УДК 536.4

ВКЛЮЧЕНИЕ КУЛОНОВСКОГО ВЗАИМОДЕЙСТВИЯ В СХЕМУ МОДЕЛИ ПОГРУЖЕННОГО АТОМА. СИСТЕМА ЛИТИЙ–СВИНЕЦ

© 2019 г. Д. К. Белащенко*

Московский институт стали и сплавов, Москва, Россия *E-mail: dkbel@mail.ru Поступила в редакцию 22.06.2018 г. После доработки 05.05.2019 г. Принята к публикации 16.05.2019 г.

Предложена схема включения экранированного кулоновского взаимодействия в модель погруженного атома, позволяющая описывать методом молекулярной динамики двух- и многокомпонентные растворы с сильным взаимодействием компонентов. Эффективные заряды частиц удовлетворяют условию электронейтральности и определяются путем минимизации полной энергии. При расчетах используются потенциалы чистых компонентов и подгоночные перекрестные парные потенциалы с учетом электронных вкладов в энергию и давление. Для пар 1–2 в растворах Li–Pb (1 – Li, 2 – Pb) предложен парный потенциал вида "8–4". Выполнены расчеты для нескольких расплавов Li–Pb при нулевом давлении и температурах до 1000 K, а также для раствора Li₁₇Pb₈₃ в условиях ударного сжатия при температурах до 25000 K и давлениях до 470 МПа. Термодинамические свойства раствора Li₁₇Pb₈₃ представлены в виде таблиц. Рассчитаны также диффузионные и структурные свойства этого и других растворов, коэффициенты Грюнайзена и адиабата Гюгонио.

DOI: 10.1134/S0040364419060073

ВВЕДЕНИЕ

В настоящее время расплавы системы Li–Pb привлекают интерес благодаря их использованию в ядерной энергетике. Свойства этих расплавов изучены довольно подробно [1–3]. Исследованы плотность этих расплавов [4–7], термодинамические свойства [4, 5, 7–12], структура [13–17], диффузионная подвижность [17–19] и широкий спектр физических свойств. Считается, что из-за большой разницы электроотрицательностей в расплавах происходит перенос электронного заряда с атомов лития на атомы свинца, так что связь становится частично ионной. Наиболее сильно этот эффект наблюдается при составе Li₄Pb [16, 20–23].

Опубликовано значительное число работ по моделированию расплавов Li—Pb, в том числе методом *ab initio* [12, 22]. В первых работах применялись преимущественно методы теории жидкостей, использующие концепцию парного взаимодействия, а также методы молекулярной динамики и Монте-Карло с эффективными парными потенциалами [24], в том числе с учетом кулоновского взаимодействия [16, 25]. Этот подход практически непригоден для описания термодинамических свойств растворов. Более близкие к реальным результаты получены с применением потенциалов погруженного атома (Embedded atom model, EAM) [26–28].

Однако все еще остается много неясного в поведении расплавов Li–Pb. Методами компьютерного моделирования недостаточно исследованы особенности, связанные с наличием вклада ионной связи. Концепция трансферабельности потенциала EAM переносит все особенности взаимодействия компонентов на парный потенциал для пар 1-2 (1-Li, 2-Pb). Такая схема может хорошо работать в системах, близких к идеальности, но для систем с сильным взаимодействием компонентов (кулоновским или ковалентным) она может быть недостаточной.

В настоящей работе рассмотрены два варианта описания расплавов литий—свинец: 1) "трансферабельный" вариант и 2) вариант с явным включением кулоновского взаимодействия в схему модели погруженного атома. Для проверки трансферабельного варианта выполнено моделирование растворов Li—Pb с иным выбором потенциалов EAM. Использовались (без изменения) потенциалы EAM для лития [29–31] и свинца [31–33], разработанные специально для описания жидких металлов.

ТРАНСФЕРАБЕЛЬНЫЙ ВАРИАНТ

В этом варианте моделирования методом молекулярной динамики (МД) парные вклады в потенциал (для пар 1–1 и 2–2) и потенциалы погружения ЕАМ взяты такими же, как в случае соответствующего чистого компонента (так назы-

Рис. 1. Изотерма теплот смешения растворов Li–Pb при 1000 К: 1 -эксперимент [8], 2 -[9], 3 -данные [27], 4 -[28], 5 -авторские данные (метод МД) в трансферабельном варианте (потенциал EAM-1).

ваемое свойство транферабельности), и дополнительно вводится только парный потенциал взаимодействия 1-2. Форма и параметры потенциала пар 1-2 подбираются с учетом термодинамических свойств двойной системы — обычно теплоты образования (смешения) и данных по плотности растворов. Концепция транферабельности представляется адекватной в случае систем, близких к идеальным, когда состояние частии в растворе мало отличается от их состояния в однокомпонентной жидкости. Однако в случае систем с сильным взаимодействием компонентов (например, в растворах металлов IV-V групп с щелочными металлами и в растворах Al в 3*d*-металлах, когда связь перестает быть чисто металлической) такая трансферабельность может нарушаться.

Растворы Li-Pb являются примером такой системы. Теплота смешения ΔH_f расплавов Li-Pb измерена в [8, 9] (рис. 1). Довольно глубокий минимум изотермы ΔH_{1000} (около -27.5 кДж/моль) находится вблизи состава Li₄Pb. "Трансферабельный" вариант ЕАМ был применен ранее для моделирования расплавов системы Li-Pb в работах [26-28]. В [27] удалось получить неплохое согласие значений ΔH_f МД-моделей с экспериментальными данными по теплоте смешения [8, 9], но со сдвигом минимума от 80 до 60 ат. % лития (рис. 1). Неплохое согласие получено в [27] также для изотермы мольного объема (рис. 2), причем здесь минимум находится на правильном месте (80% лития [6, 7]). Соответствует данным [6, 7] и коэффициент теплового расширения в области граничных растворов. В МД-работе [28] согласуется с экспериментом теплоемкость раствора Li₁₇Pb₈₃, но минимум изотермы теплоты смешения ΔH_f расплавов сдвинут к 50% лития. Что касается структуры расплавов, то неплохое согласие с дифракционными данными [13, 14] по суммарному

Рис. 2. Изотерма мольного объема расплавов Li–Pb при 1000 К: *1* – данные [6], *2* – [27], *3* – авторские данные (МД) с потенциалом EAM-1 без учета кулоновско-го взаимодействия, *4* – с учетом кулоновского взаимодействия; штриховая линия – аддитивная прямая.

структурному фактору расплава $Li_{17}Pb_{83}$ получено в МД-работе [27] и умеренное согласие с экспериментом [15] в [28].

Для пар 1–2 (т.е. Li–Pb) в настоящей работе применяется потенциал 8–4:

$$\varphi_{12}(r) = 4\varepsilon_{12}[(r_0/r)^8 - (r_0/r)^4].$$

Параметры потенциала є и r_0 подобраны по экспериментальным данным для теплоты образования растворов Li—Pb при 1000 K [8, 9] (рис. 1). Оптимальные значения параметров для пар 1–2 составляют: $r_0 = 2.553$ Å и є = 0.0880 эВ. Совокупность этих потенциалов для системы Li—Pb далее обозначена как EAM-1. Близкие результаты получаются с потенциалом Морзе:

$$\varphi_{12}(r) = \varepsilon \{ \exp[-2\alpha(r/r_0 - 1)] - 2\exp[-\alpha(r/r_0 - 1)] \}$$

при значениях параметров $\varepsilon = 0.134$ эВ, $r_0 = 3.102$ Å и $\alpha = 4.58$. Использование для пар 1–2 потенциала Леннард-Джонса или сплайновых функций типа [27] дают либо завышенные значения модуля всестороннего сжатия и скорости звука в моделях Li–Pb, либо заниженные межчастичные расстояния Li–Pb.

В трансферабельном варианте модели растворов Li–Pb имели размер 2000 или 16000 атомов в основном кубе и релаксировались с потенциалом EAM-1. Применялся алгоритм Верле в режимах *NpT* или *NVT*. Радиус обрыва взаимодействия равен 7.50 Å для пар 1–1 и 9.01 Å для пар 1–2 и 2–2. Радиус сферы Верле равен 10.5 или 17.5 Å.

Важное значение в методе молекулярной динамики имеет выбор шага по времени. В компьютерной системе расчетов используются обычно три основных единицы: длины L = 1 Å, энергии E = 1 эВ и массы *m* (масса атома, в данном случае лития). Единица времени является здесь произ-

<i>X</i> ₁	Δ <i>H_f</i> , кДж/моль	<i>V</i> , см ³ /моль	U _{MD} , кДж/моль	Δ <i>Н</i> _{МD} , кДж/моль	<i>V</i> , см ³ /моль	q_1^*	U _{MD} , кДж/моль	U _{Coul} , кДж/моль	U _{Trans} , қДж/моль	∆Н _{МD} , кДж/моль	<i>d</i> , г/см ³	<i>V</i> , см ³ /моль
	[9]	[6]	без учет взаи	га кулонс имодейст	овского вия		с учето	эм кулоно	овского і	ззаимоде	йствия	
1.0	0	15.52	-131.15	0	14.96	_	-131.15	_	_	0.00	0.4639	14.96
0.9	-15.47	13.97	-143.18	-8.66	14.64	0.11	-150.94	-1.21	-5.52	-16.4	1.913	14.10
0.8	-27.59	13.96	-153.65	-15.75	14.54	0.13	-165.16	-1.24	-8.27	-27.3	3.402	13.81
0.7	-28.35	13.96	-161.60	-20.32	14.72	0.141	-169.12	-1.05	-3.99	-27.8	4.796	13.96
0.6	-25.85	14.75	-166.80	-22.15	15.15	0.0926	-170.19	-0.30	-1.62	-25.5	5.906	14.74
0.5	-22.48	15.43	-169.33	-21.30	15.80	0.10	-171.14	-0.13	-0.74	-23.1	6.895	15.53
0.4	-18.66	16.74	-169.67	-18.27	16.60	0.00	-169.70	0	0	-18.3	7.660	16.59
0.3	-14.49	17.62	-168.81	-14.04	17.50	0.00	-168.94	0	0	-14.2	8.419	17.47
0.2	-9.99	18.60	-167.67	-9.52	18.42	0.00	-167.67	0	0	-9.52	9.074	18.42
0.17	-8.43^{a}	18.74 ^a	-167.16	-8.00	18.72	0.00	-167.21	0	0	-8.05	9.250	18.72
0.1	-5.16	19.45	-166.20	-4.68	19.39	0.00	-166.24	0	0	-4.71	9.641	19.41
0	0	20.45	-164.90	0	20.37	0.00	-164.90	0	0	0.00	10.16	20.37

Таблица 1. Термодинамические данные моделей растворов Li–Pb при 1000 К ($\lambda = 1.1, \varepsilon = 2.553, r_{00} = 0.0880$)

^а Интерполяция.

водной величиной и рассчитывается по выражению $t_0 = (mL^2/E)^{1/2}$. При расчете t_0 по средней массе атома лития (6.94) получается $t_0 = 2.682 \times 10^{-14}$ с. В случае растворов Li-Pb массы атомов компонентов отличаются более чем в 29 раз, что усложняет расчеты, поскольку обычная длина шага в алгоритме Верле ($\Delta t \approx 0.01 t_0$) может оказаться неподходящей для одного из компонентов. Поэтому здесь длина шага выбрана из условия, по которому при прогоне длиной 1000 шагов в режиме NVE (т.е. в режиме изолированной системы) энергия модели менялась не более, чем в пятомшестом знаке (в пределах 0.004% за 1 пс). При расчете t₀ по средней массе атома лития оптимальная величина Δt для растворов Li–Pb равна $0.05t_0 = 1.341 \text{ }$ фс.

Результаты расчетов энергии и теплоты образования $\Delta U_{\rm MD}$ моделей растворов Li—Pb с потенциалом EAM-1 показаны на рис. 1 и в табл. 1. В таблице приведены экспериментальные значения теплоты образования ΔH_f [9] (вторая колонка) и мольного объема растворов Li—Pb [6] (третья колонка). В четвертой колонке приведены значения энергии моделей $U_{\rm MD}$ с потенциалом EAM-1 при 1000 К и нулевом давлении, в пятой — теплота образования $\Delta H_{1000} = \Delta U_{1000}$ моделей раствора (разность между энергией раствора и аддитивной величиной, рассчитанной по энергии чистых компонентов). При 1000 К электронные поправки к энергии и давлению (см. ниже) невелики и ими можно пренебречь. На рис. 2 показаны экспериментальные и расчетные мольные объемы сплавов Li–Pb при 1000 К. Настоящие данные с потенциалом EAM-1 (линия 3) в целом близки к результатам МД-расчетов [27] и согласуются с экспериментальными данными [6] при концентрациях $X_1 \le 0.6$. При $X_1 > 0.6$ расхождения с экспериментом увеличиваются. Расчетные объемы чистых компонентов практически совпадают с экспериментальными данными (14.96 см³/моль для Li [34] и 20.39 для Pb [35]).

Расхождение с экспериментом при больших концентрациях лития обусловлено недостаточной точностью приближения трансферабельности. Ни один из упомянутых выше потенциалов ЕАМ не дает реально наблюдаемого минимума изотермы теплоты смешения при составе Li_4Pb [8, 9].

На рис. 3 показана зависимость плотности *d* расплава $\text{Li}_{17}\text{Pb}_{83}$ от температуры по разным данным. Расхождения результатов расчета плотности модели с потенциалом EAM-1 и экспериментальных данных [5] невелики и составляют 0.6–2.6%. Модели расплава $\text{Li}_{17}\text{Pb}_{83}$ устойчивы при давлении $p \approx 0$ до температуры немного выше 2000 К. Плотность модели с потенциалом работы [28] занижена.

При высокотемпературных расчетах следует учитывать электронный вклад E_{eT} в энергию и давление, рассчитываемый по методу [30, 33]. Для расплава Li₁₇Pb₈₃ он увеличивается от нуля при 298 К до 3.129 кДж/моль при 2000 К. На рис. 4 по-

Рис. 3. Зависимость плотности расплава $Li_{17}Pb_{83}$ от температуры: 1 – данные [4], 2 - [5], 3 - [28], 4 -авторские данные с потенциалом ЕАМ-1 (метод МД).

Рис. 4. Зависимость энергии раствора Li₁₇Pb₈₃ от температуры: *1* – данные [28], *2* – авторские данные с потенциалом EAM-1 (метод МД).

казана зависимость энергии этой модели от температуры, которая хорошо описывается выражением

$$U_{\rm MD} + E_{eT} = 1.1398 \times 10^{-10} T^3 +$$

+ 5.9003 \times 10^{-7} T^2 + 0.027274T - 194.30. (1)

Данные [28] располагаются немного ниже и почти параллельно кривой, полученной по (1). Дифференцированием (1) получается теплоемкость $C_p = 3.4194 \times 10^{-7} T^2 + 1.1801 \times 10^{-3} T + 27.274.$ Она немного возрастает с температурой (от 27.95 Дж/(моль К) при 500 К до 31.00 при 2000 К). Эксперимент показывает, что теплоемкость расплава Li₁₇Pb₈₃ слабо убывает от 32.9 Дж/(моль К) при 513 К до 32.8 при 623 К [1, 2]. Эти цифры выше примерно на 2-4 Дж/(моль К), чем полученные МД-данные. В МД-работе [27] теплоемкость монотонно убывает при нагревании от 37 Дж/(моль К) при 600 К до 30 при 1200 К (электронный вклад не учитывался). В [28] значения теплоемкости монотонно убывают от 34.1 Дж/(моль К) при 600 К до 30.2 при 1000 К.

В целом данные МД-моделирования с потенциалами ЕАМ [27, 28] и ЕАМ-1 показывают, что трансферабельный вариант приводит к значительным расхождениям с экспериментом для расплавов, богатых литием, в частности к смещению минимума изотермы теплоты смешения от состава $Li_{80}Pb_{20}$ к эквиатомному составу. В обычном потенциале ЕАМ не заложено инструментов, позволяющих варьировать положение минимума теплоты смешения двойных систем.

ЕАМ С УЧЕТОМ КУЛОНОВСКОГО ВЗАИМОДЕЙСТВИЯ

В работах [36, 37] структура растворов литийсвинец рассмотрена в различных вариантах теории жидкостей в приближении парного взаимодействия с межчастичными экранированными кулоновскими потенциалами (потенциалами Юкавы) вида

$$\varphi_{ii}(r) = (a_{ii}/r)\exp(-\lambda r), \qquad (2)$$

где a_{ii} – подгоночные коэффициенты, λ – параметр экранирования. В работах [16, 25] применены среднесферическое и гиперсетевое приближения для расчета свойств расплава Li₄Pb. Ионные оболочки описаны в [16] жесткосферным потенциалом с диаметром 2.65 Å для каждого компонента. Наилучшее согласие с дифракционными данными по структуре получено при эффективных зарядах ионов лития и свинца 0.5 и -2.0 соответственно и $\lambda = 1.10$. МД-моделирование расплава Li₁₇Pb₈₃ с этими парными потенциалами выполнено в [24]. Включение кулоновского взаимодействия в рассмотрение позволяет улучшить в целом согласие между расчетными структурными характеристиками растворов и дифракционными данными. По всей вероятности, учет кулоновского взаимодействия был бы полезным и при использовании потенциалов ЕАМ. Однако включения кулоновского взаимодействия при моделировании в схеме ЕАМ до сих пор не проводилось.

Концепцию включения кулоновского взаимодействия в схему ЕАМ можно сформулировать следующим образом.

1) В результате частичного перетекания электронного заряда из ячеек Вигнера—Зейтца (полиэдров Вороного) менее электроотрицательного компонента (лития) в ячейки более электроотрицательного компонента (свинца) возникают избыточные эффективные заряды этих ячеек q_i , которые экранируются электронами проводимости.

2) Избыточные заряды ионов компонентов q_1 и q_2 удовлетворяют условию электронейтральности: $q_1X_1 + q_2X_2 = 0$ (X_i – атомные доли компонентов).

3) Экранированный электрический потенциал *i*-го иона имеет вид $(q_i/r)\exp(-\lambda r)$, является короткодействующим, и поэтому при расчетах ку-

лоновского взаимодействия не требуется применять процедуру Эвальда.

4) При переходе части электронов данного атома в состояние экранированного заряда q_i соответствующая доля электронов изымается из эффективной электронной плотности схемы ЕАМ $\psi_i(r) = p_{1i} \exp(-p_{2i}r)$ или добавляется к ней, т.е. $p_{1i} = p_{1i}^0 (1 - q_i / q_i^0)$, где $q_i^0 = 1$ для лития и 4 для свинца. Впрочем, этот эффект очень слаб и его можно не учитывать.

5) Равновесные значения зарядов ионов определяются конкуренцией между кулоновской энергией раствора E_{Coul} ($E_{\text{Coul}} < 0$) и энергией перезарядки ионов E_{Trans} ($E_{\text{Trans}} > 0$). Изменение энергии при перезарядке *i*-го иона ΔE_i может быть задано функцией, которая при $q_i = 1$ принимает значение первого потенциала ионизации I_i , а при $q_i = -1$ равна энергии сродства к электрону со знаком минус ($-Q_i$). Кроме того, $\Delta E_i = 0$ при $q_i = 0$. Можно, например, выбрать функцию ΔE_i в виде

$$\Delta E_{ikl} = q_i \left[(I_i + Q_i) q_i^{2k} + (I_i - Q_i) q_i^{2l+1} \right] / 2,$$

где k, l — натуральные числа. Первые потенциалы ионизации Li и Pb равны 5.39 и 7.42 эB, а энергии сродства соответственно 0.168 и 0.364 эB.

6) Эффективные заряды ионов q_i рассчитываются как величины, минимизирующие полную энергию модели при заданных давлении и температуре. Оптимальные заряды q_i^* получаются путем коррекции минимизирующих зарядов для лучшего согласия плотности модели с экспериментальными данными.

7) Экранированный кулоновский потенциал и кулоновские межчастичные силы добавляются к потенциалам и силам, рассчитываемым обычным образом на основе EAM-1. Добавка *E*_{Trans} на межчастичные силы не влияет.

Далее такой гибридный потенциал обозначен как ЕАМ-2.

Расчет энергии перезарядки E_{Trans} выходит за рамки метода МД и является предметом теории металлов. Чтобы оставаться в пределах метода компьютерного моделирования, следует параметризовать вклад E_{Trans} , выразив его через значения зарядов ионов. Оптимальное выражение для E_{Trans} получено (с учетом п. 2) сравнением энергии моделей и реальных растворов в виде

$$E_{\text{Trans}} = n_1 q_1 \varphi_1(q_1) + n_2 q_2 \varphi_2(q_2) = n_1 q_1 [\varphi_1(q_1) - \varphi_2(q_2)] = n_1 q_1 \{0.12437 - 4.7676q_1 + 20.314q_1^2 + 109.86q_1^3 + 1.7773q_2 + 1.3146\exp[-10(1+q_2)]\},$$

Таблица 2. Минимизирующие q_i и оптимальные q_i^* заряды ионов в расплавах Li—Pb при 1000 К

X_1	q_1	q_1^*	$-q_{2}^{*}$
0.9	0.11	0.11	0.99
0.8	0.15	0.13	0.52
0.7	0.141	0.141	0.329
0.6	0.10	0.0926	0.139
0.5	0.12	0.075	0.075
0.4	0.00	0.00	0.00
0.3	0.00	0.00	0.00
0.2	0.00	0.00	0.00
0.1	0.00	0.00	0.00

где n_1 — число ионов лития. Это выражение пригодно при $0 < q_1 < 0.3$ и $-1 < q_2 < 0$.

В варианте с включением кулоновского взаимодействия модели растворов Li—Pb имели размер 2000 или 16000 атомов в основном кубе и релаксировались с гибридным потенциалом EAM-2, равным сумме потенциала EAM-1 и экранированного кулоновского потенциала (2), в котором

 $a_{ij} = 14.399 q_i^* q_j^*$ (14.399 — коэффициент пересчета из компьютерной системы единиц в СГС). Оптимальный параметр экранирования оказался равным 1.10, т.е. таким же, как значение, найденное в [16]. В режимах *NpT* или *NVT* применялся алгоритм Верле. Радиус обрыва взаимодействия равен 7.50 Å для пар 1–1 и 9.01 Å для пар 1–2 и 2–2. Радиус сферы Верле составляет 17.5 Å.

Для каждой исследованной концентрации растворов Li–Pb выполнена релаксация моделей с различными допустимыми эффективными зарядами $0 < q_1^* < 1$ и $-1 < q_2^* < 0$ (с учетом п. 2). Минимизирующие заряды найдены из условия минимума энергии модели при температуре 1000 К и нулевом давлении, а оптимальные заряды определены с учетом реального значения плотности раствора [6]. Минимизирующие и оптимальные значения зарядов приведены в табл. 2. Они значительно меньше найденных в [16] (0.5 и –2.0), однако значения в [16] приводят к неприемлемым расхождениям с экспериментом по плотности расплавов. При концентрациях лития менее 50% учет кулоновского взаимодействия не требуется, так как минимизирующие заряды близки к нулю.

Релаксация моделей проведена с включением

зарядов q_i^* . Полученные значения расчетной теплоты смешения показаны на рис. 5 и в табл. 1. Включение кулоновского взаимодействия позволяет значительно улучшить согласие расчетной теплоты смешения с экспериментальными данными (колонки 2 и 11). На рис. 2 и в табл. 1 (ко-

Рис. 5. Изотерма теплоты смешения расплавов Li–Pb при 1000 К: *1* – данные [9], *2* –авторские данные (МД) с учетом кулоновского взаимодействия.

лонки 3 и 13) показаны значения мольного объема растворов при 1000 К. Отсюда также видно, что включение кулоновского взаимодействия значительно улучшает согласие с экспериментом [6].

Несколько хуже выглядят результаты для производных свойств. С использованием потенциала EAM-2 рассчитаны теплоемкости C_V и C_p , а также изотермический модуль всестороннего сжатия K_T моделей при 1000 К. Результаты приведены в табл. 3. Прямые измерения теплоемкостей и модуля, видимо, не проводились. Расчетные значения C_p в [27] (метод МД) располагаются выше настоящих данных примерно на 5–6 Дж/(моль K). Полученная в [28] методом МД величина 30.3 Дж/(моль К) для раствора Li₁₇Pb₈₃ при 1000 К заметно выше полученного здесь значения 25.8.

В табл. З приведены расчетные значения скорости звука в моделях при 1000 К в сравнении с экспериментальными данными [6, 38]. МД-данные выше экспериментальных при 30–60% Li в среднем на ~10%, но убывают с приближением к чистым компонентам. Расчеты с потенциалом Морзе дают примерно то же самое, а потенциал Леннард-Джонса приводит к еще более высоким скоростям звука. Данные [6], возможно, занижены. Неплохо согласуются с экспериментом [6] значения коэффициента теплового расширения α . Производная давления $(\partial p/\partial T)_V$ зависит от концентрации с положительными отклонениями от аддитивности, а коэффициент Грюнайзена $\gamma = (V/C_V)(\partial p/\partial T)_V$ меняется почти аддитивно.

Структура. Структура расплавов исследована в [13, 14] методом рассеяния нейтронов в интервале температур 995–1225 К с использованием изотопа ⁷Li. На рис. 6 показаны парциальные парные корреляционные функции (ППКФ) модели расплава $Li_{17}Pb_{83}$ при 600 К. Координаты пиков ППКФ равны 5.05, 2.90 и 3.23 Å для пар 1–1, 1–2 и 2–2 соответственно. Первый пик для пар 1–2 с высотой 2.63 ниже пика для пар 2–2, но расположен левее. При температуре 1000 К координаты пиков ППКФ равны 4.92, 2.87 и 3.19 Å для пар 1–1, 1–2 и 2–2 при таких же соотношениях высот пиков (1.26, 2.24 и 2.59). Это указывает на слабую

C_{V}		<i>С_р</i> , Дж/(моль К)		Кл ГПа	T_{τ} , $\Gamma \Pi a$, K_s , $\Gamma \Pi a$		<i>u_s</i> , м/с			$0^5, K^{-1}$	$(\partial p/\partial T)_{V},$	
X_1	Дж/(моль К) ЕАМ	EAM	[27]	EAM	[6] ^b	EAM	[6] ^b	723 K [38]	EAM	[6] ^b	МПа	γ
1.0	21.9	27.16	28.8 [34]	8.28	_	4694	4195 [34]	_	21.2	20.1 [34]	1.848	1.26
0.9	22.3	27.0	29.1	9.58	10.8	2465	2278	—	17.4	14.5	1.863	1.18
0.8	22.5	29.2	38.2	12.45	—	2177	-	—	17.9	21.5	2.080	1.28
0.7	22.6	30.3	40.0	18.03	—	2130	_	—	16.6	15.0	2.583	1.60
0.6	22.5	28.2	42.0	18.71	20.0	2002	—	1820	13.3	11.9	2.717	1.89
0.5	21.2	28.5	39.4	21.62	21.7	2053	1704	1770	13.3	10.4	2.744	2.00
0.4	21.0	27.7	38.0	23.89	24.7	2002	1676	1740	12.5	10.0	2.793	2.21
0.3	20.1	26.6	35.2	22.96	26.6	1902	1664	1740	11.6	9.3	2.603	2.26
0.2	20.3	26.3	33.6	22.61	—	1798	-	—	12.3	7.8	2.805	2.54
0.17	20.4	25.8	32.2	23.51	—	1793	_	1730	11.2	16.1 [40]	2.860	2.62
			[1, 2, 39] ^b									
0.1	20.2	26.5	31.2	21.70	—	1720	—	1740	12.3	—	2.664	2.56
0.0	20.5	29.1	30.0	19.5	27.0	1652	1708	1775	12.8	13.3	2.936	2.93
							1658 ^a					

Таблица 3. Свойства моделей Li-Pb с потенциалом EAM-2 при 1000 К

^a [41].

^b Экстраполяция.

тенденцию к преимущественному окружению атомов частицами противоположного сорта.

Расплавы Li–Pb моделировались также в [27, 28]. В [28] высота пика ППКФ для пар 1-2 модели Li₁₇Pb₈₃ при 600 К больше, чем в настоящей работе: 3.38 вместо 2.63, хотя координаты пиков в основном совпадают (2.93 Å) (рис. 6). Высоты пиков ППКФ моделей Li-Pb в [27] почти не зависят от состава и равны 2.2-2.4 при 1000 К, т.е. близки к полученным в настоящей работе. На рис. 7 показаны ППКФ для пар 1-2 в модели расплава Li₈₀Pb₂₀ при 1000 К. Учет кулоновского вклада в ЕАМ-2 приводит к небольшому росту высоты первого пика ППК $\Phi g_{12}(r)$ при 1000 К: от 2.68 при $q_1 = 0$ до 2.75 при $q_1 = 0.13$. Высота пика ППК Φ пар 1-2 при 1000 К в модели Li₈₀Pb₂₀, полученная в [27], равна 2.18 (рис. 7). Эти различия обусловлены различной жесткостью потенциала пар 1-2: в [28] он более жесткий, а в [27] менее жесткий, чем в ЕАМ-2.

На рис. 8 показаны зависимости от концентрации координат r_1 и высот $g_1(r)$ первых пиков ППКФ для пар 1–2 в рассматриваемых моделях. Координата растет с увеличением концентрации свинца, а высота пика проходит через максимум при 60–80 ат. % Li, т.е. в интервале концентраций с наибольшим кулоновским вкладом.

В работах [13, 14] рассчитана функция

$$\rho_{\rm CC}(r) = X_1 X_2 [g_{11}(r) + g_{22}(r) - 2g_{12}(r)],$$

полученная путем анализа дифракции нейтронов, которая является фурье-образом структурного фактора Бхатиа—Торнтона $S_{CC}(r)/(X_1X_2)$.

На рис. 9 приведена функция $4\pi r^2 n_0 \rho_{CC}(r)$ (n_0 – число частиц в единице объема) для модели расплава Li₄Pb при 1073 К в сравнении с данными [13, 14]. Согласие можно считать удовлетворительным только для первого минимума. Осциллирующая форма зависимости означает гетерокоординацию частиц, слоистость ближнего порядка вокруг частиц расплава и может являться признаком наличия вклада ионной связи, при которой чередуются слои частиц с зарядами разного знака. В МД-модели данной работы гетерокоординация быстро затухает с расстоянием из-за сильного экранирования кулоновского взаимодействия. В [27] наличие гетерокоординации вообще не отмечено.

На рис. 10 показана функция q[S(q) - 1], где qи S(q) – вектор рассеяния и структурный фактор рассеяния нейтронов на расплаве ⁷Li₁₇Pb₈₃ при 773 К в сравнении с дифракционными данными [13]. В настоящих расчетах амплитуды рассеяния на частицах ⁷Li и Рb приняты равными –1.90 и 7.60. Согласие с данными [13] здесь очень хорошее, за исключением небольшого смещения 2–4 пиков вправо.

Рис. 6. ППКФ модели расплава Li₁₇Pb₈₃ при 600 К: *I* – пары 1–1, *2* – 1–2, *3* – 2–2.

Рис. 7. ППКФ пар 1–2 в расплаве с 80 ат. % Li при 1000 K: 1 – данные [27], 2 – авторские данные с учетом кулоновского взаимодействия.

Рис. 8. Зависимость формы первого пика ППКФ пар 1-2 от концентрации расплавов Li–Pb с потенциалом EAM-2 с учетом кулоновского взаимодействия при 1000 К: 1 – координата $r_1(12)$, 2 – высота $g_1(12)$.

Диффузия. Коэффициенты самодиффузии D_i^0 в равновесных компьютерных моделях с потенциалом EAM-2 рассчитывались по уравнению $\langle \Delta r^2 \rangle = 6Dt$, где $\langle \Delta r^2 \rangle -$ средний квадрат смещения частиц за время *t*. В табл. 4 приведены коэффициенты самодиффузии компонентов 10^5D в см²/с при температурах до 2000 К. С увеличением концентрации лития скорость диффузии возрастает.

Рис. 9. Функция $4\pi r^2 n_0 \rho_{CC}(r)$ для расплава Li₄Pb при 1073 К: I – данные [13, 14], 2 – авторские данные с учетом кулоновского взаимодействия.

Рис. 10. Функция q[S(q) - 1] расплава Li₁₇Pb₈₃ при 773 К: 1 -дифракционные (нейтронные) данные [13], 2 -МД-модель.

На рис. 11, 12 показаны зависимости D(T) в логарифмических координатах для лития и свинца. Коэффициенты для прямых линий $\lg D = a_1 \lg T + a_2$ имеют следующие значения:

Vaunu	Рис	. 11		Рис. 12	
кривые	1	2	1	2	3
a_1	2.1798	1.8749	1.4808	1.6542	1.5444
a_2	-10.507	-9.3026	-8.6475	-9.0666	-8.5029

Спрямление этих зависимостей означает, что температурная зависимость коэффициентов самодиффузии хорошо описывается выражением

Рис. 11. Коэффициенты самодиффузии лития в моделях расплавов Li-Pb: $1 - Li_{17}Pb_{83}$ и Li₅₀Pb₅₀, $2 - Li_{80}Pb_{20}$.

Рис. 12. Коэффициенты самодиффузии свинца в моделях расплавов Li-Pb: $I - Li_{17}Pb_{83}$, $2 - Li_{50}Pb_{50}$, $3 - Li_{80}Pb_{20}$.

 $D = cT^b$. Такая форма зависимости выполняется вдоль изобар многих металлов [31]. Коэффициенты самодиффузии лития в расплаве Li₁₇Pb₈₃, полученные в [27], в 2–4 раза ниже приведенных в табл. 4. Коэффициенты, рассчитанные в [28], близки к полученным результатам при температурах выше 800 K, а при меньших температурах занижены.

Отметим, что графики расчетных коэффициентов самодиффузии из табл. 4 не спрямляются в координатах $\ln D - 1/T$ и имеют вид парабол с положительной кривизной. Для приближенных оценок аппроксимация $D = D_0 \exp(-E_{act}/RT)$ дает следующие величины:

Расплав	$D_0(\text{Li}) \times 10^4, \text{cm}^2/\text{c}$	$E_{\rm act}$ (Li), Дж/моль	$D_0(\text{Pb}) \times 10^4, \text{cm}^2/\text{c}$	$E_{\rm act}({\rm Pb}),$ Дж/моль
Li ₁₇ Pb ₈₃	9.88	16880	3.07	12300
Li ₅₀ Pb ₅₀	15.8	21800	6.15	16680
$Li_{80}Pb_{20}$	26.8	21560	11.0	17760

	Li ₁₇	Pb ₈₃	Li ₅₀	Pb ₅₀	Li ₈₀ Pb ₂₀		
Т, К	Li	Pb	Li	Pb	Li	Pb	
600	4.12	3.02	-	_	-	-	
800	7.32	4.39	6.88	5.42	_	_	
1000	9.18	5.94	10.5	7.72	20.9	13.5	
1200	17.3	8.62	15.3	10.6	29.5	17.8	
1500	24.9	10.7	26.4	16.5	45.5	25.4	
2000	47.2	18.0	49.7	23.8	76.4	39.3	

Таблица 4. Коэффициенты самодиффузии $10^5 D$ в моделях Li–Pb, см²/с

Свойства расплавов Li-Pb в условиях ударного сжатия. Потенциал ЕАМ-2 позволяет рассчитывать свойства расплавов при высоких температурах и давлениях. Для чистых компонентов Li и Pb такие расчеты выполнены в [29–33] при температурах до 14000 К (Li) и 25000 К (Pb) и давлениях до 100 ГПа (Li) и 280 ГПа (Pb). Проведем аналогичные расчеты для раствора Li₁₇Pb₈₃. С этой целью следует найти зависимости энергии и давления раствора от объема и температуры до степеней сжатия $Y = V/V_0 = 0.4 - 0.5$, где V - мольный объем в сжатом состоянии, а V₀ – нормальный объем в исходном состоянии. При обычных условиях сплав со средним составом Li₁₇Pb₈₃ включает в себя две фазы: LiPb и почти чистый свинец. Для упрошения расчетов в качестве исхолного состояния при 298 К принята аморфная фаза состава Li₁₇Pb₈₃. Эта модель имеет плотность 10.096 г/см³

 $(V_0 = 17.152 \text{ см}^3/\text{моль}, аддитивный объем – 20.29)$ и энергию –186.79 кДж/моль (аддитивная энергия –181.5). Фактическая плотность сплава Li₁₇Pb₈₃ при 298 К равна 10.22 г/см³ [40]. При расчетах электронных вкладов в энергию E_{el} и давление p_{el} применена методика из [29–31]. Электронные вклады в энергию рассчитаны при средней электронной плотности 3.49 эл/ат. Они приведены в табл. 5. Электронные вклады в давление рассчитаны по формуле $p_{el}V = (2/3)E_{el}$.

Далее построены модели некристаллического сплава ${\rm Li}_{17}{\rm Pb}_{83}$ при различных температурах и объемах с использованием потенциала EAM-2. Заряды ионов считались не зависящими от температуры. Значения энергии и давления этих моделей с добавлением электронных поправок приведены в табл. 6 и 7, с помощью которых можно рассчитать ударную адиабату (рис. 13) методом, описанным в [29–33]. До давления 100 ГПа она почти совпадает с адиабатой чистого свинца, а при более высоких давлениях уходит вверх. В верхней точке адиабаты сплава температура достигает 21400 К. На адиабате свинца при той же степени сжатия (Y= 0.55) температура составляет ~14200 К.

обсуждение

Выбором потенциалов ЕАМ для пар 1–1 и 2–2 и потенциала "8–4" для пар 1–2, а также включением экранированного кулоновского взаимодействия компонентов удалось получить хорошее согласие ряда термодинамических свойств моделей системы Li–Pb (плотности, энергии, коэффици-

Таблица 5. Электронные вклады в энергию моделей $\text{Li}_{17}\text{Pb}_{83}$ ($V_0 = 17.152 \text{ см}^3/\text{моль}$)

	$Y = V/V_0$												
<i>Т</i> , К	1.0	0.9	0.8	0.7	0.6	0.5	0.45	0.4	0.35	0.3			
					энергия,	кДж/моль							
298	0	0	0	0	0	0	0	0	0	0			
500	0.068	0.064	0.06	0.056	0.052	0.047	0.043	0.038	0.035	0.033			
1000	0.17	0.160	0.150	0.140	0.130	0.118	0.107	0.095	0.088	0.082			
2000	0.386	0.364	0.342	0.319	0.295	0.270	0.243	0.215	0.201	0.186			
3000	0.915	0.864	0.811	0.756	0.699	0.639	0.577	0.511	0.477	0.440			
5000	1.655	1.562	1.466	1.367	1.264	1.157	1.044	0.925	0.862	0.797			
10000	2.603	2.458	2.307	2.152	1.990	1.821	1.644	1.456	1.358	1.256			
15000	3.759	3.549	3.333	3.109	2.876	2.632	2.376	2.105	1.963	1.815			
20000	5.119	4.835	4.541	4.237	3.920	3.589	3.241	2.872	2.678	2.476			
25000	6.68	6.311	5.930	5.534	5.121	4.690	4.236	3.754	3.501	3.238			

Примечание. Электронная концентрация равна 3.49 эл/ат.

ВКЛЮЧЕНИЕ КУЛОНОВСКОГО ВЗАИМОДЕЙСТВИЯ В СХЕМУ

	$Y = V/V_0$										
<i>Т</i> , К	1.00	0.90	0.80	0.70	0.60	0.50	0.45				
				<i>U</i> , кДж/моль							
298	-186.79	-185.30	-167.84	-131.82	-45.13	141.14	307.09				
500	-181.68	-179.97	-162.41	-126.44	-39.92	146.05	312.16				
1000	-169.71	-166.10	-148.25	-112.38	-26.64	158.60	326.40				
2000	-146.55	-140.36	-120.09	-82.24	1.33	182.85	349.44				
3000	-124.05	-116.25	-94.50	-55.41	29.20	209.63	377.07				
5000	-77.99	-68.30	-45.84	-4.31	82.38	269.60	433.63				
10000	53.43	63.51	86.56	129.78	220.74	414.35	590.70				
15000	212.19	220.27	241.35	283.32	376.88	578.10	762.26				
20000	395.21	400.49	418.61	458.97	551.58	757.18	947.34				
25000	598.96	599.68	615.06	652.30	743.53	951.64	1146.55				

Таблица 6. Энергия *U* моделей $Li_{17}Pb_{83}$ с учетом электронной поправки ($V_0 = 17.152$ см³/моль)

Таблица 7. Давление *р* моделей Li₁₇Pb₈₃ с учетом электронной поправки ($V_0 = 17.152$ см³/моль)

	$Y = V/V_0$											
<i>Т</i> , К	1.00	0.90	0.80	0.70	0.60	0.50	0.45					
				<i>р</i> , ГПа								
298	0.00	6.63	16.28	32.38	75.23	158.38	243.72					
500	1.03	7.63	17.09	33.17	75.84	159.86	246.90					
1000	3.02	10.03	19.16	35.29	77.64	163.90	254.41					
2000	5.97	13.29	22.78	40.06	82.32	171.32	264.86					
3000	8.37	15.88	25.88	44.31	87.69	179.77	277.01					
5000	12.46	20.49	31.37	52.13	98.10	197.00	298.49					
10000	21.91	31.20	44.74	69.85	122.20	234.90	348.46					
15000	31.55	42.30	58.14	86.70	144.67	268.85	391.60					
20000	41.69	53.89	71.91	103.82	166.75	300.25	430.94					
25000	52.49	65.86	86.18	121.19	188.75	330.80	467.83					

ента теплового расширения, модуля всестороннего сжатия, скорости звука) с опытными данными при температурах до 1000 К. Получено также согласие с дифракционными данными о структу-

Рис. 13. Ударная адиабата расплава Li₁₇Pb₈₃: *1* – Li [29–31] при V₀ = 12.998 см³/моль, *2* – Pb [31–33], 18.262, *3* – сплав Li₁₇Pb₈₃, 17.152.

ТЕПЛОФИЗИКА ВЫСОКИХ ТЕМПЕРАТУР том 57 № 6

ре этих расплавов при 600–1073 К. Дополнительного улучшения согласия с экспериментом по упругим свойствам расплавов можно достичь, немного уменьшая степень жесткости парного потенциала для пар 1–2, но не допуская сближения частиц в этих парах ближе 1.9–2.0 Å. Применение потенциала Леннард-Джонса для пар 1–2 способствует росту модуля всестороннего сжатия моделей, а мягкий сплайновый потенциал пар 1–2 приводит к слишком тесному сближению частиц и к расхождению с дифракционными данными о структуре.

Структурные характеристики расплава Li₄Pb рассчитаны в [16] на основе средне-сферического и гиперцепного приближений теории жидкостей, разработанных для систем с парным потенциалом. В расчетах [16] использованы дифракционные данные [13, 14]. Первый максимум ППКФ пар 1–2 в [16] при 1075 К с высотой около 2.6 расположен при r = 2.6 Å, а в случае 1073 К (рис. 7) он

2019

имеет высоту 2.75 и находится при r = 2.70 Å. Для пар 1–1 получено согласие и по положению, и по высоте пика. Однако для пар 2–2 расхождения гораздо больше: r = 4.8 Å в [16] и 5.00 Å (данная работа), а высоты этих пиков составляют соответственно 1.67 и 1.30. Эти расхождения указывают на недостаточную адекватность приближения парного взаимодействия при описании систем с сильным взаимодействием компонентов.

Значительные расхождения получены и с результатами МД-расчетов [27]. Так, при 1000 К первый пик ППКФ пар 1–2 расплава Li₄Pb в [27] имеет высоту 2.00 и расположен при r = 3.00 Å, в данной работе: высота – 2.85 и r = 2.75 Å. Второй пик этой ППКФ в [27] расположен при r = 5.46 Å (высота – 1.45) и r = 5.57 Å (высота – 1.17) соответственно. Эта разница обусловлена различием потенциалов.

Ударная адиабата сплава Li₁₇Pb₈₃ очень близка к адиабате чистого свинца при давлениях до 100 ГПа, а при бо́льших давлениях идет выше последней. Следовательно, нельзя рассчитать адиабату сплава, используя только адиабаты чистых компонентов, без расчетов межчастичных потенциалов. Для проверки адекватности потенциала EAM-2 полезно построить экспериментально адиабату Гюгонио реального сплава Li₁₇Pb₈₃ или любого другого.

Предложенный в настоящей работе метод сочетания потенциалов EAM и экранированного кулоновского потенциала позволяет распространить модель погруженного атома на системы с сильным взаимодействием компонентов, когда трансферабельность потенциалов EAM сама по себе недостаточна.

ЗАКЛЮЧЕНИЕ

Построены две серии моделей жидких растворов Li-Pb: 1) в трансферабельном варианте с потенциалами ЕАМ и 2) с дополнительным включением экранированного кулоновского потенциала. Первый вариант хорошо описывает свойства растворов при содержании лития меньше 60 ат. %. Второй позволяет получить правильное положение минимумов на изотермах теплоты смешения и плотности, а также достичь согласия с опытом по совокупности термодинамических свойств и по структуре расплавов. Рассчитаны свойства раствора Li₁₇Pb₈₃ при температурах до 25000 К и давлениях до 470 ГПа, и построена адиабата Гюгонио. Вариант с включением кулоновского взаимодействия расширяет набор используемых потенциалов и позволяет моделировать растворы с сильным взаимодействием компонентов. При использовании потенциалов ЕАМ без учета переноса заряда с менее электроотрицательного компонента на более электроотрицательный вряд ли можно добиться хорошего согласия расчетных

свойств моделей растворов типа Li—Pb с экспериментальными данными.

СПИСОК ЛИТЕРАТУРЫ

- 1. Blanket, Shield Design, and Material Data Base. ITER Documentation Series. № 29. Vienna: IAEA, 1991.
- 2. Fusion Engineering and Design Journal. 1991. V. 14. No 3-4.
- Nuclear Data for Science and Technology / Proc. Int. Conf. Ed. Bockhoff K.H. Antwerp. Belgium. 6– 10 Sept. 1982.
- Stankus S.V., Khairulin R.A., Mozgovoy A.G. et al. The Density and Thermal Expansion of Eutectic Alloys of Lead with Bismuth and Lithium in Condensed State // J. Phys.: Conf. Ser. 2008. V. 98. P. 062017.
- Tiwari A., Allison B., Hohorst J.K. et al. Insertion of Lead Lithium Eutectic Mixture in RELAP/SCDAP-SIM Mod 4.0 for Fusion Reactor Systems // Fusion Eng. Design. 2012. V. 87. P. 156.
- Ruppersberg H., Speicher W. Density and Compressibility of Liquid Li–Pb Alloys // Z. Naturforsch. 1976. Bd. 31a. S. 47.
- 7. *Saar J., Ruppersberg H.* Calculation of $C_p(T)$ for Liquid Lithium/Lead Alloys from Experimental $\rho(T)$ and $(dp/dT)_s$ Data // J. Phys. F: Met. Phys. 1987. V. 17. P. 305.
- Predel B., Oehme Z. Calorimetric Investigation of Liquid Li-Pb-alloys // Z. Metallkunde. 1979. Bd. 70. S. 450.
- Terlicka S., Dębski A., Gąsior W. Thermodynamic Properties of Li–Pb System // J. Mol. Liquids. 2018. V. 249. P. 66.
- 10. *Gasior W., Moser Z.* Thermodynamic Study of Liquid Lithium-lead Alloys Using the EMF Method // J. Nucl. Mater. 2001. V. 294. № 1–2. P. 77.
- Becker W., Schwitzgebel G., Ruppersberg H. Thermodynamic Investigations of Liquid Lithium–Lead and Lithium–Silver Alloys – A Comparative Study // Z. Metallkunde. 1981. Bd. 72. № 3. S. 186.
- Zhou Ch., Guo C., Li Ch., Du Zh. Thermodynamic Optimization of the Li–Pb System Aided by First-principles Calculations // J. Nucl. Mater. 2016. V. 477. P. 95.
- 13. *Ruppersberg H., Egger H.* Short-range Order in Liquid Li–Pb Alloys // J. Chem. Phys. 1975. V. 63. P. 4095.
- Ruppersberg H., Reiter H. Chemical Short-range Order in Liquid LiPb Alloys // J. Phys. F. 1982. V. 12. P. 1311.
- Mudry S., Shtablavyi I., Sklyarchuk V., Plevachuk Yu. Structure and Electrophysical Properties of Liquid Pb₈₃Mg₁₇ and Pb₈₃Li₁₇ Eutectics // J. Nucl. Mater. 2008. V. 376. № 3. P. 371.
- Copestake A.P., Evans R., Ruppersberg H., Schirmacher W. A Model for the Structure of Liquid Li₄Pb // J. Phys. F: Metal Phys. 1983. V. 13. № 10. P. 1993.
- Soltwisch M., Quitmann D., Ruppersberg H., Suck J.B. Dynamical Concentration Fluctuations in Liquid Lithium–Lead (Li₄Pb) // J. Phys. Colloq. 1980. V. C8. P. 167.
- Schwitzgebel G., Langen G. Application of the Hard Sphere Theory to the Diffusion of Binary Liquid Alloy Systems // Z. Naturforsch. 1981. Bd. 36a. S. 1225.
- Wang B., Xiao S., Gan X. et al. Diffusion Properties of Liquid Lithium–Lead Alloys from Atomistic Simulation // Comput. Mater. Sci. 2014. V. 93. P. 74.

- Van der Marel C., Geertsma W., van der Lugt W. Lithium-7 Knight Shift of Liquid Lithium–Lead and Tin Alloys // J. Phys. F: Metal Phys. 1980. V. 10. № 10. P. 2305.
- Holzhey Ch., Brouers F., Franz J.R., Schirmacher W. Self-consistent Study of Chemical Short-range Order and Charge Transfer in Liquid Alloys as a Function of Temperature // J. Non-Crystal. Solids. 1984. V. 61– 62(1). P. 65.
- Senda Y., Shimojo F., Hoshino K. The Ionic Structure and the Electronic States of Liquid Li–Pb Alloys Obtained from *ab initio* Molecular Dynamics Simulations // J. Phys.: Condens. Matter. 2000. V. 12. № 28. P. 6101.
- Ruppersberg H., Schirmacher W. Ordering Potential in Liquid Lithium–Lead (Li₄Pb) and Lithium–Silver (Li₇Ag₃) Calculated from Neutron Diffraction Data // J. Phys. F: Metal Phys. 1984. V. 14. № 12. P. 2787.
- Jacucci G., Ronchetti M., Schirmacher W. Computer Simulation of the Liquid Lithium–Lead (Li₄Pb) Alloy // J. Phys. Colloq. 1985. V. 46. P. 385.
- Aniya M., Ginoza M. Screened Coulomb Model in a Uniform Background Charge for Temperature Dependence of the Structure of Liquid Lithium–Lead (Li₄Pb) // J. Phys. Soc. Japan. 1987. V. 56. № 6. P. 2046.
- Fraile A., Cuesta-López S., Iglesias R. et al. Atomistic Molecular Point of View for Liquid Lead and Lithium in Nuclear Fusion Technology // J. Nucl. Mater. 2013. V. 440. № 1–3. P. 98.
- Fraile A., Cuesta-López S., Caro A. et al. Interatomic Potential for the Compound-forming Li–Pb Liquid Alloy // J. Nucl. Mater. 2014. V. 448. P. 103.
- Gan X., Xiao Sh., Deng H. et al. Thermodynamic Properties of Li, Pb, and Li₁₇Pb₈₃ with Molecular Dynamics Simulations // Fusion Eng. Design. 2014. V. 89. P. 2946.
- 29. Белащенко Д.К., Островский О.И. Применение модели погруженного атома к жидким металлам. Жидкий литий // ТВТ. 2009. Т. 47. № 2. С. 231.
- Белащенко Д.К. Гибридный потенциал межчастичного взаимодействия и расчет линии плавления

лития методом молекулярной динамики // ТВТ. 2015. Т. 53. № 5. С. 683.

- 31. *Belashchenko D.K.* Liquid Metals. From Atomistic Potentials to Properties, Shock Compression, Earth's Core, and Nanoclusters. Nova Science Publishers, 2018.
- Belashchenko D.K. Computer Simulation of the Properties of Liquid Metals: Gallium, Lead, and Bismuth // Russ. J. Phys. Chem. 2012. V. 86. № 5. P. 779.
- 33. Белащенко Д.К. Расчет свойств жидких свинца и висмута в условиях ударного сжатия методом молекулярной динамики // ТВТ. 2017. Т. 55. № 3. С. 386.
- 34. Быстров П.И., Каган Д.Н., Кречетова Г.А., Шпильрайн Э.Э. Жидкометаллические теплоносители тепловых труб и энергетических установок. М.: Наука, 1988. 264 с.
- 35. Assael M.J., Kalyva A.E., Antoniadis K.D. et al. Reference Data for the Density and Viscosity of Liquid Antimony, Bismuth, Lead, Nickel, and Silver // High Temp.–High Pres. 2012. V. 41. P. 161.
- Gallego L.J., Somoza J.A., Alonso J.A. On the Concentration Dependence of the Ordering Potential in Liquid Lithium–Lead Alloys // Phys. Chem. Liquids. 1987. V. 16. № 4. P. 249.
- Gonzalez D.J., Silbert M. Ordering Potential and the Structural Properties of Binary Yukawa Mixtures // J. Phys. F: Metal Phys. 1988. V. 18. № 11. P. 2353.
- Hoffman N.J., Darnell A., Blink J.A. Properties of Lead-Lithium Solutions // NLLL. Univ. California. Livermore, California. 1980. Preprint 9455L.
- Brandt R., Schulz B. Specific Heat of Some Li–Compounds // J. Nucl. Mater. 1988. V. 152. № 2–3. P. 178.
- 40. Thermophysical Properties in the System Li–Pb // Kernforschungszentrum. Karlsruhe, 1986.
- Филиппов С.И., Казаков Н.Б., Пронин Л.А. Скорость ультразвука, сжимаемость жидких металлов и их связь с различными физическими свойствами // Изв. вузов. Черная металлургия. 1966. № 3. С. 8.