УДК 536.7+621.1

УРАВНЕНИЯ ДЛЯ ПРОМЫШЛЕННЫХ РАСЧЕТОВ ТЕРМОДИНАМИЧЕСКИХ СВОЙСТВ ВЫСОКОТЕМПЕРАТУРНОГО ДИССОЦИИРОВАННОГО ВОДЯНОГО ПАРА

© 2019 г. Р. З. Аминов^{1, *}, А. А. Гудым^{1, **}

 ¹Саратовский научный центр РАН, Саратов, Россия *E-mail: oepran@inbox.ru
 **E-mail: gudymanatolij@yandex.ru
 Поступила в редакцию 24.10.2017 г.
 После доработки 09.04.2018 г.
 Принята к публикации 25.12.2018 г.

Разработана система уравнений для вычисления свойств диссоциированного водяного пара в интервале температур 1250–3400 К и давлений 0.01–10.00 МПа. Для построения уравнений использовались подробные таблицы диссоциированного водяного пара, составленные для смеси из атомов водорода, кислорода, радикалов ОН, молекул водорода, кислорода, водяного пара при температуре отсчета 0 К. В связи с переходом диссоциированного пара в обычный пар при расширении в тепловом двигателе в уравнениях принята одна температура отсчета для параметров диссоциированного и недиссоциированного пара – тройная точка воды 273.16 К. При разработке системы уравнений для вычисления свойств диссоциированного водяного пара используются: объединенное уравнение термодинамики, учитывающее изменение химического потенциала и состава компонентов смеси в процессе диссоциации пара: уравнение энергии Гиббса: дифференциальные уравнения термодинамики; уравнения для расчета свойств недиссоциированного пара. Для уменьшения отклонения рассчитанных свойств пара по уравнениям от табличных рассматриваемый диапазон температур и давлений разделен на три области. Отклонения рассчитываемых свойств пара по уравнениям от табличных составляют не более 0.05-0.09%. Разработанные уравнения могут найти применение в расчетах процессов охлаждения горелочных устройств и камер сгорания при горении водород-кислородных смесей, а также циклов тепловых двигателей, использующих высокотемпературный пар в качестве рабочего тела при температурах более 1250 К.

DOI: 10.1134/S0040364419030013

введение

Диссоциированный пар — химически реагирующая смесь атомов водорода H, кислорода O, радикалов OH, молекул водорода H₂, кислорода O₂, водяного пара H₂O, термодинамические свойства которого при температуре отсчета от 0 К представлены подробными таблицами в [1]. Энтальпия диссоциированного пара при температурах ниже температуры горения водорода в кислородной среде — отрицательная величина и при высоких температурах за счет внешнего подвода тепла становится положительной величиной.

В [2] энтальпия диссоциированного пара рассчитывается по уравнению

$$H_t = Q_{\rm H_2O}^0 x_{\rm H_2O} + \sum_{1}^{3} Q_i^0 x_i + \sum_{1}^{6} H_i(T) x_i, \qquad (1)$$

где $Q_{H_2O}^0$ и Q_i^0 – стандартная теплота образования H₂O и теплота образования [3] компонентов OH, O, H; x_i – мольные доли компонентов; $H_i(T)$ – эн-

тальпии компонентов смеси H_2O , H_2 , O_2 , OH, H, O при температуре T.

В ракетных двигателях реактивная струя образуется только из веществ, запасенных в аппарате. Показатели внешней среды, кроме давления, не влияют на эффективность работы двигателя, а величина используемой энергии определяется разностью энтальпий продуктов сгорания топлива и не зависит от знака энтальпии.

Сжигание водород-кислородных смесей с целью получения перегретого пара сопровождается высокотемпературным горением (до 3600 K), причем температура рабочего тела в современных тепловых двигателях может достигать 1800 K и более. При таких температурных уровнях водяной пар диссоциирует.

При расширении диссоциированного пара его температура снижается, происходит рекомбинация реагирующих компонентов смеси, степень диссоциации уменьшается, и в зависимости от давления при температуре менее 1250—1400 К пар становится недиссоциированным. В термодинамических расчетах циклов тепловых двигателей, взаимодействующих с внешней средой, энтальпию удобно определять как положительную величину. Применение табличных величин энтальпии и энтропии [1, 2] требует согласования температуры начала отсчета калорических параметров продуктов сгорания топлива и температуры внешней среды.

Для расчета энтальпии диссоциированного пара как положительной величины при использовании таблиц [1] вычитаем теплоту образования H₂O из левой и правой частей уравнения (1). При этом разность энтальпий, определяющая использованную энергию, остается неизменной

$$H_{d} = H_{t} - Q_{\rm H_{2}O}^{0} = -Q_{\rm H_{2}O}^{0}(1 - x_{\rm H_{2}O}) + \sum_{i}^{3} Q_{i}^{0} x_{i} + \sum_{i}^{6} H_{i}(T) x_{i}.$$
(2)

Удельная положительная энтальпия диссоциированного пара находится выражением

$$h_d = H_d / M = H_t / M - Q_{\rm H_2O}^0 / M = h_t - q^0,$$

где M — молекулярная масса H_2O , h_t — удельная табличная энтальпия, q^0 — принятая в [1] удельная теплота образования H_2O , равная 15256 кДж/кг.

При составлении уравнений удельная энтальпия диссоциированного пара $h_d = h_t + 15256 \text{ кДж/кг.}$

Удельная энтропия диссоциированного пара при температуре отсчета 273.16 К рассчитывается как

$$s_d = s_t - S_{\rm H_2O}(273.16)M,$$

где s_t — удельная энтропия диссоциированного пара, определяемая по таблицам [1]; $S_{\rm H_2O}(273.16) = 63.356$, кДж/(кмоль K) — энтропия 1 кмоля воды при 273.16 K [3].

Для расчета свойств воды и пара в [4, 5] разработаны широкодиапазонные уравнения состояния воды и пара, в которых также определяются свойства диссоциированного пара. К сожалению, в работе не указана неопределенность расчета свойств воды и пара в различных состояниях: жидком, газообразном, диссоциированном.

В [1, 6, 7] выполнен анализ таблично представленных функций, определяющих зависимость термодинамических параметров и теплоемкости от термических параметров диссоциированного пара. Методом численного дифференцирования заданных таблично функций установлено, что вторая производная рассматриваемых функций может менять знак на противоположный или существенно изменять величину в определенном интервале давлений и температур. Это свидетельствует о существенном изменении кривизны функции в этих интервалах. Такой характер функциональной зависимости параметров при изменении температуры и давления объясняется несогласованностью изменения теплофизических свойств с изменением состава смеси. Применение одного уравнения для расчета свойств диссоциированного пара в рассматриваемом диапазоне температур и давлений при большой степени диссоциации приводит к большим отклонениям от значений, представленных в таблицах [1, 6, 7].

Для расчета процессов в тепловых двигателях, использующих в качестве рабочего тела диссоциированный пар и взаимодействующих с внешней средой, требуется разработка системы уравнений для вычисления свойств диссоциированного пара с разделением расчетного диапазона давлений 0.01—10 МПа, температур 1250—3600 К на участки для уменьшения отклонений рассчитанных свойств по уравнениям от табличных.

МЕТОДИЧЕСКИЕ ПОЛОЖЕНИЯ

Базовым при разработке системы уравнений для вычисления свойств диссоциированного водяного пара принято уравнение энергии Гиббса [8]. Все свойства диссоциированного пара с помощью дифференциальных соотношений термодинамики представлены в виде функций температуры и давления с учетом изменения состава смеси в соответствии с объединенным уравнением первого и второго законов термодинамики для химически реагирующей смеси

$$Tds = dh - vdp + \sum_{i=1}^{n} Y_{i}dm_{i}.$$
 (3)

Здесь v — удельный объем, p — давление, Y_i — химический потенциал компонента, m_i — массовая доля компонента в смеси.

Учитывая сложную взаимосвязь параметров в химически реагирующей смеси, для уменьшения отклонения рассчитанных свойств пара по уравнениям от табличных значений рассматриваемый расчетный диапазон разделим на три области: 1 – интервал температур 1250–2200 К, давлений 0.01–10.0 МПа, 2 – 2200–3400 К, 0.1–1 МПа, 3 – 2200–3400 К, 1–10 МПа.

В системе уравнений свойство F_i (энергия Гиббса, энтропия, энтальпия, теплоемкость, удельный объем) диссоциированного пара определяется свойством недиссоциированного пара F_0 [8] и суммой поправок Δ_{ij} , которые учитывают отличие F от F_0 , изменение химического потенциала и состава компонентов смеси:

$$F_{i} = F_{0} + \sum_{j=1}^{p} \Delta F_{ij},$$
 (4)

где *j* – порядковый номер поправки области *i*, *b* – количество поправок в области *i*.

В диссоциированном паре существенную долю составляет недиссоциированный пар: при давлении 10 МПа – от 100% при 1250 К до 75% при 3600 К; 0.1 МПа – до 65% при 3000 К и до 17% при 3600 К [1, 5]. С учетом высокого содержания недиссоциированного пара в смеси для вычисления его свойств используем систему уравнений [8] с экстраполяцией до 3400 К и поправок, учитывающих изменение химического потенциала и состава смеси. При изменении температуры смеси в рассматриваемом диапазоне давлений отсутствует критическая зона. По этой причине для расчета свойств смеси при учете химических потенциалов принято уравнение Гиббса с использованием поправочных коэффициентов.

Экстраполированные уравнения используются для расчета термодинамических свойств смеси компонентов диссоциированного пара. Сравнение величин термодинамических параметров смеси компонентов, полученных по расчетным формулам смеси и по экстраполированному уравнению недиссоциированного пара [8] при температуре до 3400 К, показало, что отличие составляет не более 0.8%.

В уравнениях для вычисления параметров недиссоциированного пара используются безразмерная энергия Гиббса g_0 и ее производные по безразмерной температуре f_1 при p = const для расчета энтальпии h_0 , энтропии s_0 и изобарной теплоемкости c_{p0} , по давлению при T = const для расчета удельного объема v_0 :

$$g_0 = \frac{z_0}{RT} = \ln p + \sum_{1}^{11} n_{0i} f_1^{I_{0i}} p^{J_{0i}}.$$
 (5)

Здесь $f_1 = (1000/T)$ — приведенная безразмерная температура, T — температура, K; n_{0i} , I_{0i} , J_{0i} — коэффициенты и показатели степени, численные значения которых представлены по данным [8] в табл. 1:

— первая производная энергии Гиббса по f_1

$$g_{0T}|_{p} = \sum_{1}^{11} n_{0i} I_{0i} f_{1}^{I_{0i}-1} p^{J_{0i}};$$

- вторая производная энергии Гиббса

$$g_{0TT}|_{p} = \sum_{i=1}^{11} n_{0i} I_{0i} (I_{0i} - 1) f_{1}^{I_{0i} - 2} p^{J_{0i}};$$

- производная от уравнения (4)

$$g_{0p}|_{T} = \frac{1}{p} + \sum_{1}^{11} n_{0i} f_{1}^{I_{0i}} J_{0i} p^{J_{0i}-1}$$

Значения s_0 , h_0 , c_{p0} недиссоциированного пара и v_0 определяются в соответствии с [8]:

$$s_0 = (f_1 g_{0T} - g_0)T, (6)$$

$$h_0 = RTf_1g_{0T},\tag{7}$$

$$c_{p0} = -R f_1^2 g_{0TT}, (8)$$

ТЕПЛОФИЗИКА ВЫСОКИХ ТЕМПЕРАТУР том 57 № 3

Таблица 1. Коэффициенты и показатели степени уравнения (5)

i	<i>n</i> _{i0}	J_{0i}	I_{0i}
1	-13.17998367420100000	0	0
2	6.85408416344340000	0	1
3	$-2.4805148933466 \times 10^{-2}$	0	-3
4	$3.6901534980333 \times 10^{-1}$	0	-2
5	-3.116131821392500000	0	-1
6	$-3.2961626538917 \times 10^{-1}$	0	2
7	$-1.2563183589592 \times 10^{-4}$	1	0
8	$2.1774678714571 \times 10^{-3}$	1	1
9	$-4.5942820899910 \times 10^{-3}$	1	3
10	$-3.9724828359569 \times 10^{-6}$	2	9
11	$1.2919228289784 \times 10^{-7}$	3	3

$$v_0 = RTg_{0p}/1000, (9)$$

где R — газовая постоянная недиссоциированного водяного пара R, равная 0.461526 кДж/(кг K).

Уравнения (6)—(9) являются базовыми для разработки уравнений недиссоциированного пара в рассматриваемом диапазоне давлений и температур.

В уравнениях диссоциированного пара используется выражение размерной удельной энергии Гиббса недиссоциированного пара

$$z_0 = RTg_0. \tag{10}$$

Дифференциальные уравнения термодинамики при невысоких температурах и большой доле недиссоциированного пара позволяют использовать уравнение энергии Гиббса [8] для расчета поправок в соответствии с (4) при определении энтропии, энтальпии, теплоемкости и удельного объема диссоциированного пара с уменьшением количества коэффициентов в системе уравнений.

В соответствии с (4) для области 1 при температуре отсчета 273.16 К разработанные авторами уравнения приведены в [9].

УРАВНЕНИЯ ДЛЯ ДИССОЦИИРОВАННОГО ПАРА, ОБЛАСТЬ 2

Поправки к расчету необходимых величин записываются следующим образом:

к расчету энергии Гиббса

$$\Delta z_2 = \sum_{1}^{\circ} n_{2Zi} (f_2 - d_{2ZT})^{I_{2Zi}} (p - d_{2ZP})^{J_{2Zi}}; \qquad (11)$$

- к расчету энтропии

2019

$$\Delta s_2 = \sum_{1}^{14} n_{2Si} (f_2 - dI_{2Si})^{I_{2Si}} (p - dJ_{2Si})^{J_{2Si}}; \qquad (12)$$

i	n_{2Z}	d _{2ZT}	I_{2Z}	d _{2ZP}	J_{2Z}
1	2.317200×10^{-4}	0	0	0	0
2	-8.267380×10^{-6}	0	0	1	1
3	0.00040676050	1.606375	1	0	0
4	6.868806×10^{-5}	1.606375	1	1	1
5	0.00354719237	1.606375	3.324	0	-0.36
6	0.00001	2.2	1	0	-1

Таблица 2. Коэффициенты и показатели степени уравнения (11)

Таблица 3. Коэффициенты и показатели степени уравнения (12)

	i	<i>n</i> _{2S}	dI_{2S}	I_{2S}	dJ_{2S}	J_{2S}
	1	$8.57237000 \times 10^{-3}$	1.25	3.45	0	-0.2525
	2	$-1.11247400 \times 10^{-3}$	2.68	8	0	-1.6
	3	$-3.78637632 \times 10^{-4}$	1.85	4	0.100000	0.55
	4	$5.26342710 \times 10^{-3}$	1.85	4	-0.007915	-0.7
	5	$-2.13248524 \times 10^{-4}$	1.85	4	0.000000	0.0
	6	$3.92627727 \times 10^{-4}$	1.85	4	0.100000	2.4
	7	$-4.76089728 \times 10^{-3}$	1.85	4	0.300000	4.0
	8	$9.93994099 \times 10^{-1}$	1.85	4	0.450000	12
	9	$-2.50731758 \times 10^{-5}$	2.2	4	0.100000	0.55
1	0	$3.48541248 \times 10^{-4}$	2.2	4	-0.007915	-0.7
1	1	$-1.41212000 \times 10^{-5}$	2.2	4	0.000000	0.0
1	2	$2.59995922 \times 10^{-5}$	2.2	4	0.100000	2.4
1	3	-3.15264000×10^{-4}	2.2	4	0.300000	4.0
1	4	$6.58217427 \times 10^{-2}$	2.2	4	0.450000	12.0

Таблица 4. Коэффициенты и показатели степени уравнения (13)

i	<i>n</i> _{2<i>h</i>}	d_{2h}	I_{2h}	J_{2h}
1	3.7500000	2.4	5	-1
2	0.0000680	2.3	3	-6
3	85.000000	2.65	12	0

- к расчету энтальпии

$$\Delta h_2 = \sum_{1}^{3} n_{2hi} (f_2 - d_{2hi})^{I_{2hh}} p^{J_{2hi}}; \qquad (13)$$

- к расчету теплоемкости

$$\Delta c_{p2} = \sum_{1}^{23} n_{2Cpi} (f_2 - d_{2Cpi})^{I_{2Cpi}} p^{J_{2Cipi}}; \qquad (14)$$

- к расчету удельного объема

$$\Delta v_2 = \sum_{1}^{15} n_{2Vi} (f_2 - d_{2Vi})^{I_{2Vi}} p^{J_{2Vi}}, \qquad (15)$$

Таблица 5. Коэффициенты и показатели степени уравнения (14)

i	n _{2Cp}	d_{2Cp}	I _{2Cp}	J_{2Cp}
1	$-4.57013450 \times 10^{-1}$	0	0	-0.332
2	$6.16277320 \times 10^{-1}$	0.899	3	-0.332
3	1.2481250000000	2.3	2	-0.332
4	1.4478250000000	2.4	5	-0.332
5	$-3.69195375 \times 10^{-1}$	2.5	9	-0.332
6	$6.37437967 \times 10^{-3}$	2.6	17	-0.332
7	$-3.449037371950 \times 10^{-7}$	2.7	35	-0.332
8	$1.017280159442 \times 10^{-13}$	2.8	73	-0.332
9	$3.60000000 \times 10^{-1}$	2	3	-0.718
10	$-3.63000000 \times 10^{-1}$	2	3	0
11	$-1.80000000 \times 10^{-3}$	0	0	-0.718
12	$1.81500000 \times 10^{-3}$	0	0	0
13	$1.92062056 \times 10^{-1}$	2.5	9	-0.880
14	$1.40000000 \times 10^{-7}$	0	0	-5
15	6.0170520×10^{-3}	2.5	5	-2.250
16	$-8.0000000 \times 10^{-3}$	0	0	0
17	$1.708984000 \times 10^{-2}$	0	0	4
18	$-1.407162900 \times 10^{-1}$	2.56	13	-0.8801
19	-8.600976640×10	2.8	27	-0.54
20	$-7.523123000 \times 10^{-3}$	2.8	19	-5.5
21	$2.724302000 \times 10^{-6}$	2.8	19	-10
22	$2.191222900 \times 10^{-12}$	2.78	28	-16
23	$-2.813317000 \times 10^{-12}$	2.796	19	-16

где $f_2 = T/1000$ — приведенная температура. Значения коэффициентов и показателей степени в (11)—(15) представлены в табл. 2—6 соответственно.

Поправки к расчетным выражениям свойств диссоциированного пара для области 2 определяются уравнениями (6)–(10) и (11)–(15):

$$z_{2} = z_{0} + \Delta z_{2} z_{0}, \quad s_{2} = s_{0} + \Delta s_{2} s_{0},$$

$$h_{2} = z_{2} + T s_{2} + \Delta h_{2}, \quad c_{p2} = c_{p0} + \Delta c_{p2},$$

$$v_{2} = v_{0} + \Delta v_{2} v_{0}.$$
(16)

Расчетные выражения свойств диссоциированного пара для области 2 определяются уравнениями (16).

УРАВНЕНИЯ ДЛЯ ДИССОЦИИРОВАННОГО ПАРА, ОБЛАСТЬ 3

В области 3 поправки к расчету термодинамических функций имеют вид

$$\Delta z_3 = \sum_{1}^{5} n_{3Zi} (f_2 - d_{3ZT})^{I_{3Zi}} (p - d_{3ZP})^{J_{3Zi}}, \qquad (17)$$

ТЕПЛОФИЗИКА ВЫСОКИХ ТЕМПЕРАТУР том 57 № 3 2019

$$\Delta s_3 = \sum_{1}^{10} n_{3Si} (f_2 - dt_{3Si})^{I_{3Sli}} (p - dp_{3Si})^{J_{3Si}}, \qquad (18)$$

$$\Delta c_{p3} = \sum_{1}^{22} n_{3Cpi} (f_2 - dt_{3Cpi})^{I_{3Cpi}} (p - dp_{3Cpi})^{J_{3Cipi}}, \quad (19)$$

$$\Delta v_3 = \sum_{1}^{8} n_{3Vi} (f_2 - d_{3Vi})^{I_{3Vi}} p^{J_{3Vi}}.$$
 (20)

Значения коэффициентов и показателей степени в (17)–(20) представлены в табл. 7–10.

Поправки к расчетным выражениям свойств диссоциированного пара для области 3 рассчитываются по (6)–(10) и (17)–(20)

$$z_{3} = z_{0} + \Delta z_{3} z_{0}, \quad s_{3} = s_{0} + \Delta s_{3} s_{0},$$

$$h_{3} = z_{3} + T s_{33}, \quad c_{p3} = c_{p0} + \Delta c_{p3},$$

$$v_{3} = v_{0} + \Delta v_{3}.$$
(21)

Расчетные выражения для области 3 определяются уравнениями (21).

Для проверки расчетов по разработанным уравнениям в табл. 11 даны контрольные значения параметров диссоциированного пара.

Переход от одной расчетной зоны к другой может быть осуществлен автоматически с помощью операторов условного перехода.

Для оценки неопределенности свойств диссоциированного пара из-за отсутствия такой информации в [1] использованы обобшенные погрешности рассчитываемых свойств газов за пределами экспериментальных исследований, которые представлены в [10]. В рассматриваемой расчетной области параметров с уровнем доверия 95% можно принять по типу В [11] следующие интервалы неопределенности: для энтальпии -барной теплоемкости – ±0.009 кДж/(кг К), удельного объема – ±0.09%. Стандартная неопределенность входных величин, используемых для разработки системы уравнений, определяется с коэффициентом для нормального распределения, равным 1.96 [11]. В соответствии с данным значением стандартные неопределенности входных табличных величин составили: u(h) = 1.5 кДж/кг, $u(s) = 0.006 \text{ кДж/(кг K)}, u(c_p) = 0.009 \text{ кДж/(кг K)},$ удельного объема – 0.01%. Стандартная неопределенность выходных величин, рассчитанных по составленным уравнениям, получается с использованием отклонений как разность величин, представленных в таблицах [1] и рассчитанных по уравнениям. Стандартные неопределенности выходных величин с уровнем доверия 95% составляют: энтальпии – 5.8 кДж/кг, энтропии – 0.006 кДж/(кг К), изобарной теплоемкости – 0.008 кДж/(кг K), удельного объема – 0.01%.

Суммарные неопределенности свойств, рассчитываемых по разработанным уравнениям,

Таблица 6. Коэффициенты и показатели степени уравнения (15)

i	n_{2V}	d_{2V}	I_{2V}	J_{2V}
1	$5.18000000 \times 10^{-3}$	1.25	4.55	-0.401
2	$-1.22150000 \times 10^{-2}$	2.7	8	-0.401
3	$8.01860000 \times 10^{-3}$	2.37	5	-0.401
4	$1.51593750 \times 10^{-2}$	2.569	4	-1
5	$-4.72500000 \times 10^{-4}$	0	0	-1
6	$-9.22837500 \times 10^{-3}$	2.562	8	-1
7	$-1.75175000 \times 10^{-2}$	2.569	4	0
8	$5.46000000 \times 10^{-4}$	0	0	0
9	$1.06639000 \times 10^{-2}$	2.562	8	0
10	$6.07500000 \times 10^{-2}$	2.75	10	0
11	$-6.07500000 \times 10^{-2}$	2.75	10	1
12	$1.00000000 \times 10^{-8}$	0	0	-5
13	$1.48028130 \times 10^{-4}$	2.75	10	-3.6
14	$-6.51042000 \times 10^{-13}$	2.74	10	-12
15	$2.50000000 \times 10^{-13}$	2.73	12	-12

Таблица 7. Коэффициенты и показатели степени уравнения (17)

i	n_{3Z}	d_{3ZT}	I_{3Z}	d _{3ZP}	J_{3Z}
1	2.317200×10^{-4}	0	0	0	0
2	-8.267380×10^{-6}	0	0	1	1
3	0.00040676050	1.606375	1	0	0
4	6.868806×10^{-5}	1.606375	1	1	1
5	0.00354719237	1.606375	3.324	0	-0.36

Таблица 8. Коэффициенты и показатели степени уравнения (18)

i	<i>n</i> _{3S}	dt_{3S}	<i>I</i> _{3S}	dp_{3S}	J_{3S}
1	$8.57237020 \times 10^{-3}$	1.25	3.45	0	-0.2525
2	$-1.11247400 \times 10^{-3}$	2.68	8	0	-1.6000
3	$1.67807495 \times 10^{-7}$	1.85	4	3.40	5
4	$-2.00627187 \times 10^{-5}$	1.85	4	1.452	2
5	$4.58732290 \times 10^{-3}$	1.85	4	0	-0.9691375
6	$-2.60361570 \times 10^{-13}$	1.85	4	3.65	12
7	$1.11121201 \times 10^{-8}$	2.2	4	3.40	5
8	$-1.32854220 \times 10^{-6}$	2.2	4	1.452	2
9	$3.03770000 \times 10^{-4}$	2.2	4	0	-0.9691375
10	$-1.72410000 \times 10^{-14}$	2.2	4	3.65	12

№ 3 2019

		• •			
i	n _{3Cp}	dt_{3Cp}	I _{3Cp}	dp_{3Cp}	J_{3Cp}
1	$-4.577000000 \times 10^{-1}$	0	0	0	-0.32075
2	$6.172031250 \times 10^{-1}$	0.899	3	0	-0.32075
3	1.25	2.300	2	0	-0.32075
4	1.45	2.4	5	0	-0.32075
5	$-3.697500000 \times 10^{-1}$	2.5	9	0	-0.32075
6	6.383955600	2.6	17	0	-0.32075
7	$-3.454218700 \times 10^{-3}$	2.7	35	0	-0.32075
8	$1.018808372 \times 10^{-13}$	2.8	73	0	-0.32075
9	$-6.114038890 \times 10^{-1}$	2.8	13	0	-0.2000
10	$1.154969753 \times 10^{-20}$	2	3	4.5	29
11	$-2.675412518 \times 10^{-9}$	2	3	4	13
12	$3.754655639 \times 10^{-4}$	2	3	3	4
13	$-1.428571400 \times 10^{-1}$	2	3	1	0.3989
14	$-3.728096533 \times 10^{-4}$	2	3	0	0
15	$3.300000000 \times 10^{-2}$	2.43	4	0	0
16	-1.65	2.8	13	0	0
17	$-1.200000000 \times 10^{-2}$	0	0	0	-1
18	$2.876499500 \times 10^{-3}$	2.8	13	0	2.5000
19	$-4.500000000 \times 10^{-17}$	2.7	11	0	15
20	$-4.545454545 \times 10^{-2}$	2.4	2	0	—4
21	$8.000000000 \times 10^{-3}$	0	0	0	-4
22	-4.00	2.81	16	0	-4

Таблица 9. Коэффициенты и показатели степени уравнения (19)

следующие: $U(h) = \sqrt{1.5^2 + 5.8^2} = 6 \text{ кДж/(кг K)};$ $U(s) = \sqrt{0.006^2 + 0.006^2} = 0.008 \text{ кДж/(кг K)};$ $U(c_p)\sqrt{0.009^2 + 0.008^2} = 0.012 \text{ кДж/(кг K)}; U(v) = \sqrt{0.01^2 + 0.01^2} = 0.014\%.$

Суммарные относительные неопределенности энтальпии – 0.09%, энтропии – 0.08%, теплоем-кости – 0.1%.

Таблица 10. Коэффициенты и показатели степени уравнения (20)

i	n _{3V}	d_{3V}	I_{3V}	J_{3V}
1	7.0505000×10^{-5}	0.4459	7.6966	-1.380
2	$-2.3256000 \times 10^{-4}$	0	2	-1.380
3	$-1.1600000 \times 10^{-2}$	2.395	4	-1.380
4	$-9.1380000 \times 10^{-3}$	2.58	10	-1.380
5	$-8.4538000 \times 10^{-2}$	2.745	6	-1.155
6	-1.738125000000	2.85	16	-1.155
7	8.4538000×10^{-2}	2.745	6	-3.455
8	1.738125000000	2.85	16	-3.455

ЗАКЛЮЧЕНИЕ

Разработана система уравнений для промышленного расчета свойств диссоциированного водяного пара на базе таблиц по теплофизическим свойствам газов, представленных в [1]. Для уменьшения отклонения рассчитанных свойств пара по уравнениям от табличных значений в рассматриваемом диапазоне изменения температур и давлений расчетный диапазон параметров разделен на три области. Свойства пара, рассчитанные при 2200 К по уравнениям области 1 согласуются в пределах точности расчетов с результатами, полученными по уравнениям областей 2 и 3, а также при давлении 1 МПа областей 2 и 3.

На основе уравнения энергии Гиббса с поправками на диссоциацию пара при использовании дифференциальных уравнений термодинамики составлены уравнения для расчета энтальпии, энтропии, теплоемкости и удельного объема. Система уравнений учитывает изменения состава химически реагирующей смеси и позволяет рассчитать свойства образовавшейся смеси после изменения исходного и достижения нового равновесного состояния системы.

УРАВНЕНИЯ ДЛЯ ПРОМЫШЛЕННЫХ РАСЧЕТОВ

<i>Р</i> , МПа	Т, К	<i>h_p</i> , кДж/кг	<i>s</i> , кДж/(кг К)	<i>Ср</i> , кДж/(кг К)	<i>v</i> , м ³ /кг
	2200	7462	11.607	4.879	10.250
0.1	3000	14536	14.252	17.429	16.200
	3400	24641	17.394	31.277	23.330
	2200	7333	10.718	3.988	1.701
0.6	3000	12021	12.491	10.33	2.497
	3400	17251	14.112	16.628	3.191
	2200	7308	10.469	3.824	1.0200
1	3000	11597	12.095	9.093	1.478
	3400	16049	13.471	14.17	1.848
	2200	7244	9.609	3.428	0.1700
6	3000	10650	10.908	6.27	0.2392
	3400	13452	11.777	8.801	0.2848
	2200	7229	9.365	3.355	0.1021
10	3000	10 479	10.609	5.753	0.1430
	3400	13023	11.398	7.843	0.1687

Таблица 11. Контрольные значения термодинамических свойств диссоциированного пара

Суммарные неопределенности свойств, рассчитываемых по разработанным уравнениям, составили не более 0.1%.

Работа выполнена при финансовой поддержке Российского научного фонда (грант № 15-19-10027).

СПИСОК ЛИТЕРАТУРЫ

- 1. Варгафтик Н.Б. Справочник по теплофизическим свойствам газов и жидкостей. М.: Наука, 1972.
- 2. Кессельман П.М., Бланк Ю.И., Могилевский В.И. Термодинамические свойства термически диссоциированного водяного пара при температурах 1600-6000 К и давлениях 0.1-1000 бар // ТВТ. 1968. Т. 6. № 4. С. 658.
- Термодинамические свойства индивидуальных веществ. Спр. изд. / Под ред. Глушко В.П. Т. 1. Кн. 2. М.: Наука, 1978. 328 с.
- 4. *Нигматулин Р.И., Болотнова Р.Х.* Широкодиапазонное уравнение состояния воды и пара. Результаты расчетов // ТВТ. 2008. Т. 46. № 3. С. 362.
- 5. *Нигматулин Р.И., Болотнова Р.Х.* Широкодиапазонное уравнение состояния воды и пара. Упрощенная форма // ТВТ. 2011. Т. 49. № 2. С. 310.

- 6. Аминов Р.З., Гудым А.А. Расчет калорических свойств диссоциированного водяного пара при высоких температурах // Теплоэнергетика. 2014. № 11. С. 55.
- 7. Аминов Р.З., Гудым А.А. Скелетные таблицы свойств диссоциированного водяного пара с температурой отсчета от 0°С // Тр. Академэнерго. 2016. № 4. С. 67.
- 8. Александров А.А. Система уравнений IAPWS-IF97 для вычисления термодинамических свойств воды и водяного пара в промышленных расчетах. Основные уравнения // Теплоэнергетика. 1998. № 9. С. 69.
- 9. Аминов Р.З., Гудым А.А. Уравнения для вычисления свойств диссоциированного водяного пара // Теплоэнергетика. 2017. № 8. С. 57.
- Теплофизические свойства технически важных газов при высоких температурах и давлениях. Спр. / Зубарев В.Н., Козлов А.Д., Кузнецов В.М., Сергеева Л.В., Спиридонов Г.А. М.: Энергоиздат, 1989. 232 с.
- ГОСТ Р 54500.3-2011. Руководство ИСО/МЭК 98-3:2008. Неопределенность измерения. Ч. 3. Руководство по выражению неопределенности измерения. М.: Стандартинформ, 2012.