ВЫСОКОТЕМПЕРАТУРНЫЕ АППАРАТЫ И КОНСТРУКЦИИ

УДК 532.5:536.461:537.5

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ЭЛЕКТРИЗАЦИИ ЧАСТИЦ КОНДЕНСИРОВАННОЙ ФАЗЫ В ВЫСОКОТЕМПЕРАТУРНОМ ПОТОКЕ ПРОДУКТОВ СГОРАНИЯ РАКЕТНОГО ДВИГАТЕЛЯ

© 2019 г. А. В. Рудинский^{1, 2, *}, Д. А. Ягодников¹

¹ Московский государственный технический университет им. Н.Э. Баумана, Москва, Россия ²Центральный институт авиационного моторостроения им. П.И. Баранова, Москва, Россия *E-mail: alex_rudinskiy@mail.ru Поступила в редакцию 31.10.2018 г. После доработки 20.02.2019 г. Принята к публикации 27.03.2019 г.

Разработана математическая модель и рассчитаны электрофизические характеристики продуктов сгорания в проточном тракте жидкостного ракетного двигателя с учетом электризации продуктов сгорания и твердых частиц металла, образующихся в результате разгорания элементов конструкции двигателя. Численными методами получены расчетные траектории частиц металла, их скорости, температуры и суммарного электрического заряда, приобретаемого частицами вследствие взаимодействия с электронами, присутствующими в продуктах сгорания. Проанализировано влияние размера частицы на величину электрического заряда. Полученные результаты могут быть использованы для разработки системы ранней диагностики разгорания теплонапряженных элементов конструкции энергосиловых установок.

DOI: 10.1134/S0040364419050132

ВВЕДЕНИЕ

Известно, что началу разрушения газодинамического тракта реактивного двигателя предшествует появление в газовом потоке продуктов сгорания множества микрочастиц [1, 2]. В работах [3-5] показано, что такие частицы имеют электрический заряд, генерируют электрическое поле и могут быть зарегистрированы. Полученные экспериментально-теоретические результаты легли в основу бесконтактной электростатической диагностики авиационных двигателей [6]. Однако проведенные фундаментальные исследования ограничивались низкими температурами газового потока (~1200 К) и вводом уже электрически заряженных конденсированных частиц (капель, частиц металла и т.д.), например электризованных с помощью коронного разряда [7]. Применение такого подхода в условиях высокоэнтальпийных потоков продуктов сгорания ракетных и перспективных реактивных двигателей может быть некорректно по причине неучета при высоких температурах в камере сгорания (2500-3500 К), например, термоэлектронной эмиссии с поверхности конденсированных частиц, являющихся продуктами сгорания углеводородного горючего (УВГ) или образованных вследствие эрозионного разрушения элементов конструкции проточного тракта.

Цель данной статьи заключается в разработке математической модели электризации частиц конденсированной фазы в высокоэнтальпийном потоке продуктов сгорания УВГ ракетного двигателя и верификации расчетных данных с использованием опубликованных ранее результатов экспериментальных исследований.

ЭЛЕКТРИЗАЦИЯ ТВЕРДЫХ КОНДЕНСИРОВАННЫХ ЧАСТИЦ В ВЫСОКОЭНТАЛЬПИЙНОМ ИОНИЗИРОВАННОМ ПОТОКЕ ПРОДУКТОВ СГОРАНИЯ УВГ

Рассмотрим частицу металла, которая может образоваться в процессе эрозионного разрушения камеры жидкостного ракетного двигателя (ЖРД) и вносится во внутрикамерный объем газовым потоком продуктов сгорания (ПС) с температурой $T_k = 1900-3600$ К. Допуская, что в целом продукты сгорания электрически нейтральны, т.е. концентрации электронов и положительно заряженных ионов равны ($n_{e\infty} = n_{i\infty}$), оценим заряд твердой частицы, приобретенный в газовом потоке.

Электростатический потенциал частицы Ф в зависимости от расстояния от ее центра определяется уравнением Пуассона [8]

$$\nabla^2 \Phi = -\frac{e}{\varepsilon_0} (n_i - n_e), \qquad (1)$$

где e — заряд электрона; ε_0 — электрическая постоянная; n_e , n_i — концентрации ионов и электронов.

Концентрации заряженных частиц в высокотемпературных продуктах сгорания рассчитывались с использованием распределений Больцмана

$$n_e = n_{e\infty} \exp\left(\frac{e\Phi}{kT_k}\right),\tag{2}$$

$$n_i = n_{e\infty} \exp\left(-\frac{e\Phi}{kT_k}\right),\tag{3}$$

где $n_{e\infty}$ — концентрация электронов в продуктах сгорания, T_k — температура газа в определенном сечении сопла двигателя, k — постоянная Больцмана.

Введем безразмерный потенциал твердой частицы в виде

$$\overline{\Phi} = \frac{e\Phi}{kT_k}.$$
(4)

Подставляя выражения (2), (3) в (1), с учетом (4) получим уравнение Пуассона для потенциала частицы в безразмерной форме в сферических координатах

$$\nabla^2 \overline{\Phi}(r) = \frac{e^2 n_{e\infty}}{\varepsilon_0 k T_k} \Big[\exp(\overline{\Phi}(r)) - \exp(-\overline{\Phi}(r)) \Big].$$
(5)

Преобразуем выражение (5) к виду

$$\nabla^{2}\overline{\Phi}(r) = \frac{1}{R_{\rm D}^{2}} \Big[\exp\left(\overline{\Phi}(r)\right) - \exp\left(-\overline{\Phi}(r)\right) \Big],$$

где *R*_D – радиус Дебая, определяемый следующей зависимостью:

$$R_{\rm D} = \sqrt{\frac{\varepsilon_0 k T_k}{e^2 n_{e^{\infty}}}}.$$

Полагая, что металлическая частица приобретает в газовом потоке малый заряд, и вводя безразмерную координату $\overline{r} = r/R_{\rm D}$, получим

$$\frac{d^2\bar{\Phi}(\bar{r})}{d\bar{r}^2} + \frac{2}{\bar{r}}\frac{d\bar{\Phi}(r)}{d\bar{r}} = \bar{\Phi}(\bar{r}).$$
(6)

Граничные условия для решения уравнения (6) зададим следующим образом:

$$\Phi = 0 \quad \text{при} \quad \overline{r} = \infty, \tag{7}$$

$$\bar{\Phi} = \ln\left(\frac{n_{es}}{n_{e\infty}}\right) \, \pi p \mu \ \bar{r} = \frac{d_s}{2}, \tag{8}$$

где d_s — диаметр металлической частицы; n_{es} — концентрация электронов вблизи частицы, которая в предположении реализации термоэлектронной эмиссии в высокотемпературном газовом потоке определялась формулой Ричардсона—Дешмана

$$n_{es} = 2\left(\frac{m_e k T_s}{h^2}\right)^{\frac{2}{2}} \exp\left(-\frac{E}{k T_s}\right)$$

где E — работа выхода электрона из металла, m_e — масса электрона, T_s — температура металлической частицы, h — постоянная Планка.

Таким образом, решение уравнения (6) с граничными условиями (7) и (8) имеет следующий вид:

$$\overline{\Phi}(\overline{r}) = \frac{r_{S}}{R_{D}} \ln\left(\frac{n_{es}}{n_{e\infty}}\right) \frac{\exp\left(r_{S}/R_{D}-\overline{r}\right)}{\overline{r}}$$

где $r_s = \frac{d_s}{2}$ – радиус твердой частицы.

Электрический заряд частицы рассчитывался в предположении электронейтральности системы "газ—частица":

$$q_s = -2en_{e\infty}R_{\rm D}^3 \int_V \nabla^2 \overline{\Phi}(\overline{r}) d^3 \overline{r}.$$
 (9)

Интегрируя уравнение (9) по объему частицы, получим выражение для определения электрического заряда, приобретаемого металлической частицей в высокоэнтальпийном газовом потоке:

$$q_{s} = 8\pi e n_{e\infty} R_{\rm D}^{3} \frac{r_{S}}{R_{\rm D}} \ln\left(\frac{n_{es}}{n_{e\infty}}\right) \left(1 + \frac{r_{S}}{R_{\rm D}}\right).$$
(10)

Зависимость (10) применима при условии $r_S < R_D$. При выполнении противоположного условия ($r_S > R_D$) электрический заряд частицы определялся зависимостью [8]

$$q_s = 4er_S^2 R_{\rm DS} \left(n_{es} - n_{e\infty} \right), \tag{11}$$

где
$$R_{\rm DS} = \sqrt{\frac{\varepsilon_0 k T_k}{e^2 n_{es}}}.$$

Движение твердых заряженных частиц в реактивной струе продуктов сгорания двигателя носит нестационарный характер, что обусловлено колебаниями коэффициента избытка окислителя, динамическим взаимодействием фаз, а также возможным механическим повреждением проточного тракта ЖРД [9, 10]. Нестационарное движение твердых заряженных частиц порождает индуцированное магнитное поле [11], амплитуда напряженности H_i которого может быть оценена из следующей зависимости:

$$H_i \approx \max\left(Q_{sV} v_a D_a; f_m D_a^2 Q_{sV}\right). \tag{12}$$

Здесь Q_{sv} — суммарный объемный электрический заряд в струе продуктов сгорания, обусловленный наличием заряженных частиц, v_a — скорость движения заряженных частиц, D_a — диаметр выходного сечения сопла двигателя, f_m — частота пульсаций электрического заряда в струе.

Следует отметить, что эмпирическая величина f_m может быть определена экспериментально при анализе спектра сигнала индукционного датчика, при работе конкретного двигателя. В этом случае экспериментальное значение f_m должно соответствовать максимальному значению плотности энергии, отнесенной к единице времени.

РЕЗУЛЬТАТЫ РАСЧЕТОВ АЭРОДИНАМИЧЕСКИХ И ЭМИССИОННЫХ СВОЙСТВ ЧАСТИЦ ПОРОШКОВОГО МЕТАЛЛА В ВЫСОКОТЕМПЕРАТУРНОМ ПОТОКЕ

С целью имитации разгорания [12] газодинамическое течение высокотемпературных продуктов сгорания кислорода и керосина моделировалось численными методами в геометрии камеры модельного ЖРД с каналом ввода металлических частиц. Концентрации электронов $n_{e\infty}$ в продуктах сгорания определялись термодинамическим расчетом в зависимости от коэффициента избытка окислителя (газообразного кислорода) α и, соответственно, температуры в камере сгорания (табл. 1).

Стоит отметить, что одной и той же температуре газа в камере сгорания ($T_k \approx 3360$ K), а следовательно, и температуре частиц соответствуют два значения коэффициента избытка окислителя $\alpha = 0.6$ и 1.6. Данные значения рассмотрены для оценки влияния на электрический заряд твердых частиц только концентраций электронов в продуктах сгорания.

Перед входом в сужающуюся часть сопла формировался инжектор твердых частиц. Граничными условиями являлись скорость твердых частиц, вектор направления движения частиц в канале ввода и диаметр частиц. Указанные параметры варьировались в диапазонах изменения значе-

Таблица 1. Электрофизические параметры газа (продуктов сгорания)

<i>ds</i> , м	<i>r_s</i> , м	$n_{e^{\infty}}, \mathrm{m}^{-3}$	<i>R</i> _D , м
$\alpha = 0.5$ при $R_{\rm D} > r_s$			
2×10^{-5}	1×10^{-5}	2.27×10^{14}	2.25×10^{-4}
3×10^{-5}	1.5×10^{-5}	2.71×10^{13}	6.09×10^{-4}
4×10^{-5}	2×10^{-5}	4.03×10^{12}	14.94×10^{-4}
5×10^{-5}	2.5×10^{-5}	5.19×10^{11}	39.59×10^{-4}
6×10^{-5}	3×10^{-5}	2.47×10^{10}	0.018
7×10^{-5}	3.5×10^{-5}	1.11×10^{9}	0.083
8×10^{-5}	4×10^{-5}	5.68×10^{7}	0.365
9×10^{-5}	4.5×10^{-5}	8.72×10^{6}	0.899
10×10^{-5}	5×10^{-5}	1.10×10^{5}	2.765
$lpha = 0.6$ при $R_{ m D} > r_s$			
2×10^{-5}	1×10^{-5}	19.46×10^{15}	2.58×10^{-5}
3×10^{-5}	1.5×10^{-5}	5.18×10^{15}	4.69×10^{-5}
4×10^{-5}	2×10^{-5}	5.04×10^{14}	1.42×10^{-4}
5×10^{-5}	2.5×10^{-5}	1.72×10^{14}	2.31×10^{-4}
6×10^{-5}	3×10^{-5}	1.55×10^{14}	2.29×10^{-4}
7×10^{-5}	3.5×10^{-5}	6.12×10^{13}	3.79×10^{-4}
8×10^{-5}	4×10^{-5}	2.26×10^{13}	6.16×10^{-4}
9×10^{-5}	4.5×10^{-5}	8.61×10^{12}	9.94×10^{-4}
10×10^{-5}	5×10^{-5}	1.02×10^{12}	9.79×10^{-4}
$\alpha = 1$ при $R_{\rm D} < r_s$			
2×10^{-5}	1×10^{-5}	2.30×10^{17}	3.20×10^{-7}
3×10^{-5}	1.5×10^{-5}	6.62×10^{16}	1.32×10^{-6}
4×10^{-5}	2×10^{-5}	5.89×10^{16}	2.57×10^{-6}
5×10^{-5}	2.5×10^{-5}	4.06×10^{16}	5.07×10^{-6}
6×10^{-5}	3×10^{-5}	2.62×10^{16}	7.49×10^{-6}
7×10^{-5}	3.5×10^{-5}	1.77×10^{16}	11.11×10^{-6}
8×10^{-5}	4×10^{-5}	1.23×10^{16}	12.56×10^{-6}
9×10^{-5}	4.5×10^{-5}	8.79×10^{15}	23.91×10^{-6}
10×10^{-5}	5×10^{-5}	7.99×10^{15}	45.23×10^{-6}
$\alpha = 1.6$ при $R_{\rm D} < r_s$			
2×10^{-5}	1×10^{-5}	1.03×10^{16}	3.55×10^{-5}
3×10^{-5}	1.5×10^{-5}	8.99×10^{15}	3.60×10^{-5}
4×10^{-5}	2×10^{-5}	6.36×10^{15}	4.01×10^{-5}
5×10^{-5}	2.5×10^{-5}	4.36×10^{15}	4.67×10^{-5}
6×10^{-5}	3×10^{-5}	3.30×10^{15}	5.18×10^{-5}
7×10^{-5}	3.5×10^{-5}	2.09×10^{15}	6.49×10^{-5}
8×10^{-5}	4×10^{-5}	1.01×10^{15}	8.88×10^{-5}
9×10^{-5}	4.5×10^{-5}	0.80×10^{15}	10.34×10^{-5}
10×10^{-5}	5×10^{-5}	0.60×10^{15}	11.74×10^{-5}

2019

Рис. 1. Конечно-элементная модель (а) и размеры (б) проточного тракта модельного ЖРД с каналом ввода порошкового металла.

Рис. 2. Поля скорости (а) и температуры (б) газа.

ний, соответствующих реальным условиям эксплуатации ЖРД.

Граничными условиями для газовой фазы являлись давление (до 3 МПа) и температура (до 3600 К) в начальном сечении тракта модельного ЖРД (в камере сгорания).

Постановка задачи состояла в определении вклада электрического заряда, генерируемого частицей *k*-фазы в общий заряд струи продуктов сгорания. Оценивая электрический заряд частиц по формулам (10), (11), можно судить о превышении характеристик электромагнитного поля струи с частицами над характеристиками "чистой" струи, что может быть положено в основу параметрической системы диагностики (по превышению значения параметра).

На первом этапе моделирования общей электрогазодинамической задачи электризации частиц k-фазы рассчитывалось стационарное течение вязкого газа по соплу в ANSYS Fluent с k— ϵ -моделью турбулентности. Теплоемкость и теплопроводность газа задавались полиномиальной зависимостью от температуры в конкретном сечении. Значения теплофизических свойств получены в результате термодинамического расчета в программе "Тегга". Данный подход позволяет упростить модель с точки зрения кинетики горения керосина в кислороде и учитывать ионизацию продуктов сгорания путем соответствия термодинамической температуры конкретному значению концентрации электронов.

На втором этапе в ANSYS Fluent определены скоростные и температурные характеристики твердых частиц металла, необходимые для оценки электрофизических параметров электризации *k*-фазы. Прогнозирование траекторий движения отдельных частиц выполнялось алгоритмами модели "Discrete phase model". Обмен импульсом, теплотой и массой между газом и частицами включался в расчет последовательно с вычислением траекторий частиц согласно уравнениям непрерывной газовой фазы. Для этого была сгенерирована неструктурированная сеточная модель проточного тракта модельного ракетного двигателя с каналом ввода частиц.

Эмиссия электронов для частиц сажи считается отдельной задачей и не учитывается в модели.

Расчетная трехмерная сетка, содержащая примерно 1.5×10^6 элементов (ячеек), показана на рис. 1. Геометрия камеры двигателя с каналом ввода частиц плоско-симметричная. Конечноэлементная модель включала в себя половину от объема камеры ракетного двигателя. При этом составляющая скорости твердых частиц, перпендикулярная плоскости симметрии, равна нулю. Данное допущение не вносит существенных изменений в траекторию частиц, так как при малом расходе несущего газа (до 5% от расхода в камеру) растекание инжектируемого потока минимально и траектория твердых частиц лежит в плоскости симметрии. На рис. 2 приведены распределения скорости и температуры продуктов сгорания по соплу, которые определяли теплофизические свойства частиц k-фазы, вносимых в газовый поток. Траектория частиц находилась путем интегрирования уравнения баланса сил, действующих на частицу в газовом потоке, которое в лагранжевых координатах и в предположении справедливости закона сопротивления Стокса описывается выражением

где

$$m_s \frac{dv_s}{dt} = -Bf \frac{(v_s - v)\rho_s}{\tau_r},$$

$$f = 1 + 0.179 \operatorname{Re}_{r}^{0.5} + 0.013 \operatorname{Re}_{r},$$

$$B = 1 + 0.03 \frac{|T - T_{s}|}{T} \left(\frac{T_{s}}{T}\right)^{2.38} \frac{\operatorname{Nu}}{\operatorname{PrRe}_{r}}$$

Здесь Nu = 2 + 0.6 Pr^{0.33} Re_r^{0.5} – число Нуссельта; Pr = $\frac{\mu C}{\lambda}$ – число Прандтля; Re_r = $\frac{2r_s \rho |v - v_s|}{\mu}$ –

Рис. 3. Распределение температуры частицы k-фазы при нагреве продуктами сгорания УВГ при $\alpha = 0.5$: (a) $-d_s = 20$ мкм, (б) -30, (в) -50, (г) -60, (д) -80, (е) -100.

Рис. 4. Распределение скорости частицы *k*-фазы при движении по соплу: $v_{0s} = 5$ м/с; (а): $1 - d_s = 20$ мкм, 2 - 30, 3 - 50; (б): 1 - 80 мкм, 2 - 90, 3 - 100.

число Рейнольдса; $\tau_r = \frac{\rho_s d_s^2}{4.5\mu}$ – время релаксации скорости частицы [13]; v, v_s – скорости газа и твердой частицы; ρ, ρ_s – плотность газа и частицы; T, T_s – температуры газа и частицы; μ – вязкость газа; C – теплоемкость газа; λ – теплопроводность газа.

Температура нагрева частицы до температуры газового потока определялась из условия теплового баланса газ—частица

$$m_{s}C_{s}\frac{dT_{s}}{dt}=\alpha_{s-g}\pi d_{s}^{2}\left(T-T_{s}\right),$$

где α_{s-g} — коэффициент теплоотдачи от газа к частице.

Далее приведем основные расчетные скоростные и теплофизические свойства частиц k-фазы (рис. 3–5), с помощью которых определялись параметры электризации частиц по выражениям (10) и (11). В пределах одного расчета рассматрива-

Рис. 5. Распределения скорости (а) и температуры (б) при большой инерции частиц *k*-фазы: $v_{0s} = 15 \text{ м/c}$; $1 - d_s = 400 \text{ мкм}$, 2 - 600, 3 - 800.

лись траектории нескольких частиц, различных по диаметру. Частицы принимались сферическими с диаметрами 20–100 мкм, значения которых в процессе движения в газе не изменялись. Начальная температура ($T_{s0} = 300$ K) и скорость ($v_{s0} = 5$ м/с) для частиц всех диаметров принимались одинаковыми. Основными варьируемыми параметрами являлись диаметры частиц, их скорости и температуры продуктов сгорания, соответствующих $\alpha = 0.5, 0.6, 1$ и 1.6. Задание начальной скорости частиц освобождает от необходимости моделирования процесса вноса частиц несущим газом высокого давления в коллекторе и существенно упрощает сходимость задачи.

Как следует из полученных результатов, при увеличении диаметра частицы, вносимой в газовый поток, ее температура и скорость падают. Так, например, для частицы с диаметром 20 мкм температура при наступлении теплового баланса

Рис. 6. Распределения скорости и температуры газа и твердых частиц в зависимости от координаты *х* камеры модельного ЖРД при различном значении избытка окислителя при $\alpha = 0.5$ (а), 0.6 и 1.6 (б), 1 (в): *1* – точки теплового баланса, $2 - T_g(\alpha)$, $3 - T_s$ при d = 20, 4 - 30, 5 - 40, 6 - 50, 7 - 60, 8 - 70, 9 - 80, 10 - 90, 11 - 100.

с газом составила $T_s \approx 2700$ К при $\alpha = 0.6$ (рис. 6). Скорость частицы в выходном сечении сопла $v_s \approx$ ≈ 516 м/с (рис. 4). При увеличении диаметра вносимой в поток частицы в 5 раз ($d_s = 100$ мкм) температура теплового баланса и скорость частицы соответствуют $T_s \approx 1700$ К ($\alpha = 0.6$) и $v_s \approx 230$ м/с. Увеличение начальной скорости вводимой в поток частицы до 15 м/с и диаметра до 800 мкм приводит к тому, что частица k-фазы не сносится сразу газовым потоком (рис. 5), а ударяется о стенки камеры и затем выносится из газового тракта и внутрикамерного пространства. При этом в предположении абсолютно упругого удара достаточно большие частицы успевают прогреться до высоких температур (~2000 К), что позволяет им приобретать больший электрический заряд вследствие термоэлектронной эмиссии.

Для определения параметров электризации k-фазы, согласно выражениям (10)–(12), значения газодинамических и теплофизических свойств частиц, в частности температуры (рис. 7), принимались в сечении потока равными значениям при наступлении термодинамического равновесия ($T_s = T_k$) в системе "газ–частица" (рис. 6).

Стоит отметить, что температуре в КС ~3360 К, при которой получены результаты расчетов (рис. 7), соответствуют два значения избытка окислителя $\alpha_1 = 0.6$ и $\alpha_2 = 1.6$, однако частицы приобретают различные заряды согласно данным на рис. 8. Полученный результат объясняется различными концентрациями электронов в продуктах сгорания. Так, концентрация электронов в продуктах сгорания УВГ при $\alpha_1 = 0.6$ примерно в два раза выше, чем при $\alpha_2 = 1.6$ (см. табл. 1), что обусловливает электрический заряд частиц с диаметром 20 мкм выше почти на 25%, а частиц диаметром 100 мкм – на ~45% по абсолютному значению.

При нахождении в потоке продуктов сгорания с $\alpha = 1.6$ частицы диаметром $d_s > 50$ мкм приобретают отрицательный заряд (рис. 8). Это объясняется тем, что для более крупных частиц ($d_s > 50$ мкм) температура теплового баланса в системе "газчастица" в условиях истечения газа по соплу меньше, чем для частиц с диаметрами $d_s < 50$. Это приводит к уменьшению концентраций эмитируемых электронов *n_{es}* с поверхности частиц. Когда концентрация n_{es} меньше, чем концентрация электронов в продуктах сгорания ($n_{es} \leq n_{e\infty}$), логарифм отношения концентраций становится отрицательным, что, согласно выражению (10), приводит к изменению знака заряда на отрицательный при выполнении условия $R_{
m D}$ > r_s . Результаты, приведенные на рис. 8, не противоречат известным механизмам электризации частиц [14-18],

Рис. 7. Температура частиц *k*-фазы в момент наступления теплового баланса $T_s = T_g$ в зависимости от d_s при различных α : 1 - 0.6, 2 - 1, 3 - 1.6, 4 - 0.5.

Рис. 8. Зависимость электрического заряда q_s от d_s при различных α : 1 - 0.6, 2 - 1, 3 - 1.6, 4 - 0.5; экспериментальные данные: 5 - для водяной капли [5], 6 -частицы корунда [5], 7 -частицы тантала [18].

согласно которым изменение знака заряда частицы *k*-фазы обусловливается преобладанием захвата электронов частицей над ее ионизацией в результате термоэлектронной эмиссии.

Согласно полученным расчетным данным, металлическая частица, например, алюминиевомагниевого сплава АМг-6 с $d_s = 80$ мкм, которая попадает в камеру сгорания с жидкими компонентами, приобретает в высокотемпературном потоке продуктов сгорания электрический заряд

 $\sim 10^{-14}$ Кл ($\alpha = 0.5$). Двигаясь по проточному тракту, частица разгоняется потоком и вылетает из сопла со скоростью v_s ≈ 260 м/с. Вне газовой струи, т.е. если рассматривать частицу как точечный заряд, движущийся с указанной скоростью, генерируемая напряженность магнитного поля составляет ~10⁻⁷ мА/м, что является малой величиной. Однако нестационарные процессы колебания твердых заряженных частиц при нарушении квазинейтральности потока продуктов сгорания могут быть зарегистрированы средствами электромагнитной диагностики. Так, в экспериментальной работе [17] отмечено значительное возрастание амплитуды сигнала, регистрируемой датчиком магнитного поля на соответствующей частоте $f_m \approx 4600$ Гц при пролете горящих частиц в ионизированном газовом потоке. Производя оценку амплитуды напряженности магнитного поля, отнесенной к объемному заряду, согласно выражению (12) получим для камеры двигателя, описанного в настоящей работе, при объеме $V \approx$ ≈ 6 × 10⁻⁵ м³ отношение H_i/Q_{vs} ≈ 1.5 м²/с, что совпадает по порядку величины со значением ($\sim 5 \text{ м}^2/\text{c}$), полученным в [17], где исследовался процесс разгорания моделей лопаток турбины ТНА двигателя РД-191.

ЗАКЛЮЧЕНИЕ

1. Разработана математическая модель на основе электризации частиц *k*-фазы в высокотемпературном потоке продуктов сгорания углеводородного топлива ЖРД за счет термоэлектронной эмиссии.

2. Расчетными исследованиями определены особенности электризации частиц *k*-фазы, попадающих в газовый поток в результате эрозии элементов газодинамического тракта ЖРД, и зависимость их характеристик от температуры в камере сгорания, коэффициента избытка окислителя, диаметра и температуры твердой частицы.

3. В частности, определено, что металлические частицы с диаметрами $d_s = 20-100$ мкм приобретают в высокоэнтальпийном потоке ПС УВГ ($T_k = 1900-3600$ K) электрический заряд $q_s \approx 1.8 \times 10^{-14}$... -0.5×10^{-14} Кл. При этом знак заряда зависит, главным образом, от отношения концентраций электронов в продуктах сгорания и электронов, эмитированных частицей, что определяет механизм электризации частиц.

4. Оценены характеристики электромагнитного поля, генерируемого заряженными твердыми частицами в струе продуктов сгорания.

СПИСОК ЛИТЕРАТУРЫ

- 1. Ватажин А.Б., Грабовский В.И., Лихтер В.А. Электрогазодинамические течения. М.: Наука, 1983. 344 с.
- Голенцов Д.А., Ватажин А.Б., Улыбышев В.А. и др. Некоторые аспекты электризации тел при их разрушении: теоретические и экспериментальные исследования // XI Всерос. съезд по фундамент. проблемам теор. и прикл. механики. Сб. докл. Казань, 2015. С. 969.
- 3. Ватажин А.Б., Голенцов Д.А., Лихтер В.А. Экспериментальное исследование активной компенсации электрического заряда тел, обтекаемых потоком с ионами и заряженными каплями // Изв. РАН. МЖГ. 2010. № 4. С. 26.
- Ватажин А.Б., Голенцов Д.А., Лихтер В.А. и др. Теоретическое и экспериментальное исследование частотных характеристик отрицательного коронного разряда в горячей турбулентной струе воздуха // Изв. РАН. МЖГ. 2011. № 5. С. 65.
- 5. Ватажин А.Б., Лихтер В.А., Шульгин В.И. Обтекание тел электрически заряженным аэрозольным потоком // Изв. АН СССР. МЖГ. 1982. № 4. С. 71.
- 6. Ватажин А.В., Голенцов Д.А., Гулин А.Г. и др. Электростатическая диагностика состояния элементов двигательных аппаратов и энергетических устройств // Мир измерений. 2012. № 5. С. 52.
- 7. Ватажин А.Б. Частотные характеристики отрицательного коронного разряда в турбулентной струе // Вестн. Нижегородск. ун-та им. Н.И. Лобачевского. 2011. № 4 (3). С. 677.
- 8. Жуховицкий Д.И., Храпак А.Г., Якубов И.Т. Ионизационное равновесие в плазме с конденсированной дисперсной фазой // Химия плазмы / Под ред. Смирнова Б.М. М.: Энергоатомиздат, 1984. № 11. С. 130.
- 9. Ковалев В.И., Кузнецов С.В., Курина В.В. и др. Системы контроля и бесконтактной диагностики рабочих процессов при проведении огневых испытаний ЖРД // Тр. НПО "Энергомаш". № 29. М., 2012. С. 373.
- Пушкин Н.М., Рудинский А.В., Ягодников Д.А. Способ бесконтактной ранней диагностики разгара камеры ракетного двигателя по напряженности собственного магнитного поля продуктов сгорания. Патент на изобретение № 2663311. Кл. МПК-F23N5/24.05.10.2017.
- Ватажин А.Б., Голенцов Д.А., Лихтер В.А. и др. Бесконтактная электростатическая диагностика авиационных двигателей. Теоретическое и лабораторное моделирование // Изв. РАН. МЖГ. 1997. № 2. С. 83.
- 12. Ягодников Д.А., Бобров А.Н., Рудинский А.В. Частотный анализ электрофизических характеристик рабочего процесса жидкостного ракетного двигателя на углеводородном топливе // Наука и образование. Науч. изд. МГТУ им. Н.Э. Баумана. Электрон. журн. 2011. № 11. http://technomag.edu.ru/doc/ 250245.html

- Gosman A.D., Ioannides E. Aspects of Computer Simulation of Liquid-fueled Combustors // J. Energy. 1983. V. 7. № 6. P. 482.
- 14. Золотко А.Н., Полетаев Н.И., Вовчук Я.И. Газодисперсный синтез наночастиц оксидов металлов // ФГВ. 2015. Т. 51. № 2. С. 125.
- Полетаев Н.И. Особенности кинетики коагуляции ионизированных продуктов сгорания металлов // Матер. XXV конф. стран СНГ "Дисперсные системы". Одесса, 2012. С. 208.
- 16. Полетаев Н.И. Возникновение электрических колебаний при горении частицы магния в постоян-

ном электрическом поле // ФГВ. 2012. Т. 48. № 2. С. 31.

- 17. *Пушкин Н.М., Бацев С.В., Иванов Т.В.* Магнитное поле ионизированного газового потока как диагностический параметр при испытаниях и эксплуатации ЖРД // Информ.-технол. вестник. 2015. Т. 5. № 3. С. 124.
- Лялин Я.А., Семенов К.И., Копыт Н.Х. Формирование нанодисперсной к-фазы вокруг нагретой металлической частицы и кинетика электрообмена в такой системе // Физика аэродисперсных систем. Межвед. науч. сб. 2012. № 49. С. 112.