——— КРАТКИЕ СООБЩЕНИЯ

УЛК 536.24

АНАЛИТИЧЕСКИЙ РАСЧЕТ НЕСТАЦИОНАРНОГО ТЕМПЕРАТУРНОГО ПОЛЯ ПЛОСКОГО ТЕЛА ПРИ ПЕРЕМЕННОМ КОЭФФИЦИЕНТЕ ТЕПЛОПРОВОДНОСТИ

© 2019 г. Ю. В. Видин¹, В. С. Злобин^{1, *}

¹Сибирский федеральный университет, г. Красноярск, Россия

*E-mail: zlobinsfu@mail.ru

Поступило в редакцию 24.10.2018 г. После доработки 11.03.2019 г. Принято к публикации 27.03.2019 г.

Получены аналитические формулы, описывающие нестационарное температурное поле в неоднородных конструкциях. На практике такие конструкции наиболее часто являются многослойными, что осложняет в математическом отношении получение решения, приемлемого для практических расчетов. Особенностью данной задачи является существенная зависимость коэффициента теплопроводности от пространственной координаты. В случае, когда эта зависимость носит экспоненциальный характер, удается получить строгое аналитическое решение.

DOI: 10.1134/S0040364419050193

Известно, что расчет нестационарных температурных полей в многослойных конструкциях является в математическом отношении чрезвычайно сложным [1-5]. Причем с увеличением числа слоев трудности определения изменения температуры в каждом элементе существенно возрастают. Однако в тех случаях, когда характер поведения теплофизических свойств материалов неоднородной системы, в частности коэффициентов теплопроводности, может быть аппроксимирован некоторой монотонной функцией пространственной координаты, удается получить сравнительно приемлемые в инженерном отношении расчетные зависимости. Такой подход может быть проиллюстрирован на примере следующей задачи:

$$\frac{\partial \vartheta}{\partial F_0} = \frac{\partial}{\partial X} \left[\lambda(X) \frac{\partial \vartheta}{\partial X} \right],\tag{1}$$

 $0 \le \text{Fo} < \infty, \ 0 \le X \le 1, \ 0 \le \vartheta(X, \text{Fo}) \le 1,$ $\frac{\partial \vartheta}{\partial X} = 0 \ \text{при } X = 0,$ (2)

$$\frac{\partial \vartheta}{\partial X} = -\text{Bi}\vartheta$$
 при $X = 1$, (3)

$$\vartheta(X,0) = 1. \tag{4}$$

Здесь использована общепринятая форма представления зависимых и независимых величин в безразмерном виде [6].

Предположим, что функцию $\lambda = \lambda(X)$ можно аппроксимировать экспонентой

$$\lambda = \exp(-aX),\tag{5}$$

где постоянный коэффициент $a \ge 0$. Когда a = 0, строгое решение задачи (1)—(4) широко известно [6, 7]. Следовательно, более интересным является случай a > 0.

Для определения собственных функций и собственных значений поставленной задачи (1)—(4) с учетом ограничения (5) необходимо провести исследование соответствующего обыкновенного дифференциального уравнения, дополненного заданными краевыми условиями

$$\frac{d}{dX}\left(e^{-ax}y'\right) + \mu^2 y = 0,\tag{6}$$

$$y' = 0 \quad \text{при } X = 0,$$
 (7)

$$y' = -Biy$$
 при $X = 1$. (8)

После выполнения операции дифференцирования уравнение (6) принимает вид

$$v'' - av' + \mu^2 e^{ax} v = 0. (9)$$

Введем новую пространственную координату Z

$$Z = e^{\frac{ax}{2}}. (10)$$

Тогда зависимость (9) преобразуется в выражение

$$y'' - \frac{1}{Z}y' + \beta^2 y = 0, \tag{11}$$

где

$$\beta = \frac{2\mu}{a}$$
.

Используя подстановку

$$v = ZU, \tag{12}$$

приводим дифференциальное уравнение (11) к виду

$$U'' + \frac{1}{Z}U' + \left(\beta^2 - \frac{1}{Z^2}\right)U = 0.$$
 (13)

Полученное уравнение (13) относится к классу уравнений Бесселя [8, 9]. Его общее решение

$$U = C_1 J_1(\beta Z) + C_2 Y_1(\beta Z), \tag{14}$$

где $J_1(\beta Z)$ и $Y_1(\beta Z)$ являются соответственно функциями Бесселя первого и второго рода первого порядка. Подробные таблицы значений этих функций приведены во многих справочных пособиях, например [8—12].

С учетом (10), (12) и (14) искомый интеграл уравнения (9) может быть записан в виде

$$y = Ce^{\frac{ax}{2}} \left[J_1 \left(\beta e^{\frac{ax}{2}} \right) + BY_1 \left(\beta e^{\frac{ax}{2}} \right) \right].$$

Таким образом, общее аналитическое решение уравнения (9) удается выразить как произведение элементарной показательной функции и специальных функций Бесселя.

Постоянная интегрирования B определяется на основе условия симметрии искомого температурного поля (7):

$$B = -\frac{J_0(\beta)}{Y_0(\beta)},\tag{15}$$

где $J_0(\beta)$ и $Y_0(\beta)$ — также функции Бесселя соответственно первого и второго рода, но нулевого порядка.

Итак, полное аналитическое решение дифференциального уравнения (9) с учетом (15) запишется в виде

$$y = Ae^{\frac{ax}{2}} \left[Y_0(\beta) J_1 \left(\beta e^{\frac{ax}{2}} \right) - J_0(\beta) Y_1 \left(\beta e^{\frac{ax}{2}} \right) \right], \quad (16)$$
 где
$$A = \frac{C}{Y_0(\beta)}.$$

Комплекс в квадратных скобках в правой части (16) следует рассматривать как собственную функцию исследуемой задачи, т.е.

$$K_n(X) = Y_0(\beta_n) J_1\left(\beta_n e^{\frac{ax}{2}}\right) - J_0(\beta_n) Y_1\left(\beta_n e^{\frac{ax}{2}}\right). \quad (17)$$

Подставляя выражение (16) в граничное условие третьего рода на поверхности пластины (X=1) (8), получим характеристическое уравнение для определения собственных значений μ_n сформулированной задачи

$$\frac{Y_0(\beta)J_1(K\beta)-J_0(\beta)Y_1(K\beta)}{Y_0(\beta)J_0(K\beta)-J_0(\beta)Y_0(K\beta)} = -\frac{aK\beta}{2\text{Bi}},$$
 (18)

где
$$\beta = \frac{2\mu}{a}$$
; $K = e^{\frac{a}{2}}$; $a \ge 0$.

При $a \to 0$ зависимость (18) вырождается в соотношение

$$\operatorname{ctg} \mu = \frac{\mu}{\operatorname{Bi}}.$$
 (19)

При этом нужно использовать асимптотические формулы [11] для функций $J_0(X)$, $J_1(X)$, $Y_0(X)$, $Y_1(X)$, справедливые при больших значениях X.

Первые шесть корней μ_n уравнения (19) для разных значений числа Bi (от 0 до ∞) даны в монографии [6]. Корни μ_n , удовлетворяющие уравнению (19), можно рассматривать как максимально предельные по отношению к собственным значениям, определяемым по зависимости (18) при одинаковых величинах Bi. При Bi = 0 граничное условие (3) трансформируется в условие второго рода, и формула (18) принимает вид

$$\frac{J_0(\beta)}{Y_0(\beta)} = \frac{J_0(K\beta)}{Y_0(K\beta)}.$$
 (20)

При $\text{Bi} \to \infty$, что соответствует граничному условию первого рода, зависимость (18) также значительно упрощается:

$$\frac{J_0(\beta)}{Y_0(\beta)} = \frac{J_1(K\beta)}{Y_1(K\beta)}.$$
 (21)

Если воспользоваться рекомендуемыми в справочном пособии [10] аппроксимационными зависимостями для функций Бесселя, входящими в соотношения (20) и (21), то удается составить квадратные алгебраические уравнения соответственно следующего вида:

$$\beta_n^2 - \frac{(n-1)\pi}{K-1}\beta_n + \frac{0.125}{K} = 0,$$

$$\text{The } n = 2, 3, 4, \dots;$$

$$\beta_n^2 - \frac{(2n-1)\pi}{2(K-1)}\beta_n + \frac{0.125(K+3)}{K(K-1)} = 0,$$

где $n = 1, 2, 3, \dots$

Таким образом, корни уравнения (20), начиная с n = 2, рассчитываются по формуле

$$\beta_n = \frac{(n-1)\pi}{2(K-1)} + \sqrt{\frac{(n-1)^2\pi^2}{4(K-1)^2} - \frac{0.125}{K}},$$
 (22)

а для уравнения (21) нужно использовать соотношение

$$\beta_n = \frac{(2n-1)\pi}{4(K-1)} + \sqrt{\frac{(2n-1)^2\pi^2}{16(K-1)^2} - \frac{0.125(K+3)}{K(K-1)}}.$$
 (23)

Выражения (22) и (23) обладают высокой степенью точности, которая является достаточной при проведении инженерно-технических расчетов.

В таблице приведены значения первых трех корней β_n характеристического уравнения (18)

500.0

1000.0

 ∞

2.1779

2.1790

2.1839

Bi	$a = 1.0 \ K = 1.6487$			$a = 0.5 \ K = 1.2840$			$a = 0.2 \ K = 1.1052$		
	β_1	β_2	β_3	β_1	β_2	β_3	β_1	β_2	β_3
0	0	4.8277	9.6778	0	11.0520	22.1172	0	29.8678	59.7412
0.5	0.8053	5.0128	9.7732	2.0530	11.5236	22.3618	5.9331	31.2331	60.4512
1.0	1.0750	5.1792	9.8659	2.7238	11.9442	22.5985	7.8381	32.4448	61.1369
5.0	1.7332	6.0109	10.4765	4.2809	13.8596	24.1199	12.1132	38.0858	65.4699
10.0	1.9255	6.4452	10.9455	4.7063	14.9372	25.2197	13.2314	40.6983	68.4777
25.0	2.0709	6.8472	11.5064	5.0180	15.7978	26.4495	14.0348	42.9252	71.7043
50.0	2.1257	7.0110	11.7671	5.1331	16.1380	26.9950	14.3280	43.7901	73.0970
100.0	2.1543	7.0984	11.9110	5.1928	16.3174	27.2910	14.4796	44.2433	73.8453

5.2418

5.2480

5.2507

16.4649

16.4836

16.5022

27,5364

27.5676

27.5987

Значения первых трех корней характеристического уравнения (18)

для ряда чисел Bi и трех величин параметра a (1.0, 0.5 и 0.2), полученных численным методом. При этом расчеты для Bi = 0 и Bi $\rightarrow \infty$ были проведены по формулам (22) и (23).

7.1706

7.1738

7.1890

12.0313

12.0367

12.0619

Таким образом, окончательное аналитическое решение задачи (1)—(4) с учетом условия (5) принимает вил

$$\vartheta(X, \operatorname{Fo}) = e^{\frac{ax}{2}} \sum_{n=1}^{\infty} A_n K_n(X) \exp(-\mu_n^2 \operatorname{Fo}), \qquad (24)$$

где под $K_n(X)$ понимаются собственные функции (17). Если параметр a=0, то выражение (17) преобразуется в зависимость [6]

$$K_n(X) = \cos \mu_n X$$
.

Коэффициенты A_n , входящие в бесконечную сумму (24), могут быть определены из начального условия (4), которое при подстановке (24) запишется как

$$\sum_{n=1}^{\infty} A_n K_n(X) = e^{\frac{ax}{2}}.$$

Из свойств ортогональности функций $K_n(X)$ следует соотношение

$$A_n = \frac{\int\limits_0^1 e^{-\frac{ax}{2}} K_n(X) dx}{\int\limits_0^1 K_n^2(X) dx},$$

которое в частном случае a = 0 принимает вид [6]

$$A_n = \frac{2\sin\mu_n}{\mu_n + \sin\mu_n \cos\mu_n}.$$
 (25)

В монографии [6] приведены числовые значения первых шести амплитуд A_n , определенные поформуле (25).

14.5034

14.6190

14.6341

44.6147

44.6616

44,7086

74.4632

74.5414

74.6197

СПИСОК ЛИТЕРАТУРЫ

- 1. *Видин Ю.В.* Инженерные методы расчета процессов теплопереноса. Красноярск: Изд-во Красноярск. политех. ин-та, 1974. 144 с.
- 2. *Иванов В.В., Видин Ю.В., Колесник В.А.* Процессы прогрева многослойных тел лучисто-конвективным теплом. Ростов-на-Дону: Изд-во Ростовск. ун-та, 1990. 159 с.
- 3. Видин Ю.В., Иванов В.В., Казаков Р.В. Инженерные методы расчета задач теплообмена. Красноярск: СФУ, 2014. 167 с.
- 4. Видин Ю.В., Злобин В.С., Иванов Д.И. Нестационарный теплоперенос в неоднородных конструкциях криволинейной конфигурации. Красноярск: СФУ, 2016. 167 с.
- Беляев Н.М., Рядно А.А. Методы нестационарной теплопроводности. М.: Высшая школа, 1978. 328 с.
- 6. *Лыков А.В.* Теория теплопроводности. М.: Высшая школа, 1967. 600 с.
- 7. *Карслоу Г.С., Егер Д.К.* Теплопроводность твердых тел. М.: Наука, 1964. 487 с.
- Ватсон Г.Н. Теория бесселевых функций. Т. 1, 2. М.: Изд-во иностр. лит., 1949.
- Янке Е., Эмде Ф., Лёш Ф. Специальные функции. М.: Наука, 1977. 342 с.
- Справочник по специальным функциям / Под ред. Абрамовиц М., Стиган И. М.: Наука, 1979. 890 с.
- 11. *Сегал Б.И.*, *Семендяев К.А*. Пятизначные математические таблицы. 3-е изд. М.: Гос. изд-во физ.-мат. лит., 1962. 464 с.
- 12. *Чистова Э.А.* Таблицы функций Бесселя от действительного аргумента и интегралов от них. М.: Изд-во АН СССР, 1958. 524 с.