УДК 536.24

ЧИСЛЕННОЕ ИССЛЕДОВАНИЕ ТЕПЛОПЕРЕНОСА В ИМПАКТНОЙ ПУЗЫРЬКОВОЙ ИМПУЛЬСНОЙ СТРУЕ

© 2019 г. М. А. Пахомов^{1, *}, В. И. Терехов^{1, **}

¹Институт теплофизики им. С.С. Кутателадзе СО РАН, г. Новосибирск, Россия *E-mail: pakhomov@ngs.ru

***E-mail: terekhov@itp.nsc.ru* Поступила в редакцию 03.08.2018 г. После доработки 21.08.2018 г. Принята к печати 22.08.2018 г.

Выполнено численное моделирование влияния частоты подачи импульсов на теплообмен в пузырьковой затопленной импактной круглой струе. В работе применяется осесимметричная система нестационарных RANS-уравнений с учетом двухфазности течения. Турбулентность жидкой фазы описывается с использованием модели переноса компонент тензора рейнольдсовых напряжений с учетом влияния пузырьков на модификацию турбулентности. Динамика воздушных пузырьков рассчитывается с применением эйлерова подхода. Исследовано влияние изменения частоты подачи импульсов и объемного расходного газосодержания на теплоперенос в газожидкостной импактной струе. Импульсный характер подачи струи вызывает как подавление теплообмена в окрестности точки торможения (до 20-25%) в области малых частот при $f \le 20$ Гц и числе Струхаля Sr ≤ 0.34 , так и его интенсификацию (до 15-20%) при f = 100-200 Гц и Sr = 1.7-3.5 в сравнении со стационарной импактной пузырьковой струей при том же самом осредненном по времени расходе струи.

DOI: 10.1134/S0040364419010332

ВВЕДЕНИЕ

Импактные струйные течения являются одним из наиболее часто встречающихся методов интенсификации тепломассообмена [1]. Причина этого — высокая интенсивность процессов переноса, обеспечивающаяся особенностями струйных течений в районе точки торможения потока [1, 2]. В различных областях потока присутствуют свободные и пристенные сдвиговые слои с развивающимися в них крупномасштабными вихревыми структурами [2, 3]. В области точки торможения потока фиксируются максимальные коэффициенты тепломассообмена и наблюдается резкое искривление линий тока при натекании струи на твердую стенку [1, 2].

В настоящее время проблема интенсификации теплообмена в импактных струях чрезвычайно актуальна. Одним из способов, позволяющих получить существенный рост теплоотдачи, является добавление газовых пузырьков в жидкостную импактную струю (до двух-трех раз в сравнении с однофазным потоком жидкости) [4–7]. Основная причина этого – турбулизация пузырьками пристенного слоя жидкости, что вызывает более интенсивный теплообмен с импактной поверхностью [4]. Наложение пульсаций скорости (расхода потока) является другим эффективным методом активного управления динамическими и тепловыми характеристиками двухфазного течения [8, 9]. В [8, 9] отмечено, что к основным особенностям импульсных импактных двухфазных струй по сравнению со стационарным течением относятся повышенный теплообмен, значительно более тонкие гидродинамический и тепловой пограничные слои, повышенный уровень турбулентности газовой фазы, неустойчивость течения и др. Большой интерес представляет изучение совместного влияния этих факторов на характеристики теплообмена.

В литературе авторами настоящего исследования найдена только одна работа, где выполнены исследования пузырьковой импактной струи при наложении внешнего периодического возмущения [8]. В ней проведены измерения касательного трения на поверхности преграды при изменении объемного расходного газосодержания $\beta = 0 - 12.1\%$ в стационарной и импульсной струях при f = 0 и 250 Гц соответственно для синусоидальных колебаний потока с амплитудой $A = u/U_{m1} = 0.001$. Здесь $\beta = W_b/(W_b + W), W_b$ и W – объемный расход газа и жидкости соответственно, и – интенсивность пульсаций скорости жидкости, U_{m1} среднемассовая скорость потока жидкости на срезе трубы. Зарегистрирован эффект подавления крупномасштабных структур при больших величинах газосодержания. Установлено, что добавление газовой фазы при β ≤ 12% приводит к заметному росту величины касательного трения на стенке (до 40%).

Рис. 1. Распределения касательного трения на стенке в импульсной импактной пузырьковой струе при вариации объемного газосодержания: точки – измерения [8], линии – расчет авторов; f = 250 Гц, Sr = 0.6, Re = 4.04×10^4 , H/(2R) = 2, 2R = 10 мм, d = 0.2 мм, Q = 0.33 л/с, $Q_g = 0-0.046$ л/с; $I - \beta = 0$ (однофазная импактная струя), 2 - 3.4%, 3 - 5.9, 4 - 12.1.

Отметим, что в [8] основное внимание уделено исследованию влияния газосодержания только на трение на стенке. Не исследованным к настоящему времени является влияние газосодержания и частоты подачи импульсов на структуру течения и теплообмен. Попытке ответить на эти вопросы и посвящена данная работа. Основное внимание было уделено численному исследованию влияния частоты подачи импульсов и концентрации пузырьков в импактной затопленной газожидкостной струе на распределение локального коэффициента теплообмена и параметра интенсификации теплообмена в точке торможения потока.

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ

При описании пузырькового течения использовано эйлерово приближение для обеих фаз [6, 7, 10]. Численные результаты получены с применением осесимметричного Unsteady Reynolds Averaged Navier-Stokes (URANS) подхода с учетом обратного влияния пузырьков на осредненные и пульсационные характеристики течения. В целом принятые допущения подобны использованным в работах [6, 7]. Все расчеты выполнялись для случая нестационарного потока, поэтому в уравнения модели были добавлены нестационарные слагаемые. Турбулентность жилкой фазы описывается на основе модели переноса компонент рейнольдсовых напряжений [11] с учетом дополнительной генерации турбулентности жидкости при обтекании пузырьков [6, 7]. Направление течения струи восходящее. В работе не принимаются во внимание эффекты коалесценции и дробления пузырьков, что для пузырьковых турбулент-

ных течений вполне оправдано небольшой концентрацией пузырьков [12]. Применялась неравномерная расчетная сетка в аксиальном и радиальном направлениях (сгущение расчетных узлов в районе импактной поверхности и в приосевой области струи). Расчеты были проведены на сетке, содержащей 256 × 128 контрольных объемов. Дополнительно сделаны расчеты на сетке, содержащей 400 × 256 контрольных объемов. Отличие в результатах расчетов скоростей несущей среды и пузырьков, а также числа Нуссельта не превышало 1%. Шаг по времени равнялся $\Delta t =$ $= 10^{-5}$ с. Число Куранта, являющееся необходимым условием устойчивости численного решения дифференциальных уравнений в частных производных, для всех расчетов не превышало 1.1.

ОБСУЖДЕНИЕ ПОЛУЧЕННЫХ ЧИСЛЕННЫХ РЕЗУЛЬТАТОВ

На завершающем этапе тестирования численной модели было выполнено сопоставление с данными измерений электродиффузионным методом касательных напряжений на стенке [8] для изотермической пузырьковой струи при наложении внешних периодических возмушений. Эти ланные представлены на рис. 1 в виде распределения касательных напряжений по радиусу пластины при вариации газосодержания в широком диапазоне $\beta = 0 - 12.1\%$. Здесь Q = 0.33 л/с, $Q_q = 0 - 12.1\%$ 0.046 л/с – это расходы жидкости (вода) и газа (воздуха) соответственно. Как видно, результаты численных расчетов трения на стенке хорошо согласуются с данными измерений [8]. Максимальное отличие не превышает 15%. Тем не менее необходимо подчеркнуть, что для полноценной верификации расчетной модели необходимо проведение подробных экспериментальных исследований импульсной пузырьковой импактной струи при других режимах.

Кроме подтверждения адекватности расчетной модели, данные рис. 1 представляют самостоятельный интерес при анализе происходящих процессов в импактных двухфазных нестационарных струях. Добавление газовой фазы вызывает увеличение трения на стенке в сравнении с однофазной водяной струей, причем этот эффект усиливается с ростом β , что наблюдается как в экспериментах, так и в результатах расчетов. Отметим наличие ярко выраженного второго локального максимума в распределении трения на стенке при $r/(2R) \approx 2$. Причинами этого являются несколько факторов: ускорение пристенной струи вдоль поверхности, ламинарно-турбулентный переход и увеличение интенсивности радиальных (параллельных стенке) пульсаций скорости в этой зоне, о чем подробно говорится в обобщающих работах для стационарных импактных струй [1, 2]. Характер распределения напряжений

Рис. 2. Распределения локального теплообмена по радиусу преграды при вариации частоты подачи импульсов H/(2R) = 2 (а) и в точке торможения импактной газожидкостной струи в зависимости от числа Струхаля (б): 2R = 20 мм, $Re = 2.3 \times 10^4$, $U_{m1} = 1.15$ м/с, $U_{b1} = 0.9$ м/с, $\beta = 5\%$, d = 1 мм, $T_1 = 293$ К, $T_W = 313$ К; (а): 1 - f = 0 Гц (стационарная пузырьковая импактная струя), Sr = 0; 2 - 5, 0.09; 3 - 50, 0.86; 4 - 200, 3.48; 5 - 300, 5.21; (б): 1 - H/(2R) = 2; 2 - 6.

остается практически неизменным при вариации объемного газосодержания. Только в случае наибольшего его значения ($\beta = 12.1\%$) второй локальный максимум становится сглаженным. Этот факт требует дальнейшего детального исследования. На периферии пристенной струи r/(2R) > 4 влияние газовой фазы перестает сказываться и все экспериментальные и расчетные данные при различных концентрациях пузырьков лежат близко друг к другу.

Все расчеты теплообмена были проведены для системы жидкости (вода) и монодисперсных пузырьков газа (воздух) при атмосферном давлении. Внутренний диаметр трубы 2R = 20 мм. Во входном сечении заданы профили параметров жидкой фазы на основе предварительного расчета однофазного течения в круглой трубе длиной 150*R*. Среднемассовая скорость потока жидкости U_{m1} = 1.15 м/с; число Рейнольдса для несущей жидкой фазы Re = $2RU_{m1}/v$ = 23000. Начальное распределение газовой фазы задано в виде равномерного профиля параметров по сечению трубы со средней скоростью воздушных пузырьков $U_{b1} = 0.8U_{m1}$. Их диаметр составлял d = 1 мм, а объемное расходное газосодержание варьировалось в диапазоне $\beta = 0-12.1\%$. Температура стенки $T_W = 313$ K = const, а начальные температуры жидкости и газа на срезе трубы равнялись $T_1 =$ $= T_{b1} = 293$ К. Все численные расчеты выполнены для расстояния между срезом трубы и преградой H/(2R) = 2 и 6. Частота подачи импульсов f варьировалась в диапазоне 0-300 Гц, что соответствует числу Струхаля, характеризующему меру нестационарности течения, Sr = $f2R/U_{m1} = 0-5.21$. Величина параметра скважности составляла $DC = t_{on}/(t_{on} + t_{off}) = t_{on}/t_{cycle} = 0.5$, где t_{on} , t_{off} и $t_{cycle} -$ время подачи двухфазной струи, время отсутствия подачи потока и полное время цикла соответственно. Все расчеты были проведены для прямоугольной формы импульса и при равенстве

осредненного по времени расхода для импульсной и стационарной импактных струй.

Распределения осредненного по времени числа Нуссельта по радиусу преграды для расстояния между соплом и преградой H/(2R) = 2 приведены на рис. 2а. Локальное число Нуссельта при постоянной температуре стенки определялось по разности температуры стенки и температуры в жидкости на срезе трубы:

$$\mathrm{Nu} = \frac{-(\partial T/\partial y)_W 2R}{T_W - T_1},$$

где $(\partial T/\partial y)_W$ – градиент температуры жидкой фазы на стенке, *y* – поперечная координата, отсчитываемая от стенки поперек потока. На рис. 2а линия *I* представляет собой распределение числа Нуссельта для стационарной пузырьковой импактной струи при равенстве осредненных по времени расходов.

Рост газосодержания вызывает увеличение интенсивности теплообмена между струей и преградой, что согласуется с ранее полученными данными для вертикальных опускных течений в трубах [6]. Отметим значительное увеличение интенсивности теплопереноса при добавлении газовых пузырьков до 1.5 раз в области r/(2R) < 2 (область торможения потока и градиентная зона). Далее вниз по потоку r/(2R) > 3 (участок развития пристенной струи) величина теплоотдачи в двухфазной струе с небольшими пузырьками ($d \le 1$ мм) примерно соответствует таковой для однофазной импактной стационарной водяной струи. Это происходит за счет уменьшения концентрации дисперсной фазы в пристенной зоне трубы при всплытии газовых пузырьков, значительном расширении струи и уменьшения эффекта от наложения импульсов. Наблюдаемое наличие двух максимумов в распределении локального коэффициента теплообмена объясняется небольшим расстоянием между охлаждаемой поверхностью и срезом трубы, что согласуется с данными для однофазных [1, 2] и двухфазных [3, 12, 13] импактных струй. В целом распределение числа Нуссельта при небольшой величине концентрации воздушных пузырьков ($\beta \le 5\%$) по длине преграды соответствует такому для импактной стационарной однофазной [1, 2], газокапельной [9] и пузырьковой струй [8].

Наложение импульсов оказывает сложный характер на теплообмен между пузырьковой струей и преградой. В случае импульсной импактной двухфазной струи характерным является снижение интенсивности теплообмена (до 10%) в случае малых частот f = 5 Гц в сравнении со стационарной струей (линия 2). Далее при f = 50 Гц, интенсивность теплообмена возрастает и для частоты f = 200 Гц (линии 3 и 4 соответственно) отмечается интенсификация теплообмена до 25% в сравнении со стационарным потоком. Для самых больших исследованных в работе частот (f == 300 Гц, линия 5) величина числа Нуссельта снижается, но сохраняется незначительная интенсификация теплообмена (до 5%) в сравнении со стационарным течением.

Зависимость числа Нуссельта в точке торможения от числа Струхаля струи для двух расстояний до поверхности преграды H/(2R) = 2 и 6 показана на рис. 26. Число Струхаля в данной серии расчетов варьировалось только за счет изменения частоты импульсов. Горизонтальные пунктирные линии 1 и 2 соответствуют величинам числа Нуссельта при x/(2R) = 2 и 6 для стационарной пузырьковой струи. В случае импульсной струи наблюдается как повышение интенсивности теплопереноса (до 20% по сравнению со стационарным пузырьковым потоком), так и подавление теплообмена (до 20%), что подтверждает данные рис. 2а. В области малых частот (f = 1-2 Гц, Sr = 0.015– 0.02) все кривые имеют характерный минимум.

Впервые явление снижения теплообмена до 20-30% при малых частотах импульсов было экспериментально показано в [14] и позднее подтверждено численно в [15]. Снижение теплообмена в области малых частот ($f \le 15 \Gamma$ ц) объясняется следующим образом. Для стационарного случая теплообмен в точке торможения импактной однофазной струи по данным [1, 2] описывается корреляционным соотношением

$$Nu_{0, st} = B \operatorname{Re}_{m}^{0.5} \sim U_{m}^{0.5}.$$
 (1)

В предположении квазистационарности процесса теплообмена в области низких частот (f < 5 Гц) для импульсной струи аналогично [14] с импульсами прямоугольной формы и параметром скважности DC = 0.5 интегрирование по времени (1) дает соотношение для среднего числа Нуссельта в нестационарных условиях:

$$Nu_{0,nst} = B Re_m^{0.5} / 2 \sim (2U_m)^{0.5} / 2$$
.

Это приводит к величине параметра интенсификации теплообмена

$$ER = \mathrm{Nu}_{0,\mathrm{nst}} / \mathrm{Nu}_{0,\mathrm{st}} = 2^{0.5} / 2 \approx 0.71,$$

которое показывает, что в области малых частот теплообмен в импульсной струе ниже по сравнению со стационарным течением независимо от числа Струхаля. При этом необходимо помнить, что основным условием сравнения является равенство осредненных по времени расходов импульсной и стационарной струй.

По-видимому, для оценки величины теплообмена в газожидкостных струях при малых частотах следования импульсов возможно использование квазистационарного приближения. Такой вывод можно сделать из анализа данных рис. 26, где в области низких частот происходит резкое снижение теплоотдачи. Затем по мере увеличения числа Струхаля величина теплообмена возрастает, достигая соответствующего значения в стационарной струе, и далее можно отметить интенсификацию теплообмена по мере возрастания числа Струхаля за счет обновления поверхности преграды и формирования более тонких пограничных слоев. Для больших частот (f > 200 Гц, Sr > 3.5) характерным является снижение теплообмена с выходом на характеристики теплообмена для стационарного режима двухфазного течения при f > 500 Гц, Sr > 5 в исследованном диапазоне изменения начальных параметров. В случае малого расстояния от среза трубы до поверхности преграды при x/(2R) = 2 интенсификация теплообмена достигает 20%, тогда как при x/(2R) = 6увеличение теплообмена незначительно (до 6%).

ЗАКЛЮЧЕНИЕ

Выполнено численное моделирование теплообмена в пузырьковой импактной импульсной круглой струе. Исследовано влияние изменения частоты подачи импульсов и объемного расходного газосодержания на теплоперенос в газожидкостной импактной струе. Наложение импульсов на импактную пузырьковую струю вызывает как подавление теплообмена в окрестности точки торможения (до 20-25%) в области малых частот, так и его интенсификацию (до 15-20%) в сравнении со стационарной импактной пузырьковой струей при том же самом осредненном по времени массовом расходе двухфазной струи.

Работа выполнена по госбюджетной тематике (номер гос. рег. АААА-17-117030310010-9).

СПИСОК ЛИТЕРАТУРЫ

- 1. Дыбан Е.П., Мазур А.И. Конвективный теплообмен при струйном обтекании тел. Киев: Наукова думка, 1982.
- Webb B.W., Ma C.F. Single-Phase Liquid Jet Impingement Heat Transfer // Adv. Heat Transfer. 1995. V. 26. P. 105.
- Alekseenko S.V., Dulin V.M., Markovich D.M., Pervunin K.S. Experimental Investigation of Turbulence Modification in Bubbly Axisymmetric Jets // J. Eng. Thermophys. 2015. V. 24. № 2. P. 101.
- Serizawa A., Takahashi O., Kawara Z., Komeyama T., Michiyoshi I. Heat Transfer Augmentation by Twophase Bubbly Flow Impinging Jet with a Confining Wall // Proc. 9th Int. Heat Transfer Conf. IHTC-9. Jerusalem, Israel. 1990. V. 4. Paper 10-EH-16. P. 93.
- Trainer D., Kim J., Kim S.J. Heat Transfer and Flow Characteristics of Air-assisted Impinging Water Jets // Int. J. Heat Mass Transfer. 2013. V. 64. P. 501.
- Pakhomov M.A., Terekhov V.I. Numerical Study of the Flow and Heat Transfer in a Turbulent Bubbly Jet Impingement // Int. J. Heat Mass Transfer. 2016. V. 92. P. 689.
- 7. Пахомов М.А., Терехов В.И. Влияние размера воздушных пузырьков на интенсификацию теплопереноса в импактной жидкостной струе // ТВТ. 2016. Т. 54. № 1. С. 147.

- 8. Алексеенко С.В., Маркович Д.М., Семенов В.И. Турбулентная структура газонасышенной импактной струи // Изв. РАН. МЖГ. 2002. № 5. С. 22.
- Pakhomov M.A., Terekhov V.I. RANS Modeling of Flow Structure and Turbulent Heat Transfer in Pulsed Gas-Droplet Mist Jet Impingement // Int. J. Thermal Sci. 2016. V. 100. P. 284.
- Зайчик Л.И., Мукин Р.В., Мукина Л.С., Стрижов В.Ф., Филиппов А.С. Развитие диффузионно-инерционной модели для расчета пузырьковых турбулентных течений. Изотермическое монодисперсное течение в вертикальной трубе // ТВТ. 2012. Т. 50. № 1. С. 74.
- Craft T.J., Graham L.J.W., Launder B.E. Impinging Jet Studies for Turbulence Model Assessment. II. An Examination of the Performance of Four Turbulence Models // Int. J. Heat Mass Transfer. 1993. V. 36. P. 2685.
- 12. Вараксин А.Ю. Влияние частиц на турбулентность несущего потока газа // ТВТ. 2015. Т. 53. № 3. С. 441.
- Вараксин А.Ю. Обтекание тел дисперсными газовыми потоками (обзор) // ТВТ. 2018. Т. 56. № 2. С. 282.
- 14. *Herwig H., Middelberg G.* The Physics of Unsteady Jet Impingement and its Heat Transfer Performance // Acta Mechanica. 2008. V. 201. P. 171.
- 15. Пахомов М.А., Терехов В.И. Влияние частоты импульсов на теплообмен в точке торможения импактной турбулентной струи // ТВТ. 2013. Т. 51. № 2. С. 287.