УДК 536.44;536.65;536.71;544.344

УРАВНЕНИЕ ДЛЯ ОПИСАНИЯ РАВНОВЕСНОГО ДВУХФАЗНОГО СОСТОЯНИЯ ВЕЩЕСТВ

© 2019 г. А. И. Витвицкий*

ЛТИ им. Ленсовета, Санкт-Петербург, Россия *E-mail: avitvitskiy@mail.ru Поступила в редакцию 22.08.2018 г. После доработки 22.03.2019 г. Принята к публикации 16.05.2019 г.

Для описания равновесного состояния веществ в системах кристалл—газ и жидкость—газ в исследованных и неисследованных условиях на примере серебра, азота и диоксида углерода использовано уравнение с двумя коэффициентами—параметрами. Для теплоты фазового перехода веществ из конденсированного состояния в газообразное показана зависимость от температуры с одним коэффициентом. Оценена точность расчета равновесного давления и теплоты перехода веществ из конденсированных состояний в газообразное.

DOI: 10.1134/S004036441905020X

введение

Фазовое равновесие химических веществ в закрытых системах кристалл-газ (КГ) и жилкостьгаз (ЖГ) в присутствии инертного газа при давлении Р характеризуется зависимостью от температуры его равновесного парциального давления $P_{p} = x_{p}P$ (где x_{p} – мольная или объемная доля исследуемого вещества в газовой фазе), традиционно называемого давлением насыщенного пара. В открытых системах нагревание вещества при Р до температуры фазового перехода $T_{\rm dm}$ (кристалл \rightarrow → газ и жидкость → газ) приводит к возрастанию равновесного парциального давления до величины $P_p = P$ при $x_p = 1$. Результаты исследований равновесного двухфазного состояния веществ представлены [1-3] в виде таблиц, так как термодинамика не позволяет описать одним уравнением зависимость P_p от T (или $T_{\phi \Pi}$ от P_p) во всем ис-следованном интервале температур.

Цель работы — показать уравнение для описания равновесного двухфазного состояния веществ в исследованных и неисследованных условиях на примере серебра (Ag), азота (N₂) и диоксида углерода (CO₂) в системах КГ и ЖГ.

ОПИСАНИЕ РАВНОВЕСИЯ И ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Если параметры равновесного состояния веществ в системах КГ или ЖГ представить графически в координатах $lg(P_pT)-1/T$, получается [4–6] логарифмическая прямая. Наклон данной прямой определяется индивидуальной температурой T_m – параметром предельной точки *m* с координатами $T = T_m$ и $P_p = P_m$, что показано (рис. 1) на примере диоксида углерода по данным [2, 5]. Логарифмическим прямым соответствует экспоненциальное уравнение

$$P_{p} = \frac{P_{m}T_{m}}{T} e^{(1-T_{m}/T)}.$$
 (1)

Коэффициенты-параметры T_m и P_m уравнения (1) можно определить графически или ана-

Рис. 1. Параметры равновесного состояния CO₂ [2, 5] для КГ (1) и ЖГ (2); характерные точки: k – критическая, t – тройная, n – нормальная (при $P_p = P_n$), m – предельная; теплоты фазовых переходов, рассчитанные по (3): 3 – кристалл \rightarrow газ, 4 – жидкость \rightarrow газ.

По данным [1]		Р . По. но. (1)	A 07		
Т, К	<i>P_p</i> , Па	I_{p} , 11a, 110 (1)	Δ , 70	Q_T , кдж/ моль по (3)	
КГ					
800.15	1.33×10^{-7}	1.318×10^{-7}	-0.9	291.7	
846.15	1.33×10^{-6}	1.316×10^{-6}	-1.1	281.3	
898.15	1.33×10^{-5}	1.330×10^{-5}	0.0	280.9	
957.15	1.33×10^{-4}	1.349×10^{-4}	1.4	280.4	
1027.15	1.33×10^{-3}	1.350×10^{-3}	1.5	279.9	
1101.15	0.0133	0.01341	0.8	279.2	
1191.15	0.133	0.133	0.7	278.5	
1235.05_t^* [7]	0.364_t [7]	0.3640_t	0.0	278.1 _t	
34685 _m	_	$7.491 \times 10^{9}_{m}$	_	0	
Среднее значение			± 0.8	_	
		ЖГ			
1235.05_t [7]	0.364_t [7]	0.3640_t	0.0	265.0 _t	
1301.15	1.33	1.347	1.3	264.4	
1436.15	13.3	13.35	0.3	263.3	
1603.15	133	132.0	-0.8	261.9	
1816.15	1.33×10^{3}	1.313×10^{3}	-1.3	260.2	
2093.15	1.33×10^{4}	1.317×10^{4}	-1.0	257.8	
2436.15 _n *	1.013×10^{5}	1.0129×10^5	0.0	255.0 _n	
4668.15 _{<i>k</i>} * [8]	$3.36 \times 10^{7}_{k}$ [8]	$3.508 \times 10^{7}_{k}$	4.2	236.4 _k	
33108 _m	-	$2.189 \times 10^{9}_{m}$	_	0	
Среднее значение			±1.1	_	

Таблица 1. Равновесное состояние Ад в системах КГ и ЖГ

* Индексы для параметров точек: *t* – тройной, *k* – критической, *n* – нормальной, *m* – предельной.

литически, используя параметры равновесного состояния двух произвольных точек (P_{p1} при T_1 и P_{p2} при T_2), по уравнениям

$$T_{m} = \left(\frac{1}{T_{1}} - \frac{1}{T_{2}}\right)^{-1} \ln\left(\frac{P_{p2}T_{2}}{P_{p1}T_{1}}\right),$$
$$P_{m} = \frac{P_{p1}T_{1}}{T_{m}} \exp\left(\frac{T_{m}}{T_{1}} - 1\right).$$

В табл. 1 и 2 для Ад и N₂ в системах КГ и ЖГ показана точность расчета P_p по уравнению (1) с использованием приведенных в табл. 1 и 2 значений T_m и P_m . При изменении P_p в системах КГ и ЖГ на 14 порядков для Ад и на 9 для N₂ среднее отклонение (Δ , %) справочных величин P_p от рассчитанных по (1) не превышает ±2.2% при максимальном отклонении 4.3% (для N₂). Для использованных условий равновесного состояния CO₂ (рис. 1, светлые точки) получены [5] коэффициенты-параметры в системе КГ $T_m = 3321.5$ К и $P_m = 5.685 \times$ $\times 10^{10}$ Па, в системе ЖГ $T_m = 2248.8_m$ К и $P_m =$ $= 5.930 \times 10^8_m$ Па. Для CO₂ при изменении P_p на шесть порядков среднее отклонение Δ равно $\pm 0.7\%$ при максимальном отклонении 2.6% (в системе КГ – при 140 К) [5].

Если параметры равновесных двухфазных состояний Ag, N₂ и CO₂ представить графически в координатах $\ln(P_mT_m/(P_pT)) - ((T_m/T) - 1)$, получается прямолинейная зависимость, на которую ложатся все показанные в табл. 1 и 2 и на рис. 1 параметры равновесных состояний Ag, N₂ и CO₂ для систем КГ и ЖГ. На рис. 2 в указанных координатах для систем ЖГ представлены параметры критической и тройной точек, для систем КГ параметры тройных точек и точек с наименьшей исследованной температурой.

Приведенный на рис. 2 результат обработки экспериментально-справочного материала, повидимому, свидетельствует об универсальности зависимости

$$P_m T_m / (P_p T) = e^{(Tm/T) - 1},$$
 (2)

из которой выводится уравнение (1), а также зависимость от $T_{\phi \Pi}$ теплоты фазового перехода одного моля кристаллического или жидкого вещества в газообразное состояние (Q_T , Дж/моль)

По данным [1]*		В Па на (1)	• 07			
Т, К	<i>P_p</i> , Па	I_{p} , 11a, 110 (1)	$\Delta, \%$	Q_T , кдж/моль, 110 (3)		
КГ						
28.95	1.33×10^{-3}	1.390×10^{-3}	4.3	7.22		
31.35	1.33×10^{-2}	1.378×10^{-2}	3.5	7.20		
34.15	0.133	0.1324	-0.5	7.18		
37.55	1.33	1.301	-2.2	7.15		
(40.75)**	13.3	7.839	(-69.7)	(7.12)		
47.05	133	129.7	-2.5	7.07		
53.95	1.33×10^{3}	1.298×10^{3}	-2.4	7.02		
63.14 _t	$1.25 \times 10^{4}_{t}$	$1.250 \times 10^{4}_{t}$	0.0	6.94 _t		
897.75 _m	—	$4.839 \times 10^{8}{}_{m}$	_	0		
Среднее значение			±2.2	-		
ЖГ						
63.14 _t	$1.25 \times 10^{4}_{t}$	$1.250 \times 10^{4}_{t}$	0.0	6.05 _t		
63.45	1.33×10^{4}	1.323×10^{4}	-0.5	6.04		
77.35 _n	1.013×10^5	1.018×10^{5}	0.5	5.93 _n		
83.85	2.027×10^5	2.073×10^5	2.2	5.87		
94.05	5.066×10^5	5.137×10^{5}	1.4	5.79		
103.85	1.013×10^{6}	1.028×10^{6}	1.5	5.71		
115.85	2.027×10^{6}	2.028×10^{6}	0.0	5.61		
126.15 _k	$3.39 \times 10^{6}_{k}$	$3.250 \times 10^{6}_{k}$	-4.3	5.52_{k}		
790.39 _m	_	$1.004 \times 10^{8}_{m}$	_	0		
Среднее значение			±1.3			

Таблица 2. Равновесные состояния N₂ в системах КГ и ЖГ

* По данным [1] (табл. 3.3.4, 3.3.5 и 3.6.1).

** По-видимому, в [1] (табл. 3.3.4) опечатка.

$$Q_T = R(T_m - T) = Q_m - RT, \qquad (3)$$

где $Q_m = RT_m$. В последних столбцах табл. 1 и 2 показаны рассчитанные по уравнению (3) величины Q_T для Ag и N₂. На рис. 1 для CO₂ в системах КГ и ЖГ расчетная величина Q_T представлена в интервале температур вплоть до T_m .

Уравнения (1) и (2) позволяют не только достаточно точно описать равновесное двухфазное состояние веществ в исследованных условиях (см. табл. 1 и 2), но также достаточно надежно экстраполировать полученные результаты (см. логарифмические прямые рис. 1 и 2) в неисследованную область, а именно для системы КГ к температуре, близкой к абсолютному нулю (0 K $< T < T_t$), и в область "перегретых кристаллов" ($T_t < T < T_m$); для системы ЖГ – в область "переохлажденной жидкости" (0 К $< T < T_t$) и в сверхкритическую область ($T_k < T < T_m$). Как пишет М.А. Леонтович [9], жидкие вещества можно переохладить на десятки градусов ниже температуры тройной точки, если предотвратить зародышеобразование твердой фазы, используя чистые запаянные сосуды. Предлагаемые Леонтовичем способы борьбы с неконтролируемым образованием зародышей третьей фазы, по-видимому, применимы при получении кристаллов с температурой выше Т.

В табл. 3 рассчитанные по уравнению (3) величины Q_T сопоставлены с экспериментальносправочными значениями энтальпии газообразо-

Рис. 2. Параметры равновесного состояния Ag, N₂ и CO₂ для систем ЖГ (1) и КГ (2).

Π	По дан							
переход	<i>Т</i> _{фп} , К	$T_{\phi \Pi}$, К ΔH , кДж/моль						
Ag								
Кристалл → газ	298.15	284.9 ± 0.8	285.9					
	1235.05 _t	278.0 ± 0.8	278.1_t					
Жидкость → газ	1235.05_t	266.7 ± 0.8	265.0_t					
	2436.15 _n [1]	254.2 [1]	255.0 _n					
	4668.15 _k [8]	0	236.4_{k}					
]	N ₂						
Кристалл → газ	63.15 _t	6.77 ± 0.01	6.94 _t					
Жидкость → газ	63.15 _t	6.05 ± 0.01	6.05_t					
	77.35 _n	5.58 ± 0.01	5.93 _n					
	126.14 _k	0	5.52_k					
	C	02						
Кристалл — газ	194.65 _n	25.23 ± 0.02	26.00					
	216.57 _t	24.6 ± 0.5	25.82					
Жидкость → газ	216.57_t	16.2 ± 0.4	16.90 _t					
	304.15 _k [2]	0	16.17 _k					

Таблица 3. Теплота газификации конденсированных Ag, N₂ и CO₂

вания ("испарения" ΔH) для процессов жидкость \rightarrow газ и кристалл \rightarrow газ при характерных температурах. С учетом точности эксперимента и расчетов величины ΔH и Q_T имеют практически одинаковые значения. Исключением являются результаты сравнения при критической температуре, так как в термодинамике принято считать, что при критических параметрах в системе ЖГ исчезают различия теплофизических свойств газа и жидкости. Однако на практике многие вещества при сверхкритических условиях используются в качестве растворителей¹. Уравнения (1)–(3) показывают температурный предел ($T = T_m$) растворяющей способности сверхкритических жидкостей.

ЗАКЛЮЧЕНИЕ

Уравнения (1) и (2) позволяют экстраполировать результаты описания двухфазного равновесного состояния серебра, азота и диоксида углерода в область температуры от 0 К до предельного значения T_m , которое для веществ в системе жидкость—газ значительно превышает критическую температуру.

Уравнение (3) показывает, что теплота перехода конденсированного вещества в газообразное состояние зависит от температуры и не зависит от давления.

Точность расчетных величин определяется точностью исходного экспериментально-справочного материала.

СПИСОК ЛИТЕРАТУРЫ

- Новый справочник химика и технолога: Общие сведения. Строение вещества. Физические свойства важнейших веществ. Ароматические соединения. Химия фотографических процессов. Номенклатура органических соединений. Техника лабораторных работ. Основы технологии. Интеллектуальная собственность / Под ред. Москвина А.М. СПб.: НПО "Профессионал", 2006. 1464 с.
- CRC Handbook of Chemistry and Physics / Ed. by Lide D.R. 85th ed. London–N.Y.–Washington. 2004– 2005. Section 4, 6.
- Морачевский А.Г., Сладков И.Б. Физико-химические свойства молекулярных неорганических соединений (экспериментальные данные и методы расчета): Спр. изд. 2-е, перераб. и доп. СПб.: Химия, 1996. 312 с.
- 4. Витвицкий А. Химические вещества. Условия равновесных состояний и преобразований. Saarbrucken: LAP LAMBERT Acad. Publ. RU, 2017. 64 с.
- 5. Витвицкий А.И. Параметрическое уравнение для кривых кипения и возгонки // ЖПХ. 2011. Т. 84. № 12. С. 2063.
- 6. Витвицкий А.И. Термическая диссоциация кристаллических веществ // ЖПХ. 2016. Т. 89. № 2. С. 185.
- Термические константы веществ / Под ред. Глушко В.П. Спр. в 10-ти т. М.: АН СССР. ВИНИТИ, 1965–1982.
- Чукуров П.М. Серебро // Химическая энциклопедия в 5-ти т. Т. 4 / Под ред. Зефирова Н.С. М.: БРЭ, 1995. С. 323.
- Леонтович М.А. Введение в термодинамику. Статистическая физика. Учеб. пособ. 2-е изд., стер. СПб.: "Лань", 2008. С. 136.

¹ https://ru.wikipedia.org/wiki/Сверхкритическая_жидкость