УДК 536.763:536.764:544.344.2

ФАЗОВЫЕ ПРЕВРАЩЕНИЯ ЖИДКОСТЬ–ПАР И КРИТИЧЕСКИЕ СВОЙСТВА СИСТЕМЫ С₃H₇OH–C₆H₁₄

© 2019 г. Э. А. Базаев^{1, *}, А. Р. Базаев¹

¹ФГБУН "Институт проблем геотермии Дагестанского НЦ РАН", г. Махачкала, Россия

> **E-mail: emilbazaev@mail.ru* Поступила в редакцию 12.07.2018 г. После доработки 12.12.2018 г. Принята к публикации 25.12.2018 г.

По экспериментальным данным о (p, T, x)- и (p, ρ, T, x) -зависимостях смесей 1-пропанола с *н*-гексаном для составов 0.2, 0.5, 0.8 и 0.9 мол. долей *н*-гексана в двухфазной (жидкость–пар), однофазной (жидкой, паровой), околокритической и сверхкритической областях методом излома изохор $p = f(T)_{\rho,x}$ определены параметры точек фазовых превращений жидкость–пар и графоаналитическим методом с учетом скейлингового поведения – параметры критических точек. Зависимость давления от температуры, плотности и состава вдоль кривой сосуществования фаз описана трехпараметрическим полиномиальным уравнением состояния – разложением фактора сжимаемости $Z = p/RT\rho$ в ряды по степеням приведенной плотности, приведенной температуры и состава. Средняя относительная погрешность отклонений рассчитанных значений давления от экспериментальных не превышает 1%. Температурная зависимость плотности системы вдоль кривой сосуществования фаз жидкость–пар описана двумя степенными функциями при значении критического показателя $\beta_0 = 0.338 \pm 0.002$: вдали от критической точки и в симметричной части кривой равновесия. Средняя относительная погрешность составила 1.47%.

DOI: 10.1134/S0040364419030025

ВВЕДЕНИЕ

Исследование фазового поведения и объемных свойств ((р, р, Т, х)-зависимость) смесей, состоящих из двух и более технически важных полярных и неполярных жидкостей (вода, спирт, углеводород и т.д.). отличающихся молекулярной структурой и температурами кипения, в широком диапазоне температур, давлений и состава представляет интерес для теории растворов [1-6]. Результаты таких исследований востребованы для инженерных расчетов высокоэффективных технологических процессов в химической, нефтехимической, энергетической и фармацевтической отраслях промышленности [7, 8]. В частности, смеси спирт-углеводород могут быть универсальными рабочими веществами в суб- и сверхкритических флюидных технологиях. Использование подобных смесей переменного состава с регулируемыми параметрами критического состояния в качестве теплоносителей позволяет существенно расширить диапазон рабочих параметров различных установок и способствовать унификации их тепломеханического оборудования, что экономически целесообразно [9].

Практическое применение известных кубических уравнений состояния и корреляций для описания фазовых равновесий смесей требует знания их критических параметров. Вместе с тем достоверные экспериментальные данные о фазовых превращениях ($\Phi\Pi$) и критических параметрах смесей полярных и неполярных веществ несут фундаментальную информацию о характере межмолекулярного взаимодействия и важны для разработки адекватных моделей потенциалов взаимодействия, а также единого уравнения состояния систем жидкость—пар [10].

Особый интерес для развития теории растворов и практического приложения представляют экспериментальные данные о фазовом поведении и критических свойствах тройной системы, состоящей из воды, 1-пропанола и *н*-гексана. Как видно из рис. 1, давления насыщенных паров воды [11], *н*-гексана [11] и 1-пропанола [12] в диапазоне температур до критической температуры *н*-гексана ($T_{\rm k} = 507.82$ K) практически близки по значению.

Для исследования свойств тройной системы вода—1-пропанол—*н*-гексан целесообразно изучать ФП и критические свойства бинарных систем вода—1-пропанол, 1-пропанол—*н*-гексан и вода—*н*-гексан одним и тем же методом. Система вода—1-пропанол исследована подробно в [13]. Сведения о некоторых близких по тематике дан-

Рис. 1. Зависимость давления от температуры на линии насыщения вдоль критических изохор: I – вода [11], 2 - h-гексан [11], 3 - 1-пропанол [12] ($K_1^0, K_2^0 - KT$ 1-пропанола и h-гексана).

Рис. 2. Изохоры (цифры у кривых) зависимости давления от температуры смеси с x = 0.5 мол. доли: ЖФ – жидкая фаза, ПФ – паровая фаза, СКЖ – сверхкритическая жидкость, СКП – сверхкритический пар.

ной работы литературных источниках приведены в [14-30].

Данная работа посвящена получению экспериментальных данных о (p, T, x)- и (p, T, ρ, x) -зависимостях смесей 1-пропанола с *н*-гексаном в широком диапазоне параметров состояния с целью определения параметров ФП и критического состояния в зависимости от состава.

ЭКСПЕРИМЕНТ

Реализация ФП и критического состояния вещества в эксперименте затруднена из-за того, что вблизи точек ФП и особенно критической точки (КТ) система чрезвычайно чувствительна к внешним воздействиям: гравитации, электромагнитным полям, температурной и концентрационной неоднородности. Для уменьшения влияния этих факторов на точность эксперимента приходится испытывать рабочие ячейки разной конструкции и различные методики измерений.

Описание экспериментальной установки и методики проведения (p,ρ,T,x) -измерений двойных систем дано в [31, 32].

Для измерений использованы 1-пропанол для спектроскопии и *н*-гексан марки ОЧ (компонент-реактив).

Измерения (p, ρ, T, x)-зависимостей проведены на линии насыщения (кривой сосуществования фаз) в однофазной (жидкой и паровой), околокритической и сверхкритической областях параметров состояния в диапазоне температур 373.15— 573.15 К с шагом 10 К на линии насыщения и в однофазной области и 0.1—1 К в точках ФП и в критической области, плотностей 15—660 кг/м³ и давлений до 50 МПа для составов смесей x = 0.2, 0.5, 0.8 и 0.9 мол. долей *н*-гексана.

АНАЛИЗ РЕЗУЛЬТАТОВ ЭКСПЕРИМЕНТА

Экспериментально установлено, что фазовая диаграмма смесей 1-пропанол—*н*-гексан во всем диапазоне составов по виду и характеру зависимости *p* от *T* такая же как фазовая диаграмма индивидуального вещества (спирта и углеводорода). Это подтверждает полученная для состава 0.5 мол. доли фазовая диаграмма системы на (p, T)-плоскости (рис. 2). Аналогичный характер зависимости *p*(*T*) имеют фазовые диаграммы для всех исследованных значений состава смесей.

По изломам изохор определены параметры точек фазовых превращений жидкость—пар (p_s , ρ_s , T_s) и графоаналитическим методом с учетом скейлингового поведения — параметры КТ ($p_{\kappa}, \rho_{\kappa}, T_{\kappa}$) как функции состава (табл. 1). Общую картину кривых сосуществования фаз, их проекций на координатные плоскости и критической линии системы 1-пропанол-*н*-гексан демонстрирует рис. 3. Критическая линия исследованной системы (рис. 4а) имеет особенность – КТ смесей для составов 0.8 и 0.9 мол. доли н-гексана (К₅ и К₆) располагаются ниже КТ чистого *н*-гексана (рис. 4б). При Т ~ 476.15 К величины давления насыщенных паров 1-пропанола и *н*-гексана практически совпадают (рис. 1). Характер межмолекулярного взаимодействия в системе резко меняется, изменяется и ее молекулярная структура. Обнаруженная особенность критического состояния подтверждает важность экспериментальных исследований термодинамического поведения смесей полярных и неполярных жидкостей для развития теории критических явлений в подобных системах.

Э. А. БАЗАЕВ, А. Р. БАЗАЕВ

Таблица 1. Значения параметров точек ФП 1-пропанола и смесей 1-пропанол-*н*-гексан

x = 0			x = 0.2			x = 0.5			x = 0.8		
<i>Т</i> , К	<i>р</i> , МПа	ρ, кг/м ³	<i>Т</i> , К	<i>р</i> , МПа	ρ, кг/м ³	<i>Т</i> , К	<i>р</i> , МПа	ρ, кг/м ³	Т, К	<i>р</i> , МПа	ρ, кг/м ³
462.15	1.32	25.82	447.15	1.12	24.26	508.85	3.99	202.06	506.15	3.47	241.00
473.15	1.68	33.89	471.15	1.86	42.58	509.15	4.02	215.67	506.05	3.46	245.92
479.15	1.92	39.92	488.15	2.58	63.23	509.45	4.05	235.11	505.65	3.45	260.77
486.15	2.23	46.83	504.15	3.37	92.82	509.50	4.06	247.41	504.65	3.41	281.18
498.15	2.75	61.72	510.15	3.74	111.69	509.55	4.07	253.32	501.95	3.30	318.21
509.15	3.33	80.01	517.15	4.18	140.69	509.35	4.06	261.52	497.85	3.13	349.23
522.15	4.13	111.39	519.95	4.37	159.45	509.15	4.05	267.29	490.15	2.82	385.65
530.95	4.72	150.20	520.55	4.42	166.56	508.75	4.02	279.31	478.43	2.39	418.38
533.65	4.95	170.89	521.65	4.52	186.81	507.95	3.97	294.38	462.08	1.84	458.61
535.60	5.10	197.67	522.45	4.58	210.52	506.35	3.89	314.93	445.10	1.40	490.29
536.62	5.18	228.56	522.85	4.62	229.05	503.85	3.73	341.90	417.15	0.85	531.16
536.83	5.21	251.89	523.05	4.63	248.94	501.15	3.59	361.01	391.05	0.50	566.37
536.85	5.22	266.82	523.15	4.65	261.60	493.55	3.20	397.06	384.55	0.44	576.07
536.85	5.23	273.22	523.15	4.67	265.84	482.85	2.74	440.79		•	
536.85	5.22	282.20	523.05	4.67	278.02	468.45	2.17	472.97	424.15	0.77	22.47
536.83	5.23	294.89	522.85	4.66	290.30	447.53	1.50	519.74	453.15	1.36	40.09
536.61	5.23	318.13	521.95	4.60	319.98	423.85	0.98	558.69	478.65	2.07	71.51
535.85	5.16	345.12	520.55	4.51	347.47	403.70	0.65	585.14	490.95	2.50	96.46
535.15	5.11	358.71	518.05	4.36	373.40	382.25	0.41	612.50	502.15	2.97	136.88
533.25	4.95	383.55	511.65	3.97	410.32		x = 0.8 504.1		504.15	3.07	162.48
529.15	4.64	416.19	497.25	3.16	467.58	403.15	0.54	15.57	505.15	3.12	183.28
524.65	4.34	442.02	473.85	2.15	528.16	427.15	0.93	26.70	505.95	3.17	211.95
519.85	4.03	462.61	453.55	1.52	566.70	457.45	1.60	47.67	506.25	3.20	228.09
515.55	3.76	478.16	413.65	0.69	625.79	473.15	2.04	66.10	506.35	3.21	236.88
508.55	3.34	500.37		x = 0.5	•	479.15	2.26	75.57	506.15	3.20	245.97
504.95	3.14	511.21	436.15	1.15	28.19	488.15	2.57	93.38	505.35	3.17	266.97
498.55	2.81	528.55	460.35	1.81	49.09	494.15	2.83	109.13	503.65	3.10	298.82
491.35	2.49	545.28	470.15	2.16	62.16	499.65	3.09	133.39	501.15	3.00	332.14
474.35	1.77	580.99	482.85	2.64	80.78	503.55	3.30	164.96	496.15	2.81	360.40
457.15	1.24	611.97	495.15	3.16	108.20	504.90	3.37	185.04	490.15	2.59	385.71
441.00	0.91	638.59	502.15	3.53	131.07	505.35	3.40	196.17	479.45	2.22	416.60
430.90	0.74	652.79	505.15	3.72	146.09	505.80	3.43	214.74	457.65	1.60	464.28
427.75	0.69	658.12	507.15	3.84	167.06	506.00	3.45	226.02	423.15	0.89	512.02
			507.95	3.92	179.47	506.10	3.46	233.87	393.15	0.53	562.13

Полученные значения критического давления и температуры смесей 1-пропанол—*н*-гексан в зависимости от состава (рис. 5) хорошо согласуются с известными литературными данными [33–36].

Экспериментальную зависимость давления от температуры, плотности и состава смесей на линии насыщения (вдоль кривой сосуществования фаз) описывает трехпараметрическое полиномиальное уравнение состояния — разложение фактора сжимаемости по степеням приведенной плотности $\omega = \rho / \rho_{\kappa}$ и приведенной температуры $\tau = T / T_{\kappa}$ во всем диапазоне *x*:

$$Z = p/RT\rho_m = 1 + \sum_{i=1}^{m} \sum_{j=0}^{n} \sum_{k=0}^{s} a_{ijk} \omega^i x^k / \tau^j,$$

$$p = RT\rho_m \left[1 + \sum_{i=1}^{m} \sum_{j=0}^{n} \sum_{k=0}^{s} a_{ijk} \omega^i x^k / \tau^j \right].$$
 (1)

Рис. 3. (*p*, *ρ*,*T*)-диаграмма кривых сосуществования фаз и их проекций для 1-пропанола, *н*-гексана и их смесей состава 0.2 (*1*), 0.5 (*2*), 0.8 (*3*) и 0.9 (*4*) мол. долей *н*-гексана.

Рис. 4. Зависимость плотности системы от температуры и состава вдоль кривой сосуществования (а): K_1^0 , K_2^0 – КТ 1-пропанола и *н*-гексана; $K_3 - K_6$ – КТ смесей состава: 0.2, 0.5, 0.8 и 0.9 мол. долей; $K_1^0 - K_2^0$ – проекция критической линии (б).

Здесь ρ_m — молярная плотность, моль/м³; R = 8.314 — универсальная (молярная) газовая постоянная, Дж/(моль K).

Рис. 5. Зависимость критической температуры (а) и критического давления (б) от состава системы 1-пропанол-*н*-гексан: 1 – данная работа, 2 - [33], 3 - [34], 4 - [35], 5 - [36].

Рис. 6. Относительные отклонения рассчитанных значений давления по уравнению (1) от экспериментальных для системы состава: 1 - x = 0.0 мол. доли, 2 - 0.2, 3 - 0.5, 4 - 0.8, 5 - 1.0.

Коэффициенты уравнения (1) *а*_{*ijk*} определены обобщенным методом наименьших квадратов [37, 38] с выполнением критических условий

$$(\partial p/\partial \rho)_T^{\kappa} = 0, \quad (\partial^2 p/\partial \rho^2)_T^{\kappa} = 0, (dp/dT)_{T=T_{\kappa}} = (\partial p/\partial T)_{T=T_{\kappa}, \rho=\rho_{\kappa}}.$$

Средняя относительная погрешность отклонений рассчитанных по (1) значений давления от экспериментальных не превышает 1% (рис. 6).

Как известно [1], температурную зависимость плотности жидкостей и гомогенных жидких растворов вдоль кривой сосуществования фаз и в окрестности их КТ описывают степенные функции с нецелочисленными показателями степени – критическими показателями (КП):

$$\omega = B_i \tau^{\mathbf{p}_i}.$$
 (2)

Здесь $\tau = (T - T_{\rm K})/T_{\rm K}$ – приведенное отклонение температуры от критического значения $T_{\rm K}$; $\omega = (\rho_{\rm *} - \rho_{\rm K})/\rho_{\rm K}$ и $\omega = (\rho_{\rm K} - \rho_{\rm n})/\rho_{\rm K}$ – приведенное отклонение плотности (жидкой $\rho_{\rm *}$ и паровой $\rho_{\rm n}$ фаз соответственно) от критического значения

х, мол. доли	$\beta_0\pm 0.002$	$B_0 \pm 0.005$	β_1	<i>B</i> ₁	β_2	<i>B</i> ₂	β_3	<i>B</i> ₃	β_4	B_4
0	0.338	2.144	0.838	-0.231	0.676	0.000	0.909	0.467	0.974	-0.500
0.2	0.338	2.061	0.838	-0.122	0.676	0.003	0.909	0.000	0.974	-0.840
0.5	0.338	1.925	0.838	0.244	0.676	0.007	0.909	0.018	0.974	-1.040
0.8	0.338	1.967	0.838	-0.105	0.676	0.003	0.909	0.000	0.974	-0.829
0.9	0.338	1.820	0.838	0.039	0.676	0.004	0.909	0.042	0.974	-0.411
1.0	0.338	2.022	0.838	-0.147	0.676	0.137	0.909	0.548	0.974	-0.077

Таблица 2. Значения критических показателей и амплитуд уравнений (3) и (4)

Рис. 7. Зависимость плотности от приведенной температуры 1-пропанола, *н*-гексана и их смесей: 1 - x = 0.0 мол. доли, 2 - 0.2, 3 - 0.5, 4 - 0.8, 5 - 0.9, 6 - 1.0; точки – эксперимент, линии – расчет.

 $\rho_{\kappa}; \beta_i = \beta_0, \beta_1, \beta_2, \dots - K\Pi$ параметра порядка; $B_i = B_0, B_1, B_2, \dots -$ коэффициенты (амплитуды).

Существует множество вариантов уравнения (2), отличающихся выражениями для ω и числом членов разложения в правой части, но с различными значениями β_0 (0.3–0.5) для жидких систем [1–3, 10, 39–41]. Установлено, что величина КП зависит от размерности пространства *d* и числа компонентов параметра порядка [42].

Для описания зависимости плотности смесей вдоль КС для температур ($\tau > 0.01$) и симметричной ее части ($\tau = 0-0.01$) использованы уравнения, предложенные авторами работы [43]:

$$\rho_{\mathrm{x},\mathrm{fi}} = \rho_{\mathrm{\kappa}} \left(1 \pm B_0 \tau^{\beta_0} + B_1 \tau^{\beta_1} \pm B_2 \tau^{\beta_2} + \cdots \right), \qquad (3)$$

$$(\rho_{*} - \rho_{\pi})/2\rho_{\kappa} = B_0 \tau^{\beta_0} + B_2 \tau^{\beta_2} + B_4 \tau^{\beta_4} + \cdots.$$
 (4)

При обработке экспериментальных данных с помощью уравнений (2) и (3) величина β_i изменялась в интервале 0.3–0.5, а параметр B_i использовался как подгоночный. Результаты расчета приведены в табл. 2 и представлены на рис. 7. Уравнения (3) и (4) описывают экспериментальные данные со средней относительной погрешностью 1.47% при $\beta_0 = 0.338 \pm 0.002$.

ЗАКЛЮЧЕНИЕ

Методом сжимаемости с помощью безбалластного пьезометра постоянного объема получены значения (p, ρ, T, x)-зависимостей системы 1-пропанол—*н*-гексан по 30 изохорам (15—660 кг/м³) в диапазоне температур 373.15—573.15 К и давлений до 50 МПа для составов 0.2, 0.5, 0.8 и 0.9 мол. долей *н*-гексана.

По изломам изохор определены значения точек ФП жидкость—пар (p_s , ρ_s , T_s) и графоаналитическим методом с учетом скейлингового поведения — параметры критических точек ($p_{\rm k}$, $\rho_{\rm k}$, $T_{\rm k}$).

Обнаружена особенность в характере зависимости критического состояния системы для составов 0.8 и 0.9 мол. долей *н*-гексана.

Экспериментальные (p, ρ, T, x) -зависимости описываются трехпараметрическим полиномиальным уравнением состояния — разложением фактора сжимаемости по степеням приведенной плотности, приведенной температуры во всем диапазоне составов с погрешностью не более 1%.

Экспериментальные значения параметров точек вдоль КС (p_s , ρ_s , T_s) и критической области (p_{κ} , ρ_{κ} , T_{κ}) описаны степенными функциями со значением КП $\beta_0 = 0.338 \pm 0.002$ со средней отно-сительной погрешностью 1.47%.

Работа выполнена при финансовой поддержке РФФИ (проект № 18-08-00124 A).

СПИСОК ЛИТЕРАТУРЫ

- 1. Стенли Г. Фазовые переходы и критические явления. М.: Мир, 1973. 419 с.
- Поташинский А.З., Покровский В.Л. Флуктуационная теория фазовых переходов. 2-е изд., перераб. М.: Наука, 1982. 382 с.
- 3. *Анисимов М.А*. Критические явления в жидкостях и жидких кристаллах. М.: Наука, 1987. 271 с.
- Кириллин В.А., Шейндлин А.Е. Исследование термодинамических свойств веществ. М.: Госэнергоиздат, 1963. 559 с.
- 5. Дуров В.А., Агеев Е.П. Термодинамическая теория растворов. Изд. 2-е. испр. М.: УРСС, 2003. 248 с.

- 6. *Смирнова Н.А.* Молекулярные теории растворов. Л.: Химия, 1987. 336 с.
- Гумеров Ф.М., Сабирзянов А.Н., Гумерова Г.И. Суби сверхкритические флюиды в процессах переработки полимеров. Казань: ФЭН, 2007. 336 с.
- 8. Залепутин Д.Ю., Тилькунова Н.А., Чернышева И.В., Поляков В.С. Развитие технологий, основанных на использовании сверхкритических технологий // Сверхкритические флюиды: теория и практика. 2006. Т. 1. № 1. С. 27.
- 9. Васильев В.А., Крайнов А.В., Геворков И.Г. Расчет параметров унифицированной геотермальной энергоустановки на водоаммиачной смеси // Теплоэнергетика. 1996. № 5. С. 27.
- Новиков И.И. О возможности построения единого уравнения состояния системы жидкость-газ на основе закономерностей теории критических явлений // Докл. АН СССР. 1994. Т. 335. № 3. С. 308.
- 11. NIST Chemistry WebBook. http://webbook.nist.gov/ chemistry/fluid/
- Abdulagatov I.M., Bazaev E.A., Bazev A.R., Rabezkii M.G. PVTx Measurements for Dilute Water + n-Hexane Mixtures in the Near-critical and Supercritical Regions // J. Supercrit. Fluids. 2001. V. 19. № 3. P. 219.
- Базаев Э.А., Базаев А.Р. Фазовые превращения в двойных системах вода–алифатический спирт // ТВТ. 2013. Т. 51. № 2. С. 253.
- Расулов С.М., Расулов А.Р. Фазовое равновесие и *РVТ*-свойства тройной системы 0.722 H₂O + 0.124 *н*-C₆H₁₄ + 0.154 *н*-C₃H₇OH // ТВТ. 2005. Т. 43. № 1. С. 45.
- Abdulagatov I.M., Bazaev A.R., Bazaev E.A., Dzhapparov T.A. PVT Properties of 1-Propanol in the Critical and Supercritical Regions // J. Supercrit. Fluids. 2016. № 117. P. 172.
- Brunner E. Fluid Mixtures at High Pressures. Phase Separation and Critical Phenomena in 23 (n-Alkane + + Water) Mixtures // J. Chem. Thermodyn. 1990. V. 22. P. 335.
- De Loos Th.W., Penders W.G., Lichtenthaler R.N. Equilibria and Critical Phenomena in Fluid (*n*-Hexane + + Water) at High Pressures and Temperatures // J. Chem. Thermodyn. 1982. V. 14. P. 83.
- 18. Басок Б.И. Термодинамические свойства системы н-гексан—метиловый спирт на поверхности сосуществования в широкой окрестности критической линии парообразования. Дис. ... канд. физ.-мат. наук. Киев: КГУ, 1985. 181 с.
- Назмутдинов А.Г., Алекина Е.В., Нестерова Т.Н. Концентрационные зависимости критических температур бинарных смесей с неводными компонентами // ЖФХ. 2008. Т. 82. № 11. С. 2068.
- Morton D.W., Lui M.P.W., Young C.L. The (Gas + Liquid) Critical Properties and Phase Behaviour of Some Binary Alkanol (C₂-C₅) + Alkane (C₅-C₁₂) Mixtures // J. Chem. Thermodyn. 2003. V. 35. Iss. 11. P. 1737.
- Seungho Jung, Moon Sam Shin, Hwayong Kim. Vapor– Liquid Equilibria for the *n*-Pentane + 1-Propanol and *n*-Pentane + 2-Methyl-1-Propanol Systems near the Critical Region // J. Chem. Eng. Data. 2006. V. 51. Iss. 2. P. 656.

- 22. Singh K.C., Kalra K.C., Maken S., Yadav B.L. Excess Volumes of 1-Propanol and 2-Propanol with Aromatic Hydrocarbons at 298.15 K // J. Chem. Eng. Data. 1994. V. 39(2). P. 241.
- Byung Chul Oh, Youngdae Kim, Hun Yong Shin, Hwayong Kim. Vapor-Liquid Equilibria for the System 1-Propanol + n-Hexane near the Critical Region // Fluid Phase Equilibria. 2004. V. 220. Iss. 1. P. 41.
- 24. Singh K.C., Kalra K.C., Maken S., Gupta V. Excess Heat of Mixing of 1-Propanol or 2-Propanol with Benzene, Toluene, o-, m- and p-Xylenes at 298.15 K // Thermochimica Acta. 1996. V. 276. P. 271.
- 25. Singh K.C., Kalra K.C., Maken S., Gupta V. Excess Molar Enthalpies of Mixing of 1-Propanol or 2-Propanol with Aromatic Hydrocarbons at 308.15 K in Terms of an Association Model // Fluid Phase Equilibria. 1996. V. 119. № 1–2. P. 175.
- Chao J.P., Dai M. Studies on Thermodynamic Properties of Binary Systems Containing Alcohols. VII. Temperature Dependence of Excess Enthalpies for *n*-Propanol + Benzene and *n*-Butanol + Benzene // Thermochimica Acta. 1988. V. 123. P. 285.
- 27. Базаев Э.А., Базаев А.Р. Термодинамические свойства бинарных смесей технологически важных веществ в околокритическом и сверхкритическом состоянии // Сверхкритические флюиды: теория и практика. 2010. Т. 5. № 3. С. 15.
- 28. Базаев Э.А., Базаев А.Р., Джаппаров Т.А. Исследование фазовых переходов и критических свойств бинарных смесей этанол—*н*-алканы // Вестн. КГТУ. 2010. № 1. С. 242.
- 29. Abdulagatov I.M., Bazaev A.R., Bazaev E.A., Dzhapparov T.A. PVTx Properties of the Binary 1-Propanol + + n-Hexane Mixtures in the Critical and Supercritical Regions // J. Mol. Liq. 2017. V. 239. P. 14.
- Alhasov A.B., Bazaev A.R., Bazaev E.A., Osmanova B.K. Thermodynamic Properties and Energy Characteristics of Water + 1-Propanol // J. Phys.: Conf. Ser. 2017. V. 891. 012327.
- 31. Базаев А.Р., Базаев Э.А., Абдурашидова А.А. Термические свойства системы вода-метанол состава 0.5 мас. доли при температурах 373.15-673.15 К и давлениях до 60 МПа // ТВТ. 2004. Т. 42. № 6. С. 885.
- 32. Базаев А.Р., Базаев Э.А., Абдурашидова А.А. Экспериментальное исследование критического состояния водных растворов алифатических спиртов // ТВТ. 2009. Т. 47. № 2. С. 215.
- 33. Xin N., Liu Y., Guo X., Liu X., Zhang Y., He M. Determination of Critical Properties for Binary and Ternary Mixtures Containing Propanol and Alkanes Using a Flow View-type Apparatus // J. Supercrit. Fluids. 2016. V. 108. P. 35.
- Hicks C.P., Young C.L. Gas-Liquid Critical Properties of Binary Mixtures // Chem. Rev. 1975. V. 75. P. 119.
- 35. Gil L., Blanco S.T., Rivas C., Laga E., Fernández J., Artal M., Velasco I. Experimental Determination of the Critical Loci for {n-C₆H₁₄ or CO₂ + Alkan-1-ol} Mixtures. Evaluation of Their Critical and Subcritical Behavior Using PC-SAFT EoS // J. Supercrit. Fluids. 2012. V. 71. P. 26.

ТЕПЛОФИЗИКА ВЫСОКИХ ТЕМПЕРАТУР том 57 № 3 2019

- Oh B.C., Kim Y., Shin H.Y., Kim H. Vapor–Liquid Equilibria for the System 1-Propanol + n-Hexane near the Critical Region // Fluid Phase Equilib. 2004. V. 220. Iss. 1. P. 41.
- Сычев В.В., Вассерман А.А., Козлов А.Д. и др. Термодинамические свойства азота. М.: Изд-во стандартов, 1977. 352 с.
- 38. Вукалович М.П., Алтунин В.В., Спиридонов Г.А. Методы построения уравнений состояния веществ по экспериментальным термодинамическим данным с применением электронно-вычислительных цифровых машин // ТВТ. 1967. Т. 5. № 2. С. 265.
- 39. Шиманская Е.Т., Олейникова А.В., Шиманский Ю.И. Форма кривой сосуществования вблизи критиче-

ской точки неона и дейтерводорода // Физика низких температур. 1990. Т. 16. № 11. С. 1377.

- Шиманская Е.Т., Шиманский Ю.И., Олейникова А.В. О критическом индексе β кривой сосуществования азота // ЖФХ. 1992. Т. 66. № 4. С. 1054.
- 41. *Alekhin A.D.* Critical Indices for Systems of Different Space Dimensionality // J. Mol. Liq. 2005. V. 120. P. 43.
- 42. Шелудяк Ю.Е., Рабинович В.А. О зависимости критических показателей от размерности пространства и числа компонентов параметра порядка // ТВТ. 1993. Т. 31. № 6. С. 915.
- 43. Шиманский Ю.И., Шиманская Е.Т. Расширенное масштабное уравнение для параметра порядка бензола в области фазового равновесия жидкость– пар // ЖФХ. 1996. Т. 70. № 3. С. 443.