———— ИССЛЕДОВАНИЕ ПЛАЗМЫ ———

УДК 537.52

ТЕОРИЯ ВЫСОКОВОЛЬТНОГО ТЛЕЮЩЕГО РАЗРЯДА С УЧЕТОМ ТЕРМОЭМИССИИ ЭЛЕКТРОНОВ

© 2019 г. Т. М. Сапронова^{1, *}, К. Н. Ульянов¹

¹Всероссийский электротехнический институт филиал ФГУП "Российский федеральный ядерный центр— Всероссийский научно-исследовательский институт технической физики им. Е.И. Забабахина", Москва, Россия

> **E-mail: sapron0109@mail.ru* Поступила в редакцию 14.03.2018 г. После доработки 17.12.2018 г. Принята к публикации 25.12.2018 г.

Развита кинетическая теория высоковольтного тлеющего разряда с учетом вторичной электронной эмиссии и термоэмиссии. Решено уравнение Пуассона в слое объемного заряда с учетом потока ионов, поступающих из плазмы в слой, ионизации газа в слое электронами, ионами и быстрыми атомами. На катоде имеет место потенциальное и кинетическое вырывание электронов с поверхности. Для различных значений отношения плотности тока термоэмиссии к плотности тока вторичной электронной электронной электронной электронной электронов с поверхности. Для различных значений отношения плотности тока термоэмиссии к плотности тока вторичной электронной электронной электронной электронной электронной электронной электронной электронной электрического поля в слое и другие характеристики разряда, получены распределения электрического поля в слое и другие характеристики на параметры разряда.

DOI: 10.1134/S0040364419030153

введение

Высоковольтный тлеющий разряд (ВТР) – это разновидность аномального тлеющего разряда в левой ветви кривой Пашена при напряжениях 10-150 кВ [1-3]. Разряд имеет растущую вольтамперную характеристику (ВАХ). Плотность тока ВТР при $U \approx 100$ кВ может достигать значения порядка 1 А/см². Электроны выходят с катода за счет потенциального вырывания при нейтрализации на катоде положительных ионов, а также в результате кинетического вырывания при бомбардировке катода ионами и быстрыми атомами, которые образуются при перезарядке ионов в слое объемного заряда. К слою приложено все напряжение, поэтому электроны ускоряются в слое и образуют практически моноэнергетический пучок. Эффективный коэффициент вторичной электронной эмиссии в ВТР при $U \approx 30-150$ кВ может достигать весьма высоких значений (10-20), поэтому ускорители электронов, в которых используется ВТР, имеют высокий КПД (порядка 0.90-0.95). Такие ускорители применяются при плавке тугоплавких металлов и сплавов. Максимальная мощность ускорителей с ВТР ограничивается предельно допустимой мощностью, которая выделяется на катоде за счет кинетической энергии быстрых ионов и атомов. Наличие термоэмиссионного тока позволяет уменьшить напряжение и значение ионного тока на катод, снизить тепловую нагрузку, и в этом случае можно повысить максимальную мощность ускорителя электронов.

В настоящей работе развита кинетическая теория ВТР. Решено уравнение Пуассона в слое с учетом потока ионов, поступающих из плазмы, ионизации газа в слое электронами, ионами и быстрыми атомами, образования потока быстрых атомов за счет перезарядки ионов. На катоде учитывалась термоэмиссия и вторичная электронная эмиссия под действием быстрых ионов и атомов. Для различных напряжений и плотностей тока рассчитаны значения размера слоя, эффективного коэффициента вторичной электронной эмиссии для ионов и быстрых атомов, распределения электрического поля, плотности потоков ионов и быстрых атомов. Рассчитаны также вольт-амперные характеристики такого типа разряда. Наличие термоэмиссии с катода снижает напряжение при той же плотности тока, позволяет регулировать тепловую нагрузку на катод и провести оптимизацию параметров электронного ускорителя.

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ

Рассмотрим плоскую модель разряда, включающую слой объемного заряда размером x_1 и плазмы размером L. Напряжение разряда φ_1 приложено к слою, падением напряжения на плазме можно пренебречь. С границы плазмы в слой втекает

β

ионный ток плотностью $j_i(0)$. Начало координат находится на границе плазмы и слоя, ось координат направлена к катоду. Электрическое поле *E* в слое определяется уравнением Пуассона

$$\frac{dE}{dx} = 4\pi e(N_i - N_e), \quad E = -\frac{d\varphi}{dx}.$$
 (1)

Ионы в слое в электрическом поле движутся в режиме сильной подвижности [4], а электроны — в режиме свободного пролета. Тогда

$$N_i = \frac{j_i}{eV_i}, \quad V_i = \left(\frac{2eE}{\pi m_i N_0 \sigma_r}\right)^{\frac{1}{2}}, \quad V_e = \left(\frac{2e\Delta\phi}{m_e}\right)^{\frac{1}{2}}.$$
 (2)

Зависимость $j_i(x)$ определяется уравнением неразрывности для ионов, поскольку ионы в слое испытывают многочисленные перезарядки:

$$\frac{d}{dx}N_iV_i = N_0\frac{j_{eo}}{e}\sigma^i_{ea}(\varepsilon_e) + N_0N_iV_i\sigma^i_{ia} + N_0N_a^*V_a^*\sigma^i_{aa} + S^{i2}_{ea}.$$
(3)

Первый член в правой части (3) описывает ионизацию газа плотностью N_0 электронами, выходящими с катода, второй член — ионизацию ионами, третий член — ионизацию быстрыми атомами, образовавшимися в слое при перезарядках ионов ($V_i = V_a^*$), четвертый член описывает ионизацию газа вторичными электронами, рождающимися в слое. Граничное условие для (3) на катоде $j_{e0} = j_{eT} + j_{e\gamma}$, где j_{eT} — плотность тока термоэмиссии, $j_{e\gamma}$ — плотность тока вторичной электронной эмиссии. На границе плазмы $j_i = j_i(0)$. Запишем уравнения (1) и (3) в безразмерной форме. Введем безразмерные переменные $E = \tilde{E}E^*$, $\varphi = \tilde{\varphi}\varphi_1$, $x = \tilde{x}x_1$, $y_2 = eN_iV_i/j_{e\gamma}$, $y_3 = eN_a^*V_a^*/j_{e\gamma}$, где $E^* = (4\pi j_{e0}\varphi_1)^{\frac{1}{2}}(2e\varphi_1/m_e)^{-\frac{1}{2}}$. Имеем

$$\frac{d\tilde{E}}{d\tilde{\varphi}} = -\frac{1}{\tilde{E}} \left(\kappa \frac{y_2}{\tilde{E}^2} - \left(1 + \tilde{\varphi}\right)^{-\frac{1}{2}} \right), \tag{4}$$

$$\frac{dy_2}{d\tilde{\varphi}} = \left[a_1 \left(y_2 + y_3 \right) + \frac{a_2}{\tilde{E}} \left(\tilde{\sigma}_{ea}^i - \int_{-1+\frac{1}{\beta}}^{\tilde{\varphi}} dy_2 \left(\tilde{\varphi}' \right) \left(\frac{\ln(\beta(\tilde{\varphi} - \tilde{\varphi}'))}{\beta(\tilde{\varphi} - \tilde{\varphi}')} \right) \right],$$
(5)

$$y_3 = \int_0^{\varphi} d\varphi' y_2(\tilde{\varphi}') e^{-M_a(\tilde{x}(\tilde{\varphi}) - \tilde{x}(\tilde{\varphi}'))}, \qquad (6)$$

$$\tilde{x}(\tilde{\varphi}) = -a_3 \int_0^{\tilde{\varphi}} \frac{d\tilde{\varphi}}{\tilde{E}(\tilde{\varphi})}.$$
(7)

Уравнение (4) определяет зависимость напряженности электрического поля \tilde{E} от $\tilde{\omega}$. (5) – зависимость безразмерной плотности потока ионов от $\tilde{\phi}$. (6) — зависимость плотности потока атомов. образовавшихся в слое при перезарядке ионов, от потенциала $\tilde{\varphi}$. При таком определении *E** в уравнении (4) содержится только один безразмерный параметр к, что упрощает решение системы уравнений. Отметим, что при записи системы уравнений (4)-(6) совершен переход от координаты *x* к независимой переменной ф (безразмерному потенциалу). При записи (4) и (5) использовалось соотношение $d\tilde{x} = -(\varphi_1/\tilde{E}E^*x_1)d\tilde{\varphi}$. Такой прием существенно облегчил решение задачи. Граничное условие для (5) на границе слоя и плазмы: $j_i(0) = 0.5 j_{e0} N_0 \sigma_{ea}^i (e \phi_1) L(1 + \chi_2)$, где χ_2 учитывает ионизацию газа в плазме вторичными электронами. При записи выражения для $j_i(0)$ принято во внимание, что в плоской задаче при низком давлении газа половина родившихся в плазме ионов лвижется в сторону катода и попадает в слой. а другая половина переходит к аноду, на котором нейтрализуется. Выражение χ_2 , входящее в граничное условие к (5) и коэффициенты в уравнениях (4)–(6), имеет вид

$$\chi_{2} = \frac{\beta}{\ln\beta} \int_{0}^{-1+\frac{1}{\beta}} dy_{2} \frac{\ln\left(\beta\left(1+\tilde{\varphi}\right)\right)}{\beta\left(1+\tilde{\varphi}\right)},$$

$$a_{1} = \frac{\sigma_{ia}^{i0}}{2\sigma_{r}} \frac{e\varphi_{1}}{\varepsilon^{*}}, \quad a_{2} = \frac{N_{0}\sigma_{ea}^{i0}\varphi_{1}}{E^{*}}, \quad a_{3} = \frac{\varphi_{1}}{E^{*}x_{1}}, \qquad (8)$$

$$= \frac{e\varphi_{1}}{I}, \quad M_{a} = N_{0}\sigma_{aa}^{el}x_{1}, \quad \kappa = \left(\pi\frac{m_{i}}{m_{e}}\frac{N_{0}\sigma_{r}\varphi_{1}}{E^{*}}\right)^{\frac{1}{2}}.$$

Отметим, что роль заряда вторичных электронов в уравнении (4) не существенна. Ионизацию вторичными электронами необходимо учитывать при определении потока ионов в (5). Концентрация ионов в (4) определялась из выражения для потока ионов с учетом зависимости скорости ионов от напряженности электрического поля (2). Последний член в правой части уравнения (5) описывает ионизацию газа в слое вторичными электронами. Таким образом, решение задачи сводится к решению системы уравнений (3)–(6) с учетом (8). Зависимость всех функций от координаты определяется уравнением (7).

Сечения ионизации ионами и быстрыми атомами линейно возрастают с ростом энергии ε этих частиц и считаются равными $\sigma_{ia}^{i} = \sigma_{aa}^{i} = \sigma^{i0} \varepsilon/\varepsilon^{*}$, где $\varepsilon = eE/(2N_0\sigma_r)$. Здесь ε^{*} – характерная энергия, зависящая от рода газа. Сечение ионизации газа электронами аппроксимировалось извест-

Е, кВ/см

40

ным выражением $\sigma_{ea}^{i} = \sigma_{ea}^{0} \ln (\beta \tilde{\phi}) / \beta \tilde{\phi}$. Запишем граничное условие на катоде в безразмерной форме

$$\delta = 1 - \frac{j_{eT}}{j_{e0}} = \delta_i + \delta_a,$$

$$\delta_i = y_2(1) \left[\gamma_0 + \pi^{-1/2} \int_0^\infty \gamma_k(\varepsilon_1 t) e^{-t} t^{-1/2} dt \right],$$

$$\delta_a = M_i \int_0^1 d\tilde{x}' y_2(\tilde{x}') e^{-M_a(1-\tilde{x}')} \gamma_k(\varepsilon(\tilde{x}')),$$

$$M_i = N_0 \sigma_i x_i.$$
(9)

Здесь

$$t = \frac{\varepsilon}{\varepsilon(1)}, \ \varepsilon(\tilde{x}) = \frac{eE^*\tilde{E}(\tilde{x})}{N_0\sigma_r}.$$

Если термоток отсутствует ($j_{eT} = 0$), то $\delta = 1$ и условие (9) является граничным условием для ВТР. При наличии термотока $\delta < 1$. Параметры δ_i и δ_a характеризуют доли плотности тока вторичной электронной эмиссии при столкновении потоков ионов (δ_i) и атомов (δ_a) с катодом. При записи выражения для δ_i значение коэффициента вторичной электронной эмиссии при кинетическом вырывании электронов $\gamma_k(\varepsilon)$ усреднялось с функцией распределения ионов по энергиям [4] на катодной границе:

$$f_{i} = (2N_{0}\sigma_{r}m_{i}/\pi eE)^{\frac{1}{2}}\exp(-N_{0}\sigma_{r}m_{i}V_{i}^{2}/2eE).$$
(10)

При определении δ_a учитывался весь спектр энергий быстрых атомов на катоде. При записи выражения для ионизации вторичными электронами в слое (5) учитывался тот факт, что вторичные электроны и ионы рождаются парами. Поток ионов, родившихся в слое, на катодной границе равен потоку вторичных электронов на анодной границе. Поэтому в уравнении (5) ионизация вторичными электронами выражена через у₂. Однако поскольку ось х направлена к катоду, а вторичные электроны движутся в противоположном направлении, то их учет производится методом последовательных приближений. Таким образом, математическая модель, включающая уравнения (4) и (5), позволяет провести расчеты $\tilde{E}(\tilde{\phi}), y_2(\tilde{\phi})$ при различных значениях параметров N_0 , L, ϕ_1 , j_{e0} . Граничное условие (9) определяет связь между этими параметрами. Например, можно задаться значениями N₀ и L и определить зависимость $\phi_1(j_{e0})$, т.е. ВАХ разряда. Зависимости E(x), $\phi(x)$, $y_2(x)$, $y_3(x)$ рассчитываются с использованием связи между напряженностью поля, потенциалом и координатой (7).

Таким образом, решение задачи сводится к решению системы нелинейных интегро-дифференциальных уравнений с учетом граничных усло**Рис. 1.** Распределение электрического поля (а) и потока ионов (б) для $N_0 = 3 \times 10^{15} \text{ см}^{-3}$, $\gamma^* = 5$: сплошные линии $-j_{e0} = 1.0 \text{ A/cm}^2$: $I - \delta = 1$, $\varphi_1 = 64.5 \text{ kB}$; 2 - 0.76, 50; 3 - 0.54, 30; штриховые $-j_{e0} = 0.1 \text{ A/cm}^2$: $I - \delta = 1$, $\varphi_1 = 42.3 \text{ kB}$; 2 - 0.64, 20; 3 - 0.52, 10.

х. см

вий (8) и (9). Зависимость всех функций от координаты определяется уравнением (7).

РЕЗУЛЬТАТЫ РАСЧЕТОВ

В качестве примера расчета параметров высоковольтного разряда низкого давления с комбинированной эмиссией электронов с катода был выбран разряд в гелии, который наряду с другими легкими газами (водородом, дейтерием) применяется в газонаполненных ускорителях электронов [4-6]. Расчеты выполнены в широком диапазоне изменения N_0, L, j_{e0} при различных значениях плотности термотока на катоде. В настоящей работе приведены результаты расчетов для $N_0 =$ $= 3 \times 10^{15}$ см⁻³ и размера плазмы L = 10 см. Зависимость $\gamma_k(\varepsilon)$ в соответствии с [7] имеет вид $\gamma_k(\varepsilon) =$ $=\kappa\sqrt{\epsilon}$, где энергия ионов (и быстрых атомов) измеряется в эВ, и $\kappa = 3.5 \times 10^{-2}$ ($\gamma^* = 5$ при $\varepsilon = 2 \times 10^4$ эВ), $\sigma_{ea}^0 = 1.3 \times 10^{-16} \,\mathrm{cm}^2, \sigma_{ia}^0 = 4 \times 10^{-17} \,\mathrm{cm}^2, \sigma_r = 10^{-15} \,\mathrm{cm}^2, \epsilon^* = 10^3 \,\mathrm{эB} \,[3, 8, 9].$ Результаты расчетов представлены на рис. 1, 2 и в таблице.

На рис. 1а приведены распределения электрических полей в слое объемного заряда для плотности тока с катода $j_{e0} = 1.0 \text{ A/cm}^2$ (сплошные ли-

(a)

Рис. 2. Вольт-амперные характеристики ВТР для $N_0 = 3 \times 10^{15}$ см⁻³, $\gamma^* = 5$: $1 - \delta = 1$, 2 - 0.8, 3 - 0.6, $1a - \delta = 1$ (без учета ионизации вторичными электронами).

нии) и плотности тока $j_{e0} = 0.1 \text{ A/см}^2$ (штриховые) при трех значениях $\delta = 1 - j_{eT}/j_{eV}$. Для наглядности все кривые представлены в зависимости от координаты $x_1 - x$. Отметим, что при уменьшении δ (увеличении *j*_{eT}) значения электрического поля, напряжения ϕ_1 и размера слоя x_1 уменьшаются. Объемный заряд слоя положительный, влиянием электронного заряда можно пренебречь. На рис. 16 представлена зависимость плотности ионного тока от координаты для тех же режимов, что и на рис. 1а. Значение $j_i(x)$ увеличивается в направлении катода за счет ионизации газа электронами, быстрыми атомами и ионами. При снижении δ одновременно уменьшаются ϕ_1 и размер слоя x_1 . Оба фактора влияют на ионизацию в слое по-разному. Уменьшение напряжения снижает напряженность электрического поля в слое, а уменьшение слоя повышает напряженность. В результате при $j_{e0} = 1.0 \text{ A/cm}^2$ плотность ионного тока на катоде незначительно уменьшается, а при $j_{e0} = 0.1 \text{ A/cm}^2 -$ практически не меняется.

На рис. 2 представлены ВАХ высоковольтного разряда при трех значениях δ . Штриховой линией показана ВАХ ВТР ($\delta = 1$), которая рассчитана без учета ионизации вторичными электронами. В этом случае для каждого значения j_{e0} напряжение φ_1 заметно превышает аналогичные значения, рассчитанные с учетом ионизации вторичными электронами в слое и в плазме, поэтому роль ионизации атомов в слое и плазме вторичными электронами существенна. При снижении δ величина φ_1 уменьшается. Таким образом, термоэмиссия с катода существенным образом влияет на ВАХ высоковольтного разряда с комбинированной эмиссией.

В таблице приведена более подробная информация о параметрах ВТР с комбинированной эмиссией. Для трех плотностей тока с катода ($j_{e0} =$ = 1.0, 0.1, 0.03 A/см²) и различных значений δ для каждого тока в таблице представлены напряжение ϕ_1 , размер слоя x_1 , доли плотностей тока вторичной электронной эмиссии с катода под действием ионов δ_i и потока быстрых атомов δ_a , значения безразмерных потоков ионов $y_2(1)$ и атомов $y_3(1)$ на катоде, число перезарядок ионов в слое M_i , а также усредненные по функциям распределения ионов и атомов значения коэффициентов вторичной эмиссии электронов γ_i и γ_a . Следует обратить внимание на тот факт, что хотя плотность потока атомов на катоде значительно превышает плотность потока ионов, однако вклад во вторичную эмиссию с катода ионов и быстрых

$j_{e0}, A/см^2$	$\phi_l, \kappa B$	δ	<i>х</i> ₁ , см	δ_i	δ_a	<i>y</i> ₂ (1)	$y_3(1)$	М	γ_i	γ_a
1.0	65	1.0	4.2	0.5	0.5	0.076	0.24	12	6.6	2.1
	50	0.76	3.5	0.38	0.38	0.062	0.20	10	6.1	1.9
	40	0.64	3.0	0.33	0.31	0.056	0.17	9	5.8	1.8
	30	0.54	2.4	0.28	0.26	0.052	0.15	7	5.5	1.7
	20	0.47	1.7	0.26	0.21	0.051	0.13	5	5.2	1.6
0.1	42	1.0	6.7	0.38	0.62	0.09	0.47	20	4.2	1.3
	30	0.78	5.2	0.31	0.47	0.08	0.40	16	3.9	1.2
	20	0.64	3.8	0.28	0.36	0.076	0.34	12	3.6	1.1
	15	0.57	3.0	0.26	0.31	0.076	0.31	9	3.5	1.0
	10	0.51	2.2	0.25	0.26	0.080	0.28	7	3.3	0.92
0.03	31	1.0	7.8	0.35	0.65	0.107	0.67	24	3.3	0.97
	20	0.78	5.7	0.30	0.48	0.100	0.49	17	3.0	0.84
	10	0.58	3.3	0.27	0.31	0.100	0.46	10	2.7	0.67
	5	0.50	1.9	0.29	0.21	0.114	0.39	6	2.5	0.55

Параметры высоковольтного разряда при различных значениях плотности термотока

атомов отличается заметно в меньшей степени. Это связано с существенным различием формы их функций распределения на катоде. На катод поступают ионы с гораздо большей средней энергией, поэтому у них значительно выше эффективный коэффициент вторичной электронной эмиссии (γ_i заметно больше γ_a). В поток атомов дают существенный вклад быстрые атомы, образовавшиеся в области слабого поля в прианодной части слоя. Этот факт связан с тем, что сечение упругого столкновения быстрого атома с медленным σ_{aa} много меньше сечения перезарядки о, Поэтому функция распределения быстрых атомов имеет гораздо более широкий энергетический спектр. чем функция распределения ионов. В поток ионов основной вклад дают ионы, образовавшиеся в прикатодной области в сильном поле и имеющие большую энергию.

ЗАКЛЮЧЕНИЕ

Разработанная математическая модель высоковольтного разряда учитывает кинетические эффекты. Особенности функций распределения учитываются интегралами, входящими в уравнения и в выражения для δ_i и δ_a . Кроме того, для функции распределения ионов использовалось выражение (10). Электроны, выходящие с поверхности катода, и вторичные электроны, родившиеся в слое, движутся в режиме убегания. Длина свободного пробега этих электронов при высоких напряжениях превышает размеры слоя и плазмы. Отношение плотности потока вторичных электронов к плотности тока электронов, выходящих с катода, равно $y_2(1) \ll 1$ (таблица), поэтому функция распределения электронов по энергиям имеет сильно выраженную пучковую часть и слабо выраженный широкий спектр вторичных электронов, родившихся в слое при ионизации газа пучком электронов. Именно этим свойством ВТР отличается от аномального (и других форм) тлеющего разряда, спектр электронов в котором перекрывает весь диапазон энергии без явно выраженной пучковой части. Ионы в слое движутся в режиме подвижности ($M_i \ge 1$). Отметим, что и в скорости дрейфа $V_i(2)$, и в энергии ионов є учтены кинетические поправки, уменьшающие V_i в $(2/\pi)^{1/2}$ раза, а ε – в два раза. Факт уменьшения є при кинетическом рассмотрении существенен, поскольку он влияет на значение коэффициента вторичной электронной эмиссии, а следовательно, на параметры разряда. Быстрые атомы движутся в кинетическом режиме, так как их длина свободного пробега заметно превышает длину перезарядки. Поскольку энергия быстрого атома при перезарядке равна энергии иона, то кинетическая поправка к энергии иона передается быстрому атому. Таким образом, разработанная кинетическая математическая модель, корректно учитывающая основные физические процессы, вполне пригодна для выбора режимов генерации электронных пучков для различных технологических применений. Проведение расчетов с применением этой модели доступно широкому кругу пользователей, при этом значительно уменьшается время проведения расчетов по сравнению с другими кинетическими программами, использующими гораздо более сложные математические модели [10].

Таким образом, можно сделать следующие выводы.

1. Разработана достаточно простая математическая модель, учитывающая основные физические процессы, влияющие на параметры высоковольтного разряда.

2. Показано, что в разряде с комбинированной эмиссией электронов с катода увеличение отношения плотности термотока к плотности тока вторичной электронной эмиссии сдвигает ВАХ разряда в область более низких напряжений.

3. Для конкретных случаев приведены значения напряжения разряда φ_i , распределения электрического поля, плотности тока ионов и атомов в слое, рассчитаны эффективные коэффициенты вторичной электронной эмиссии для ионов γ_i и атомов γ_a , размеры слоя x_1 , доли вторичных электронов, выходящих с катода под действием ионов δ_i и атомов δ_a , а также другие параметры разряда с учетом ионизации первичными и вторичными электронами, ионами и быстрыми атомами.

СПИСОК ЛИТЕРАТУРЫ

- 1. Грановский В.Л. Электрический ток в газе. Установившийся ток. М.: Наука, 1971. 543 с.
- Новиков А.А. Источник электронов высоковольтного тлеющего разряда с анодной плазмой. М.: Энергоатомиздат, 1983. 215 с.
- 3. *Ульянов К.Н.* Теория высоковольтного тлеющего разряда // ТВТ. 1978. Т. 16. № 6. С. 1121.
- Каган Ю.М., Перель В.И. О движении положительных ионов в собственном газе // ДАН СССР. 1954. Т. 38. С. 575.
- McClure G.W., Granzow K.D. High-Voltage Glow Discharges in D₂ Gas. II. Cathode Fall Theory // Phys. Rev. 1962. V. 125. P. 3.
- 6. *Пустынский Л.Н.* Численное моделирование высоковольтного тлеющего разряда в дейтерии // ТВТ. 1983. Т. 25. № 3. С. 441.
- 7. *Каминский М*. Атомные и ионные столкновения на поверхности металла. М.: Мир, 1967. 506 с.
- 8. *Грановский В.Л.* Электрический ток в газе. М.: Гостехиздат, 1952. 432 с.
- 9. Смирнов Б.М. Атомные столкновения и элементарные процессы в плазме. М.: Атомиздат, 1968. 363 с.
- Коваленко Ю.А. Физические принципы построения и методы расчета газонаполненных ускоряющих систем с плазменными эмиторами заряженных частиц. Дис. ... докт. физ.-мат. наук. М.: ГНЦ РФ ФГУП ВЭИ им. В.И. Ленина, 1995. 443 с.

ТЕПЛОФИЗИКА ВЫСОКИХ ТЕМПЕРАТУР том 57 № 3 2019