффекты, стабильность // Успехи химии. 2015. Т. 84. С. 540.
- 12. Andrievski R.A., Khatchoyan A.V. Nanomaterials in Extreme Environments. Fundamentals and Applications. Heidelberg: Springer, 2016. 107 p.
- Carenco S., Portehault D., Boissiere C., Mezailles N., Sanchez C. Nanoscaled Metal Borides and Phosphides: Recent Developments and Perspectives // Chem. Rev. 2013. V. 113. P. 7981.
- 14. Андриевский Р.А., Спивак И.И. Прочность тугоплавких соединений и материалов на их основе. Спр. Челябинск: Металлургия, 1989. 368 с.
- 15. Серебрякова Т.И., Неронов В.А., Пешев П.Д. Высокотемпературные бориды. М.: Металлургия, 1991. 368 с.
- 16. *Basu B., Balani K.* Advanced Structural Ceramics. Hoboken: Wiley, 2011. 474 p.
- Nakamory F, Ohishi Y, Muta H., Kurosaki K., Fukumoto K.-I., Yamanaka Sh. Mechanical and Thermal Properties of Bulk ZrB₂ // J. Nucl. Mater. 2015. V. 467. P. 612.
- Loehman R., Corral E., Dumm H.-P., Kotula P., Tandon R. Ultra-high Temperature Ceramics for Hypersonic Vehicle Applications. Albuquerque: Sandia Report, 2006. 46 p.
- Pilladi T.R., Panneerselvam G., Anthonysamy S., Ganesam V. Thermal Expansion of Nanocrystalline Boron Carbide // Ceramic Intern. 2012. V. 38. P. 3723.
- Kuru Y., Wohlschlögel M., Welzel U., Mittemeijer E.J. Crystallite Size Dependence of the Coefficient of Thermal Expansion of Metals // Appl. Phys. Lett. 2007. V. 90. P. 243113.
- 21. Садовников В.И., Гусев А.И. Тепловое расширение наноструктурированных пленок PbS и ангармонизм атомных колебаний // ФТТ. 2014. Т. 56. С. 2274.
- 22. Гусев А.И., Садовников В.И., Чукин А.В., Ремпель А.А. Тепловое расширение нанокристаллического и крупнокристаллического сульфида серебра Ag₂S // ФТТ. 2016. Т. 58. С. 246.
- Кравченко С.Е., Бурлакова А.Г., Шульга Ю.М., Коробов И.И., Домашнев И.А., Дремова Н.Н., Калинников Г.В., Шилкин С.П., Андриевский Р.А. Особенности получения наноразмерного диборида гафния различной дисперсности // Журн. общ. химии. 2015. Т. 85. С. 720.
- 24. *Pease R.S.* An X-Ray Study of Boron Nitride // Acta Crystallogr. 1952. V. 5. P. 356.
- 25. *Langreiter T., Kahlenberg V.* TEV–A Program for the Determination of the Thermal Expansion Tensor from Diffraction Data // Crystals. 2015. V. 5. P. 143.
- 26. Бацанов С.С. Структурная химия. Факты и зависимости. М.: Диалог-МГУ, 2000. 292 с.
- Коновалихин С.В., Пономарев В.И. Особенности кристаллической структуры нового соединения C₄B₂₅Mg_{1.42} // Кристаллография. 2015. Т. 60. С. 691.