УДК 537.311.3

ТЕПЛОВОЕ РАСШИРЕНИЕ И ЭЛЕКТРОСОПРОТИВЛЕНИЕ ИНТЕРМЕТАЛЛИДА Ті₆₇Аl₃₃

© 2019 г. Ж. Х. Мурлиева^{1, 2, *}, Д. К. Палчаев¹, М. Э. Исхаков¹, М. Х. Рабаданов¹, У. У. Багомедова¹

¹Дагестанский государственный университет, г. Махачкала, Россия ²Дагестанский государственный университет народного хозяйства, г. Махачкала, Россия

> **E-mail: zhariyat@mail.ru* Поступила в редакцию 04.08.2018 г. После доработки 09.10.2018 г. Принята к печати 26.12.2018 г.

Проведены одновременные исследования электросопротивления и коэффициента теплового расширения на одном и том же поликристаллическом образце Ti₆₇Al₃₃ в интервале температур 300–1000 К. Показано, что в метастабильном и стабилизированном состояниях образца наблюдается качественная корреляция характеров изменения измеренных параметров. Установлено, что формирование температурной зависимости электросопротивления определяется конкуренцией полупроводникового и металлического вкладов.

DOI: 10.1134/S0040364419020133

ВВЕДЕНИЕ

Интерметаллиды на основе титана широко используются в промышленности благодаря малому удельному весу, высокой удельной прочности, коррозионной стойкости и жаропрочности. Они характеризуются высокими значениями электросопротивления р из-за большой константы электрон-фононного взаимодействия и статического беспорядка, создаваемого локальными термическими разупорядочениями (диффузионными фазовыми переходами) [1, 2]. Интерметаллиды представляют собой электронные соединения (фазы Юм-Розери), структуры которых образуются за счет "смешанных связей" между атомами: ковалентных, ионных и металлических. Им характерно [3] упорядочение в узком (слабое: Cu₃Au или CuZn) и в широком (сильное: Nb₃Al, NiAl или TiAl) интервалах температур.

Ранее [4] были тщательно исследованы температурная зависимость электросопротивления $\rho(T)$ и коэффициент теплового расширения $\beta(T)$ сплавов системы Cu–Zn, в том числе трех фаз Юм– Розери и их механических смесей. Для каждого состава измерения проводились одновременно на одном и том же образце в одних и тех же условиях, результаты которых легли в основу стандартных справочных данных (ГОСТ Р 8.940–2017). Факт одновременности (*in situ*) измерений служит дополнительным критерием достоверности полученных данных, поскольку эти параметры в конечном итоге определяются видом потенциала межатомного взаимодействия. Как $\rho(T)$, так и $\beta(T)$ отражают особенности изменения сил межатомного взаимодействия в среднем по решетке при квазистатическом переходе системы из одного равновесного состояния в другое. От 0 К до температуры плавления значение β меняется сложным образом и на многие порядки, особенно на отрезке до температуры Дебая. Наличие ковалентной составляющей межатомной связи в интерметаллидах приводит к дополнительным особенностям этих изменений, обусловленным диффузионными фазовыми переходами [2].

Путем корреляционного анализа экспериментальных данных по $\rho(T)$ и $\beta(T)$ чистых металлов и сплавов Cu–Zn в [4–7] показано наличие их функциональной линейной связи:

$$\rho_i = \rho_0 + \rho^{\rm ph} = \rho_0 + \rho^* \beta_i T_i, \qquad (1)$$

где ρ_0 — значение ρ , экстраполированной в 0 К; $\rho^{\rm ph}$ — фононное электросопротивление при данной температуре T_i ; ρ^* — константа — характеристическое электросопротивление для каждого металла. В общем случае $\rho^* \le 2-3 \times 10^{-6}$ Ом м и определяется минимальной длиной свободного пробега электрона (предел Иоффе-Регеля) [1], которая примерно равна межатомному расстоянию. Существует корреляция (правило Моойа [8]) между ρ^* и температурным коэффициентом сопротивления (ТКС): для металлов с $\rho^* < 1-1.5 \times 10^{-6}$ Ом м, ТКС положительный, для $\rho^* > 1.5 \times 10^{-6}$ — отрицательный. К последним относится и монокристаллический Ti₆₇Al₃₃ [8] с $\rho^* ~ 2 \times 10^{-6}$ Ом м при ~200–1000 К (рис. 1). Это прави-

Рис. 1. Зависимости $\rho(T)$ для образцов: I — Ti₆₇Al₃₃ данной работы при нагреве (*I*) и охлаждении (*2*), в скобках — номера циклов; II — из работы [8]; на вставке — элементарная ячейка стехиометрического Ti₃Al.

ло и существование верхнего предела сопротивления у металлических проводников, вероятно [1], обусловлено особенностями экранирования рассеивающего потенциала в системе с большой плотностью свободных носителей.

В настоящей работе приводятся результаты одновременных исследований ρ и коэффициента теплового расширения (КТР) поликристаллического интерметаллида $Ti_{67}Al_{33}$ от 300 до ~1000 К на одном образце при одних и тех же условиях. Корреляционный анализ связи $\rho(T)$ и $\beta(T)$ для интерметаллидов, в том числе со структурой $Ti_{3}Al$, позволит установить отличительные особенности формирования электрических свойств в этих объектах. Всестороннее изучение особенностей физических свойств интерметаллидов на основе Ti–Al будет способствовать расширению спектра их применения. Такие исследования, помимо прочего, могут служить основой при выработке рекомендуемых (справочных) данных.

ХАРАКТЕРИСТИКА ОБРАЗЦОВ И РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ

Исследованный поликристаллический образец 67 ат. % Ті – 33 ат. % Аl получен из чистого титана марки ВТ1-0 (99.8%) и алюминия марки АВР (99.995%) путем индукционной плавки при ~1973 K. Остывание проходило в той же печи после выключения. Диаграмма состояния системы Ti-Al [9] свидетельствует о том, что структурой Ті₃Аl обладают соединения с концентрацией алюминия в пределах от 22 до 39 ат. %. При данных составах отношение *с/а* существенно изменяется с образованием сплавов вычитания, представляющих собой фазы Юм-Розери (число электронов, приходящихся на один атом, близко к 3.75). Такое соотношение приводит к перекрытию волновых функций обобществленных электронов и образованию дополнительных слабых ковалентных

связей [3, 9] за счет дисперсионных сил. Определенное упорядочение позиций атомов алюминия стабилизация структуры Ti₃Al (a = 0.58 нм, c == 0.46 нм, c/a = 0.80) — связано [9] не только с размерным фактором, но и электронным, так как для этих интерметаллидов характерно слабое сверхструктурное сжатие в среднем по решетке. При отклонении от стехиометрического состава в ту или другую сторону (сплавы вычитания) в узлах соответствующих атомов возникают вакансии. При наличии таких вакансий в сплавах нестехиометрического состава, например при содержании 33 ат. % алюминия, будет наблюдаться дополнительное статическое разупорядочение. В [10] показано, что атомы Ті и Аl в ГПУ решетке интерметаллида Ti₆₇Al₃₃ (рис. 1) при соответствующей термообработке могут образовывать различные равновесные состояния, для которых характерны определенные значения ρ и ТКС. С ростом температуры в отдельных элементарных ячейках происходит разупорядочение позиций атомов и локальное изменение плотности упаковки. Тепловая хаотизация амплитуды колебаний атомов предполагает хаотичное по объему образца распределение ячеек с упорядоченным и неупорядоченным расположениями атомов Ті и Al. При повышении температуры, от которой производится закалка этого интерметаллида, отношение числа ячеек с упорядоченным и неупорядоченным распределениями атомов будет уменьшаться, что приведет к повышению статического беспорядка и остаточного ρ_0 . В [8, 11] показано, что монокристаллам Ti_{71.3}Al_{28.7}, Ti_{68.1}Al_{31.9} и $Ti_{67}Al_{33}$ со структурой α_2 - Ti_3Al (структура типа $D0_{19}$), а также механической смеси $Ti_{60}Al_{40} (\alpha_2 + \gamma)$ [12] присущи высокие значения р. Максимальные значения ρ (>2.5 × 10⁻⁶ Ом м), по данным [11], имеет Ti₇₅Al₂₅ стехиометрического состава.

Измерения р и линейного КТР α Ti₆₇Al₃₃ в интервале от 300 до ~1000 К проводились *in situ* четырехзондовым способом и методом кварцевого дилатометра на одном и том же образце при одних и тех же условиях по аттестованной (ГСССД МЭ 208–2013) методике. Предельные погрешности оценки р и α составляют (0.5–1)% и (5–10)% соответственно.

На зависимости $\rho(T)$ метастабильного образца (рис. 1) наблюдается гистерезис, который уменьшается в последующих циклах нагрев—охлаждение и полностью исчезает в процессе четвертого цикла, что свидетельствует о переходе образца в стабилизированное состояние, характерное для исходных технологических режимов. Существование метастабильного состояния образца связано с тем, что после охлаждения сплава от ~1973 К и заводской формовки в нем остались участки с неоднородной структурой, т.е. ячейки с неупорядоченным распределением атомов Al. Эффект отрицательного ТКС в метастабильном и стабилизированном состояниях, в отличие от результатов авторов [8, 11, 12], проявляется в относительно небольшом температурном интервале, где ρ достигает наибольшего значения (рис. 1 и 2). Более высокие значения ρ образца из [8] (рис. 1) и иной ход зависимости $\rho(T)$ по сравнению с настоящим образцом, видимо, связаны с его монокристалличностью и высокой долей ковалентных межатомных связей.

На рис. 2 приведены зависимости $\rho(T)$ и $\alpha(T)$ метастабильного образца, которые в интервале 300–1000 К хорошо описываются двумя полиномами четвертой и второй степени соответственно:

$$\rho \times 10^{6} = 1.733 + 0.001T - 2.96 \times 10^{-6}T^{2} + 2.68 \times 10^{-9}T^{3} - 1.003 \times 10^{-12}T^{4} (305-770 \text{ K}),$$

$$\rho \times 10^{6} = 21.296 - 0.087T + 1.489 \times 10^{-4}T^{2} - 1.132 \times 10^{-7}T^{3} + 3.239 \times 10^{-11}T^{4} (770-994 \text{ K}),$$

$$\alpha = 2.677 \times 10^{-6} + 2.405 \times 10^{-8}T - 1.908 \times 10^{-11}T^{2} (305-770 \text{ K}),$$

$$\alpha = 4.282 \times 10^{-5} - 1.012 \times 10^{-7}T + 7.550 \times 10^{-11}T^{2} (770-994 \text{ K}).$$

Точки стыковки ~770 К полиномов приходятся на участки перегибов на этих зависимостях. Смена выпуклости на вогнутость может свидетельствовать о возникновении дополнительных зарядовых возбуждений в этом проводнике. Наиболее отчетливо (рис. 2) особенности проявляются на кривой $\rho(T)$. От 300 до 400 К доминирует металлический характер проводимости, начиная с ~435 К тепловая хаотизация колебаний атомов приводит к локальному перераспределению зарядовой плотности (разрушению ковалентных связей). В результате включается и нарастает полупроводниковый механизм проводимости. Далее зависимость $\rho(T)$ насыщается и проходит через максимум при ~530 К. Вероятно, при этом вклалы, связанные с нарастанием концентрации элементарных возбуждений и их рассеянием на тепловых колебаниях решетки, сравниваются, а далее (до 770 К) возрастание концентрации неравновесных элементарных возбуждений все больше компенсирует вклад от их рассеяния. Выше (700-900 К) ковалентная составляющая связей резко снижается. На зависимости $\alpha(T)$ в этой области температур наблюдается резкий рост, тогда как до 770 К возрастание межатомного расстояния сопровожлалось одновременным уплотнением. поскольку $\alpha(T)$ проходит через максимум. Наблюдается прямая корреляция хода зависимостей $\rho(T)$ и $\alpha(T)$ метастабильного образца во всем интервале температур (рис. 2). Такая же корреляция наблюдается (в четвертом цикле нагрева) в пове-

Рис. 2. Зависимости $\rho(T)$ (*1*, *2*) и $\alpha(T)$ (*3*, *4*) в первом цикле нагрева: *1*, *3* – экспериментальные точки; *2*, *4* – полиномы.

Рис. 3. Зависимости $\rho(T)$ (*1*, *2*) и $\alpha(T)$ (*3*) в четвертом цикле нагрева: *1*, *3* – полиномы; *2* – экспериментальные данные.

дении этих зависимостей (рис. 3) в стабилизированном состоянии образца. Здесь они описываются следующими полиномами:

$$\begin{split} \rho \times 10^6 &= 1.602 + 0.001 T^1 - 1.933 \times 10^{-6} T^2 + \\ &+ 8.354 \times 10^{-10} T^3 \left(300 - 760 \text{ K} \right), \\ \rho \times 10^6 &= 2.607 - 0.002 T^1 + 1.914 \times 10^{-6} T^2 - \\ &- 5.807 \times 10^{-10} T^3 \left(770 - 1000 \text{ K} \right), \\ \alpha &= 0.001 - 2.284 \times 10^{-6} T^1 + \\ &+ 2.089 \times 10^{-9} T^2 \left(300 - 760 \text{ K} \right), \\ \alpha &= 4.492 \times 10^{-4} + 7.659 \times 10^{-7} T^1 - \\ &- 2.197 \times 10^{-10} T^2 \left(770 - 1000 \text{ K} \right). \end{split}$$

Для стабилизированного состояния образца разность между максимальным и минимальным значениями сопротивления уменьшается, но зависимость $\rho(T)$ также демонстрирует конкуренцию металлического и полупроводникового характеров проводимости. Максимум $\rho(T)$ смещается в сторону высоких температур и приходится на 665 К, минимум наблюдается при 821 К, а область температур, где ТКС отрицателен, заметно сужается. Особенности в виде сингулярности производных от $\rho(T)$ и $\alpha(T)$ при 770 K для обоих состояний образца совпадают. Выше 910 K (рис. 3) полностью доминирует металлический механизм проводимости.

ЗАКЛЮЧЕНИЕ

Таким образом, исследования интерметаллида Ті₆₇Аl₃₃ – метастабильного образца и образца после стабилизации – показали наличие корреляции в поведении $\rho(T)$ и $\alpha(T)$. Для сложных систем, к которым относятся интерметаллиды со структурой Ti₃Al, не следует ожидать прямой функциональной связи (см. (1)) между этими параметрами в широком интервале температур, как для нормальных металлов. Поскольку у обычных проводников концентрация носителей заряда практически постоянна, механизм проводимости стабильно металлический. В отличие от них у интерметаллидов механизм формирования проводимости неоднозначный: присутствует конкуренция полупроводникового и металлического вкладов в процесс ее формирования.

Работа выполнена при финансовой поддержке госзадания № 3.5982.2017/8.9.

СПИСОК ЛИТЕРАТУРЫ

- 1. Гантмахер В.Ф. Электроны в неупорядоченных средах. М.: Физматлит, 2013. 288 с.
- Устиновщиков Ю.И. Диффузионные фазовые превращения в сплавах // УФН. 2014. Т. 184. № 7. С. 723.
- 3. *Hadef F.* Synthesis and Disordering of B2 TM-Al (TM = Fe, Ni, Co) Intermetallic Alloys by High Energy Ball Milling: A Review // Powder Technolog. 2017. V. 311. P. 556.

- 4. Мурлиева Ж.Х., Исхаков М.Э., Палчаев Д.К. и др. Температурная зависимость электросопротивления сплавов, обусловленная динамическим и статическим беспорядками // ТВТ. 2012. Т. 50. № 5. С. 644.
- 5. Палчаев Д.К., Мурлиева Ж.Х., Казбеков К.К. Связь удельного электросопротивления металлов с термической деформацией // ТВТ. 2007. Т. 45. № 5. С. 700.
- Мурлиева Ж.Х., Палчаев Д.К., Борзов Е.Д., Исхаков М.Э., Акаев Ф.А. Зависимость электросопротивления никеля и β-латуни от изобарной термической деформации в упорядоченной и неупорядоченной фазах // ТВТ. 2007. Т. 45. № 6. С. 875.
- 7. Палчаев Д.К., Мурлиева Ж.Х., Абдулагатов И.М. и др. Влияние магнитных свойств на электросопротивление металлов группы железа // ТВТ. 2017. Т. 55. № 3. С. 402.
- Mooij J.H. Electrical Conduction in Disordered Alloys // Phys. Stat. Sol. (a) 1973. V. 17. P. 521.
- 9. Клопотов А.А., Потекаев А.И., Козлов Э.В. и др. Кристаллогеометрические и кристаллохимические закономерности образования бинарных и тройных соединений на основе титана и никеля. Томск: Изд-во ТПУ, 2011. 312 с.
- Мурлиева Ж.Х., Палчаев Д.К., Исхаков М.Э. и др. Корреляция электросопротивления и теплового расширения титан-алюминиевых сплавов // Тр. IV Междунар. конф. "Лазерные, плазменные исследования и технологии – ЛаПлаз–2018". М., 2018. С. 127.
- Li J.G., Wei B.C., Pan M.X. et al. The Relationship between Resistivity and Temperature in Ordered a₂-Ti₃Al and g-TiAl Intermetallic Compounds Single Crystals // Mater. Sci. Eng. 1999. V. 268. P. 193.
- Veeraraghavan D., Vijay K. Vasudevan. Phase Transformations in Two-phase TiAl/Ti₃Al Alloys During Continuous Heating and Cooling, Studied by Electrical Resistivity Measurements // Mater. Sci. Eng. 1995. V. 192–193. P. 950.