УДК 536.24

РАСЧЕТ ТЕПЛООБМЕНА ПРИ ЛАМИНАРНОМ ТЕЧЕНИИ ЖИДКОСТИ В ЦИЛИНДРИЧЕСКОМ КАНАЛЕ ПРИ НАЛИЧИИ АКСИАЛЬНОЙ ТЕПЛОПРОВОДНОСТИ

© 2019 г. Ю. В. Видин¹, Р. В. Казаков^{1, *}

¹Сибирский федеральный университет, г. Красноярск, Россия *E-mail: roman.kazakov@list.ru Поступило в редакцию 05.07.2018 г. После доработки 19.08.2018 г. Принято к печати 10.10.2018 г.

Предложен аналитический метод расчета собственных значений и собственных функций в задаче теплообмена для ламинарного потока жидкости в цилиндрическом канале с учетом аксиальной теплопроводности. Метод основан на использовании специальной гипергеометрической конфлюэнтной функции. С ее помощью удается найти точные реперные величины собственных чисел и собственных функций при определенных соотношениях между числами подобия Био и Пекле. Кроме этого, рекомендуемый способ позволяет выполнить необходимые математические вычислительные операции при произвольном сочетании названных чисел подобия с достаточной степенью точности, задавая соответствующий безразмерный комплекс α . Такой подход позволяет существенно ограничить (уменьшить) количество весомых членов бесконечного ряда применяемой гипергеометрической функции. Выведенные строгие и приближенные аналитические решения с использованием названных функций могут быть применены для теоретического анализа широкого класса теплофизических задач, в том числе и нелинейных.

DOI: 10.1134/S004036441902025X

введение

Известно, что аналитический расчет процесса теплообмена при ламинарном течении жидкости в каналах с учетом ее аксиальной теплопроводности существенно усложняется [1–4]. С традиционными допущениями рассматриваемая задача может быть представлена при действующих на наружной поверхности граничных условиях третьего рода в следующем безразмерном виде [1]:

$$\frac{\partial^2 \vartheta}{\partial R^2} + \frac{1}{R} \frac{\partial \vartheta}{\partial R} + \frac{1}{Pe^2} \frac{\partial^2 \vartheta}{\partial X^2} = (1 - R^2) \frac{\partial \vartheta}{\partial X}, \qquad (1)$$

$$\frac{\partial \vartheta}{\partial R} = 0$$
 при $R = 0,$ (2)

$$\frac{\partial \vartheta}{\partial R} = -\text{Bi}\vartheta$$
 при $R = 1,$ (3)

$$\vartheta = 1 \operatorname{при} X = 0.$$
 (4)

Общее решение этой задачи можно записать в форме бесконечного ряда

$$\vartheta = \sum_{n=1}^{\infty} A_n \psi_n(R) \exp(-\mu_n^2 X),$$

где собственные значения μ_n зависят от чисел подобия Ві и Ре.

РЕШЕНИЕ ЗАДАЧИ

В классической монографии [1] цитируется аналитическое решение задачи (1)–(4), полученное в работе [2] для случая, когда $\text{Bi} \Rightarrow \infty$, т.е. на поверхности трубы действует граничное условие первого рода. Согласно [2], собственные функции $\psi_n(R)$ представлены в виде бесконечного степенного ряда

$$\psi_n(R)=\sum_{m=0}^{\infty}b_mR^m,$$

где индекс *т* принимает четные значения (0, 2, 4...).

В монографиях [5–7] теоретически рассмотрены достаточно подробно и всесторонне процессы теплообмена при ламинарном движении жидкости в плоских и круглых каналах без учета осевой теплопроводности, т.е. когда $Pe \Rightarrow \infty$. При этом для решения задач были привлечены вырожденные гипергеометрические функции [8, 9]. По мнению авторов, применение таких функций является наиболее перспективным математическим направлением при исследовании тепловых процессов, подобных задаче (1)–(4).

Очевидно, что нахождение собственных значений μ_n и собственных функций $\psi_n(R)$ сводится к решению следующей задачи Штурма—Лиувилля:

$$\Psi'' + \frac{\Psi'}{R} + \left[\frac{\mu^4}{\text{Pe}^2} + \mu^2(1 - R^2)\right]\Psi = 0,$$
(5)

$$\psi' = 0$$
 при $R = 0$, (6)

$$\psi' = -Bi\psi$$
 при $R = 1.$ (7)

Представить интеграл дифференциального уравнения второго порядка (5) с принятыми граничными условиями (6) и (7) через элементарные функции в общем случае не удается. Поэтому здесь целесообразно использовать специальные функции. Как показано в [6], аналитическое решение задачи (5)—(7) можно записать в виде

$$\Psi = \exp\left(-\mu \frac{R^2}{2}\right) F_a(\alpha, \gamma, \mu R^2), \qquad (8)$$

где $F_a(\alpha, \gamma, \mu R^2)$ — конфлюэнтная гипергеометрическая функция [7, 8], определяемая как бесконечная сумма

$$F_{a}(\alpha, \gamma, \mu R^{2}) = 1 + \frac{\alpha}{\gamma} \mu R^{2} + \frac{\alpha(\alpha + 1)\mu^{2}R^{4}}{\gamma(\gamma + 1)2!} + \frac{\alpha(\alpha + 1)(\alpha + 2)\mu^{3}R^{6}}{\gamma(\gamma + 1)(\gamma + 2)3!} + \frac{\alpha(\alpha + 1)(\alpha + 2)(\alpha + 3)\mu^{4}R^{8}}{\gamma(\gamma + 1)(\gamma + 2)(\gamma + 3)4!} + \dots + \frac{\alpha(\alpha + 1)(\alpha + 2)\dots(\alpha + m - 1)\mu^{m}R^{2m}}{\gamma(\gamma + 1)(\alpha + 2)\dots(\alpha + m - 1)\mu^{m}R^{2m}},$$
(9)

$$+ \frac{\alpha(\alpha + 1)(\alpha + 2)...(\alpha + m - 1)}{\gamma(\gamma + 1)(\gamma + 2)...(\gamma + m - 1)} \frac{\mu + \pi}{m!} + \dots$$

При этом для канала круглого сечения будут иметь место равенства

$$\alpha = \frac{1}{4} \left(2 - \mu - \frac{\mu^3}{Pe^2} \right) \varkappa \gamma = 1.$$

При ү = 1 формула (9) примет вид

$$F_{a}(\alpha, 1, \mu R^{2}) = 1 + \alpha \mu R^{2} + \frac{\alpha(\alpha + 1)\mu^{2}R^{4}}{(2!)^{2}} + \alpha(\alpha + 1)(\alpha + 2)\frac{\mu^{3}R^{6}}{(3!)^{2}} + \dots +$$
(10)

+
$$\frac{\alpha(\alpha+1)(\alpha+2)...(\alpha+m-1)\mu^m R^{2m}}{(m!)^2}$$
.

После подстановки (8) в граничное условие (7), может быть получено характеристическое уравнение для определения собственных чисел μ_n рассматриваемой задачи в виде

$$\mu - \frac{2\alpha\mu + \alpha(\alpha + 1)\mu^{2} + \frac{\alpha(\alpha + 1)(\alpha + 2)}{3!}\mu^{3} + \dots}{1 + \alpha\mu + \frac{\alpha(\alpha + 1)}{(2!)^{2}}\mu^{2} + \frac{\alpha(\alpha + 1)(\alpha + 2)}{(3!)^{2}}\mu^{3} + \dots} = \text{Bi.} \quad (11)$$

ТЕПЛОФИЗИКА ВЫСОКИХ ТЕМПЕРАТУР том 57 № 2

В частном случае, а именно при Ві $\Rightarrow \infty$ (граничное условие первого рода), формула (11) упрощается

$$1 + \alpha \mu + \frac{\alpha(\alpha + 1)}{(2!)^2} \mu^2 + \frac{\alpha(\alpha + 1)(\alpha + 2)}{(3!)^2} \mu^3 + \dots = 0.(12)$$

В монографиях [5–7] приведены подробные табличные значения трех первых корней μ_n уравнений (11) и (12) для широкого диапазона чисел Ві, рассчитанные при условии, что осевой растечки тепла в потоке жидкости нет, т.е. параметр Ре $\Rightarrow \infty$ и, следовательно, комплекс α равен $\alpha = \frac{1}{4}(2-\mu)$, что соответствует максимально возможным величинам этого коэффициента. В представленной таблице наряду с числовыми значениями корней μ_1 , μ_2 , μ_3 указаны и соответствующие им $\alpha_{1 max}$, $\alpha_{2 max}$, $\alpha_{3 max}$.

Значения первых трех характеристических чисел μ_n и $\alpha_{n\max}$ для круглого канала при отсутствии аксиальной теплопроводности

Bi	μ_1	μ_2	μ_3	α_{1max}	α_{2max}	α_{3max}
0	0	5.0675	9.1576	0.500	-0.767	-1.789
0.1	0.6183	5.1168	9.1750	0.345	-0.779	-1.794
0.2	0.8555	5.1641	9.2058	0.286	-0.791	-1.801
0.3	1.0258	5.2096	9.2359	0.244	-0.802	-1.809
0.4	1.1603	5.2532	9.2651	0.210	-0.813	-1.816
0.5	1.2716	5.2951	9.3063	0.182	-0.824	-1.827
0.6	1.3663	5.3349	9.3214	0.158	-0.834	-1.830
0.7	1.4482	5.3731	9.3484	0.138	-0.843	-1.837
0.8	1.5202	5.4097	9.3749	0.120	-0.852	-1.845
0.9	1.5841	5.4447	9.4002	0.104	-0.861	-1.850
1.0	1.6413	5.4782	9.4250	0.090	-0.870	-1.856
1.5	1.8569	5.6251	9.5390	0.036	-0.906	-1.885
2.0	2.0000	5.7439	9.6450	0.000	-0.936	-1.911
3.0	2.1787	5.9209	9.7976	-0.045	-0.980	-1.949
4.0	2.2857	6.0446	9.9193	-0.071	-1.011	-1.980
5.0	2.3568	6.1351	10.0137	-0.089	-1.034	-2.003
10.0	2.5168	6.3647	10.2755	-0.129	-1.091	-2.069
20.0	2.6069	6.5098	10.4500	-0.152	-1.127	-2.113
30.0	2.6386	6.5637	10.5259	-0.160	-1.141	-2.131
40.0	2.6547	6.5916	10.5624	-0.164	-1.148	-2.141
50.0	2.6645	6.6086	10.5849	-0.166	-1.152	-2.146
60.0	2.6710	6.6201	10.6001	-0.168	-1.155	-2.150
80.0	2.6793	6.6346	10.6194	-0.170	-1.159	-2.155
100.0	2.6845	6.6434	10.6312	-0.171	-1.161	-2.158
1000.0	2.7026	6.6790	10.6734	-0.176	-1.170	-2.168
∞	2.7044	6.6790	10.6734	-0.176	-1.170	-2.168

2019

При наличии осевого переноса тепла в потоке, т.е. когда число Pe < ∞ , коэффициенты α_n будут обязательно меньше максимальных значений $\alpha_{n \max}$.

Нетрудно показать, что в тех случаях, когда параметр α оказывается нулевым или целым отрицательным числом, бесконечные ряды в зависимостях (10)—(12) обрываются и становятся конечными и, как правило, легко решаемыми.

Так, например, если при $Bi \Rightarrow \infty$ принять $\alpha_1 = -1$, то согласно зависимости (12) первое собственное значение будет равно $\mu_1 = 1$ и, следовательно, соответствующее этому рассматриваемому варианту число Pe = 0.4472. Тогда первая собственная функция записывается в простом виде

$$\psi_1(R) = (1-R)^2 \exp\left(-\frac{R^2}{2}\right).$$

Другим интересным случаем является вариант, в котором Bi = 1 и Pe = 1. Тогда первое собственное число μ_1 тоже равно единице $\mu_1 = 1$ и, следовательно, параметр $\alpha_1 = 0$. Очевидно, что первая собственная функция $\psi_1(R)$ для такого сочетания Bi и Pe становится еще проще, а именно

$$\psi_1(R) = \exp\left(-\frac{R^2}{2}\right).$$

Подобные примеры могут быть существенно расширены. Так, допустим, если снова принять $\alpha = -1$, тогда характеристическое уравнение (11) преобразуется в алгебраическое уравнение второй степени

$$\mu^2 - (3 + Bi)\mu + Bi = 0.$$

Следовательно, при Bi = 1 первое и второе собственные числа μ_1 и μ_2 будут равны

$$\mu_{1} = \frac{3 + Bi}{2} - \sqrt{\frac{(3 + Bi)^{2}}{4} - Bi} = \frac{3 + 1}{2} - \sqrt{4 - 1} = 0.268,$$

$$\mu_{2} = \frac{3 + Bi}{2} + \sqrt{\frac{(3 + Bi)^{2}}{4} - Bi} = 2 + \sqrt{4 - 1} = 3.732.$$

Далее легко находятся соответствующие им значения Ре по выражениям

$$Pe_{1} = \sqrt{\frac{\mu_{1}^{3}}{2 - 4\alpha - \mu_{1}}} = \sqrt{\frac{0.268^{3}}{2 + 4 - 0.268}} = 0.058,$$

$$Pe_{2} = \sqrt{\frac{\mu_{2}^{3}}{2 - 4\alpha - \mu_{2}}} = \sqrt{\frac{3.732^{3}}{2 + 4 - 3.732}} = 4.7872.$$

Таким образом, в случае, когда Bi = 1 и Pe = 0.058, первый корень характеристического уравнения (11) $\mu_1 = 0.268$ и, следовательно, первая собственная функция $\psi_1(R)$ будет иметь вид $\psi_1(R) = (1 - 0.268R^2) \exp(-0.134R^2)$.

Если же Bi = 1 и Pe = 4.7872, тогда второе собственное значение $\mu_2 = 3.732$ и $\psi_2(R) =$ = $(1 - 3.732R^2)\exp(-1.866R^2)$.

Естественно, что данные функции при указанных величинах чисел подобия Ві и Ре должны вполне удовлетворять задаче (7)—(9). Аналогичным способом выполняются расчеты и для других величин Ві.

Подобный анализ можно провести, например, и при величине параметра $\alpha = -2$. В этом случае характеристическое уравнение (11) преобразуется в алгебраическое соотношение третьей степени

$$(5+2\mathrm{Bi})\mu - \left(4+\frac{\mathrm{Bi}}{2}\right)\mu^2 + \frac{\mu^3}{2} - \mathrm{Bi} = 0,$$
 (13)

которое при Bi $\Rightarrow \infty$ вырождается в квадратное $\mu^2 - 4\mu + 2 = 0$, и тогда $\mu_1 = 0.5858$ и $\mu_2 = 3.4142$.

Если же число Ві является конечным, то корни кубического уравнения (13) могут быть определены, например, с помощью известных формул Кардано. В частности, при Ві = 1 выражение принимает вид

$$\mu^3 - 9\mu^2 + 14\mu - 2 = 0.$$

Отсюда следует, что

$$\mu_1 = 0.1588, \ \mu_2 = 1.7852, \ \mu_3 = 7.0560.$$

Далее рассчитываются соответствующие числа Ре

$$Pe_{1} = \sqrt{\frac{0.159^{3}}{10 - 0.159}} = 0.0202,$$

$$Pe_{2} = \sqrt{\frac{1.785^{3}}{10 - 1.785}} = 0.8321,$$

$$Pe_{3} = \sqrt{\frac{7.056^{3}}{10 - 7.056}} = 10.924.$$

Следовательно, при Bi = 1 и Pe = 0.0202 первая собственная функция $\psi_1(R)$ имеет вид

$$ψ_1(R) = (1 - 0.0318R^2 + 0.0126R^4) \exp(-0.0795R^2),$$

при Bi = 1 и Pe = 0.08321

$$\psi_2(R) = (1 - 3.75R^2 + 1.593R^4) \exp(-0.8925R^2)$$
и при Ві = 1 и Ре = 10.924

$$\psi_3(R) = (1 - 14.112R^2 + 24.894R^4) \exp(-3.528R^2).$$

ЗАКЛЮЧЕНИЕ

Итак, благодаря ряду свойств гипергеометрической функции (9), удается получить широкий спектр строгих аналитических решений задачи (5)— (7) для точечных комбинаций параметров Ві и Ре. Кроме того, во многих случаях, задавая приемлемый по величине комплекс α, можно свести уравнение (11) к сравнительно несложному алгебраическому выражению, обычно не выше четвертой степени. Это позволяет существенно расширить область определения приближенных аналитических решений уравнения (5) с граничными условиями (6), (7). Причем с инженерной точки зрения они, как правило, обладают вполне достаточной точностью.

Нетрудно также показать, что предлагаемый подход может быть применен и в случае, когда необходимо учесть влияние термического сопротивления стенки канала [5]. В работах [10, 11] приведены табличные данные функции (9) для ряда значений безразмерных параметров α и γ . Однако, по мнению авторов, целесообразно дополнить их для области малых и отрицательных величин коэффициентом α . Тогда, как это видно из приведенной в данной работе таблицы, оказывается возможным применение таких функций для эффективного исследования различных классов задач, подобных, в частности, рассматриваемой.

СПИСОК ЛИТЕРАТУРЫ

1. *Петухов Б.С.* Теплообмен и сопротивление при ламинарном течении жидкости в трубах. М.: Энергия, 1967. 411 с.

- Лабунцов Д.А. Некоторые вопросы теории теплообмена при ламинарном течении жидкости в трубах // Теплоэнергетика. 1958. № 3.
- 3. Видин Ю.В., Иванов В.В. Влияние аксиальной теплопроводности жидкости в трубах на процессе радиационно-конвективного охлаждения наружных поверхностей // Изв. вузов Северо-Кавказского региона. Техн. науки. 2014. № 5. С. 45.
- 4. *Генин Л.Г.* Расчет температур жидкости и стенки при течении в трубах с учетом осевой теплопроводности // ТВТ. 1963. Т. 1. № 2. С. 247.
- 5. Видин Ю.В., Иванов В.В., Медведев Г.Г. Расчет теплообмена при ламинарном течении жидкости в каналах. Красноярск: КПИ, 1971. 144 с.
- 6. Видин Ю.В., Иванов В.В., Казаков Р.В. Инженерные методы расчета задач теплообмена. Красноярск: СФУ, 2014. 167 с.
- Видин Ю.В., Злобин В.С., Иванов В.В., Медведев Г.Г. Инженерные методы расчета задач нелинейного теплообмена при ламинарном течении жидкости в каналах. Красноярск: СФУ, 2015. 155 с.
- 8. *Маделунг Э*. Математический аппарат физики. М.: Наука, 1968. 618 с.
- 9. Абрамовиц М., Стиган И. Справочник по специальным функциям. М.: Наука, 1979. 830 с.
- Slater L.J. On the Evaluation of the Confluent Hypergeometric Function // Proc. Cambridge Philosoph. Society. 1953. V. 49. P. 612.
- Rushton S., Lang E.D. Tables of Confluent Hypergeometric Function // Sankhya. The Ind. J. Statist. 1954. V. 13. P. 377.