УДК 541.1-143:534.2

СКОРОСТЬ ЗВУКА В БИНАРНЫХ РАСПЛАВЛЕННЫХ СМЕСЯХ ГАЛОГЕНИДОВ КАЛИЯ

© 2019 г. В. П. Степанов^{1, 2, *}

¹Институт высокотемпературной электрохимии УрО РАН, г. Екатеринбург, Россия ²Уральский федеральный университет, г. Екатеринбург, Россия

> **E-mail: v.stepanov@ihte.uran.ru* Поступила в редакцию 02.04.2019 г. После доработки 20.06.2019 г. Принята к публикации 20.06.2019 г.

С помощью импульсно-временно́го метода измерена скорость звука в бинарных расплавленных смесях KCl–KBr, KCl–KI, KBr–KI, KF–KCl, KF–KBr и KF–KI в широком интервале температур и составов. С использованием литературных данных по плотности рассчитаны адиабатическая сжимаемость и молекулярная скорость звука. Результаты анализируются с позиций структурной перестройки ионных расплавов, сопровождающей смешения солей с разным размером ионов.

DOI: 10.1134/S0040364419060152

введение

В научной литературе на протяжении многих лет большое внимание уделяется исследованию распространения звуковых волн в индивидуальных расплавленных галогенидах щелочных металлов и их смесях. Данные о скорости звуковых колебаний позволили определить ряд теплофизических и упругих свойств этих объектов (сжимаемость, теплоемкость, внутреннее давление и т.п.) [1-3]. Эти сведения трудно переоценить, учитывая, что в силу своих уникальных свойств (низкая упругость паров, высокая термодинамическая и радиационная устойчивость) галогенидные расплавы претендуют на широкое применение в качестве сред для решения острых энергетических и экологических проблем [4-6]. С научной точки зрения эти сведения являются базой для построения теории ионных расплавов. Преобладание в них кулоновского взаимодействия частиц делает эти среды удобным модельным объектом для исследования роли размерного фактора в изменении физико-химических свойств. В литературе широко представлены работы, в которых приведены результаты измерений скорости звука в ряде расплавленных смесей солей [2, 3, 7]. Совокупность этих данных дала возможность установить, что смешение расплавов галогенидов, имеющих общий анион, происходит не по идеальному закону из-за образования в солевых смесях комплексных ионных группировок. Причем отклонения от идеальности оказались тем больше, чем значительнее различия в размерах смешиваемых катионов.

На примере расплавов галогенидов щелочных металлов без общих ионов показано, что имеется критическое соотношение размеров смешиваемых ионов, больше которого невозможно существование компонентов в одной жидкой фазе. Различная экранирующая способность ионов приводит к расслаиванию системы на две равновесные фазы с разным содержанием солей. Оказалось, что разность между свойствами фаз на линии насыщения увеличивается с ростом разности в размерах ионов компонентов стабильной диагонали смеси [8–15].

Существенная роль размеров анионов в поведении смесей галогенидов щелочных металлов с общим катионом установлена для фторидно-галогенидных смесей натрия и цезия [16, 17], когда разность в размерах анионов довольно велика. Изотермы сжимаемости для этих систем отклоняются от линейных в сторону больших значений, причем тем больше, чем значительнее разность в размерах анионов. Однако для композиций с небольшими различиями в размерах анионов ситуация не столь однозначна. Так, в работе [18] утверждается, что для смесей KCl-KBr адиабатическая сжимаемость меняется пропорционально составу. Для подобных смесей на основе галогенидов натрия и цезия найдены заметные положительные отклонения сжимаемости от аддитивных значений, закономерным образом меняющиеся от смеси к смеси [19, 20].

Чтобы устранить это противоречие, в данной работе на завершающем этапе изучения смесей галогенидов щелочных металлов с общим катионом исследовано влияние размеров анионов на поведение расплавленных систем KCl–KBr, KCl–KI, KBr–KI, KF–KCl, KF–KBr и KF–KI путем получения достоверных величин скорости звука, обеспеченных глубокой очисткой солей, созданием протяженной изотермической зоны в месте измерений и высокой точностью фиксирования расстояния и времени прохождения звука в среде.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Материалы. Особое внимание уделено очистке исходных солей от примесей, которые присущи технологическим особенностям производства реактивов и появляются в результате их взаимодействия с атмосферным кислородом и влагой. На первой стадии соли (чистота >99.5%) высушивались в вакууме при комнатной температуре в течение 6 ч, а затем медленно нагревались до 500 К и плавились в атмосфере чистого аргона (99.99%); после охлаждения соли помещались в сухой бокс. Соли затем трижды подвергались зонной очистке в токе чистого аргона [21, 22]. В эксперименте использовалась только головная часть слитка. По данным анализа [21], чистота продукта после очистки повышалась не менее чем до 99.99%.

Процедура измерения. Скорость звука и измерялась импульсно-временным методом с использованием экспериментальной установки, подробно описанной ранее [3], с фиксированием времени Δt прохождения звука через исследуемую среду между плоскопараллельными гранями цилиндрических акустических волноводов при заданном расстоянии Δh между ними. Погрешность измерения Δh составляла не более 0.01 мм. Время прохождения этого расстояния измерялось с точностью 10⁻⁸ с посредством уникального электронного устройства. Скорость звука рассчитывалась по выражению $u = \Delta h / \Delta t$. Частота звуковых волн, использованных для измерений, равна 5 МГц. Эксперименты показывают, что скорость звука в расплавленных солях не зависит от частоты в диапазоне от 1 до 35 МГц.

Смесь солей в соответствующем молярном соотношении помещалась в кварцевый тигель, жестко соединенный с кварцевым волноводом диаметром 12 мм. Нижняя поверхность волновода была соединена с пьезоэлектрическим преобразователем из ниобата лития. Нижняя поверхность второго подвижного звуковода из кварца или сапфира, соединенного с пьезоэлектрическим преобразователем на верхнем конце, была погружена в исследуемый расплав. Эта ячейка устанавливалась в кварцевый герметичный контейнер с контролируемым газовым пространством, находящийся в трубчатой печи сопротивления с тремя нагревателями, на которые подавались токи разной силы, чтобы обеспечить изотермическую (1 К) зону высотой не меньше

80 мм. Температура измерялась с помощью Pt/Pt-Rh-термопары с точностью ± 0.5 К. Эксперименты проводились в атмосфере очищенного аргона в режимах нагревания и охлаждения.

Погрешность измерения скорости звука складывается из погрешностей измерения длины пути звука в расплаве (0.1–0.05%), времени его прохождения (0.06–0.17%) и определения температуры (0.04–0.06%). В целом относительная погрешность измерения скорости звука не превышает ±0.3%.

Коэффициенты адиабатической сжимаемости рассчитывались по величинам скорости звука и и плотности ρ в соответствии с соотношением $\beta =$ $= u^{-2} \rho^{-1}$. Необходимые величины плотности находились методом Архимеда взвешиванием с помощью электронных весов платинового шара диаметром 12 мм в газовой фазе и при погружении в жидкость [23]. Систематическая погрешность определения плотности расплава складывается из погрешности взвешивания 0.2 мг (0.01%), калибровки прибора (такое же взвешивание) и определения температуры в ячейке (0.06%). В сумме эти погрешности дают величину ~0.1%. Общая погрешность определения адиабатической сжимаемости суммируется из погрешности измерений скорости звука и определения плотности и составляет ±1.2%.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Первичные экспериментальные результаты измерения скорости звука приведены в табл. 1 в форме коэффициентов u_0 и *а* эмпирических уравнений температурной зависимости скорости $u = u_0 - aT$ (м с⁻¹) и температурного интервала измерений для каждой смеси ($c_2 - в$ мол. % компонента с большим анионом). Здесь же показаны среднеквадратичные отклонения Δu экспериментальных точек от линейной аппроксимации и вычисленные значения адиабатической сжимаемости (ТПа⁻¹) при нескольких температурах. Полученные результаты для расплавов индивидуальных галогенидов калия в пределах 0.1–1.1% совпадают с литературными данными [1, 18, 24, 25].

На рис. 1 представлены изотермы скорости ультразвука для изученных смесей. Видно, что скорость звука во всех смесях убывает нелинейно с увеличением концентрации более тяжелых ионов системы. При этом наблюдаются отклонения измеренных величин от аддитивных в сторону меньших значений. Для скорости звука ее аддитивные величины не являются признаком расплавов с идеальным поведением компонентов при их смешении. Однако они представляют интерес для выявления тенденций в изменении свойств при переходе от одного расплава к другому. Анализ данных показывает, что максималь-

<i>c</i> ₂	TV	<i>u</i> ₀		A	β							
	1, К		а	Δu	1050 K	1100 K	1150 K	1200 K				
KCl–KBr												
0	1000-1190	2508	0.880	1.4	262	284	305	330				
12	1020-1215	2423	0.858	0.9	268	289	313	341				
25	1019-1215	2353	0.839	1.9	273	295	320	348				
37	1040-1217	2254	0.792	1.0	280	302	327	355				
50	1060-1208	2242	0.819	3.5	285	308	335	365				
63	1043-1217	2149	0.767	2.0	290	313	339	368				
75	1011-1208	2100	0.757	1.5	297	321	348	379				
88	1004-1198	2061	0.752	1.1	302	327	355	387				
100	1010-1190	2009	0.725	1.4	306	331	359	390				
KBr-KI												
12	1043-1220	1960	0.709	17	316	342	371	404				
25	1050-1190	1876	0.664	0.9	329	356	386	420				
37	1050-1190	1856	0.670	0.8	339	368	399	436				
50	1045-1195	1839	0.678	0.6	349	378	411	448				
63	1050-1195	1797	0.659	0.9	358	389	424	463				
75	1050-1192	1788	0.670	1.0	366	398	434	475				
88	1019–1164	1752	0.653	0.9	375	407	443	484				
100	975-1180	1/3/	0.657	0.7	385	420	458	501				
	1]	KCl–KI			1	1				
12	1050-1180	2257	0.763	1.8	284	306	330	357				
25	1050-1190	2132	0.737	0.8	302	325	352	381				
37	1053-1187	2055	0.734	1.4	318	343	372	405				
50	1050-1180	1957	0.700	0.7	354	377	405	441				
63	1060 - 1190	1867	0.675	1.4	357	380	413	450				
/3	1045 - 1190	1840	0.687	1.9	302	393	428	408				
00	1033-1183	1/00	0.037	0.7	5/4	400	443	404				
	1150 12(0	2790	КГ 0.045	-KCI [20]			150	170				
0	1150 - 1260	2789	0.845	3.4	-	- 177	159	1/0				
12	1090 - 1203 1058 1176	2043	0,815	1.8	100	1/7	189	202				
23	1058-1170	2003	0.837	1.3	202	217	214	250				
50	1059 - 1200 1050 - 1200	2528	0.840	0.7	202	217	253	273				
63	1030 - 1200 1071 - 1160	2328	0.812	1.2	220	230	255	273				
75	1069 - 1185	2503	0.847	1.4	232	2.59	279	301				
	1007 1100	2000	KF	–KBr [26]		-07		001				
12	1121-1223	2540	0.806	1.3	177	189	202	216				
25	1053-1218	2410	0.813	1.8	209	224	241	260				
37	1013-1173	2276	0.776	0.7	233	250	270	291				
50	1028-1170	2180	0.754	0.9	253	272	294	317				
63	998-1178	2143	0.758	1.5	271	292	316	343				
75	1000-1133	2072	0.719	1.9	284	306	330	357				
			KI	F-KI [26]								
12	1106-1208	2453	0.836	1.7	197	211	228	245				
25	1099-1197	2198	0.788	0.9	248	268	290	314				
37	1085-1198	2004	0.705	1.3	289	312	337	365				
50	1078-1211	1897	0.678	1.8	322	348	377	409				
63	1058-1175	1826	0.654	0.9	342	370	400	435				
75	1053-1188	1826	0.681	1.2	354	384	418	456				

Таблица 1. Скорость звука u (м c⁻¹) и адиабатическая сжимаемость β (ТПа⁻¹) для бинарных расплавленных смесей галогенидов калия

ТЕПЛОФИЗИКА ВЫСОКИХ ТЕМПЕРАТУР том 57 № 6 2019

866

Рис. 1. Скорость звука в расплавленных смесях галогенидов калия при 1100 К в зависимости от концентрации второго компонента: 1 - KF-KCl, 2 - KF-KBr, 3 - KF-KI, 4 - KCl-KBr, 5 - KCl-KI, 6 - KBr-KI.

Рис. 2. Зависимость максимальных относительных отклонений скорости звука от ее аддитивных величин при 1100 К для расплавов с общими катионами от размерного фактора δ (по результатам работ [16–20, 26–28]).

ные относительные отклонения скорости от ее аддитивных значений соответствуют расплавам, состав которых близок к эквимольному. На рис. 2 величины максимальных относительных отклонений скорости звука от ее аддитивных величин $\Delta u/u_{ad}$ для всех известных расплавов галогенидов щелочных металлов с общими катионами [16–20, 26–28] отложены относительно размерного фак-

тора $\delta = \Delta r_a/r_\kappa$, представляющего собой отношение разности размеров смешиваемых анионов к размеру общего катиона. Все результаты хорошо коррелируют между собой. К сожалению, для большинства смесей результаты не продублированы разными группами исследователей. Это сделано лишь для хлоридно-бромидных расплавов калия и лития. Так, относительные отклонения скорости звука от аддитивных значений равны -2.6 [18] и -2.5% (данная работа) для смеси КСІ-КВг, а для смесей LiCl-LiBr они составляют -4.6 [28] и -4.5% [27]. Такое количественное совпадение данных, полученных на разных установках, свидетельствует о надежности корреляции между размерным фактором и отклонениями изотерм скорости звука от линейных.

Анализируя результаты на рис. 2, можно увидеть, что для одних и тех же пар анионов (хлорбром, бром-йод, хлор-йод, фтор-галоген) отклонения уменьшаются по мере увеличения радиуса катиона в ряду Li > Na > K > Cs. Их максимальные величины наблюдаются у фториднойодидных расплавов, увеличиваясь при переходе от катионов цезия к катионам калия, натрия и лития.

Адиабатическая сжимаемость изученных смесей всегда превышает аддитивную величину, в том числе для смесей КСІ–КВг, в которых румынские исследователи [18] нашли линейное изменение сжимаемости в зависимости от состава. Обнаруженные в данной работе отклонения сжимаемости от аддитивных значений закономерным образом увеличиваются по мере роста различий в размерах замещающих друг друга анионов смесей. Так, для эквимольных составов при 1100 К они достигают 0.4, 0.8, 7.4, 9.6, 13.4 и 22.4% у смесей КСІ–КВг, КВг–КІ, КСІ–КІ, КF–КСІ, КF–КВг, КF–КІ соответственно.

Дополнительную информацию о процессах. сопровожлающих смещение солей. может дать анализ изменений так называемой постоянной Рао R' = $u^{1/3}M/\rho$, где M – масса моля солевого расплава [29], которая не должна зависеть от температуры. Предполагается, что при идеальном смешении молекулярных жидкостей каждый компонент входит в состав системы с тем значением R', которое он имел в индивидуальном состоянии в данных условиях [30]. Независимость от температуры произведения скорости звука и мольного объема $V = M/\rho$ также соблюдается для ионных расплавов солей, если представить молекулярную скорость звука в виде $R = u^{2/3}V[31]$. В справедливости этого правила убеждают результаты расчета R (табл. 2) для расплавов галогенидов калия и их бинарных смесей по значениям скорости звука и плотности [23]. В интервале 150-200 К величины молекулярной скорости звука изменяются менее чем на 0.5%.

	$ m R imes 10^{-3}, m cm^2 c^{-2/3} m моль^{-1}$										
c_2	KCl–KBr				KCl-KI		KBr–KI				
	1000	1100	1200	1000	1100	1200	1000	1100	1200		
0	143.3	143.5	143.5	143.3	143.5	143.6	141.5	141.6	141.6		
12	141.9	142.3	142.7	143.7	143.6	143.6	143.1	143.3	143.4		
25	141.8	142.1	142.2	143.9	144.0	144.1	144.7	144.9	145.3		
37	141.2	141.5	141.8	145.1	145.6	146.0	146.6	146.5	146.5		
50	141.4	141.4	141.2	147.4	147.7	147.8	148.5	148.2	147.8		
63	141.4	141.4	141.4	148.6	148.8	149.0	150.6	150.7	150.6		
75	141.0	141.0	140.9	151.3	151.3	151.2	152.0	152.1	152.0		
88	141.0	141.1	141.1	151.3	153.8	153.8	154.4	154.3	154.0		
100	141.5	141.6	141.6	156.0	155.9	155.7	156.0	155.9	155.7		
	KF-KCl			KF–KBr			KF–KI				
	1050	1100	1200	1050	1100	1200	1050	1100	1200		
0	97.6	97.7	97.9	97.6	97.7	97.9	97.6	97.7	97.9		
12	101.5	101.6	101.6	100.8	101.0	101.1	101.5	101.5	100.4		
25	107.0	107.2	107.4	105.7	105.7	105.6	106.7	106.9	107.0		
37	112.1	112.2	112.4	111.1	111.2	111.3	112.2	112.0	112.3		
50	118.4	118.6	118.7	117.3	117.1	117.2	122.3	122.2	122.0		
63	125.2	125.3	125.6	123.8	124.0	124.2	131.2	131.4	131.6		
75	131.3	131.3	131.5	130.1	130.3	130.4	140.4	140.2	139.6		
100	143.4	143.5	143.6	141.5	141.6	141.7	155.8	155.9	160.1		

Таблица 2. Молекулярная скорость звука R расплавленных смесей галогенидов калия при нескольких значениях температур (в K)

При допущении, что правило аддитивности [30] выполняется в отношении постоянной Рао для ионных расплавов $R_{a\pi} = R_1 N_1 + R_2 N_2$, где R_1 и R₂ – постоянные Рао для индивидуальных компонентов смеси, реальные величины R сравниваются с ожидаемыми по закону идеального смешения жидких солей. Оказалось, что имеют место отклонения экспериментальных величин молекулярной скорости звука от аддитивных в сторону меньших значений. Они составляют -0.47, -0.74, -1.35, -1.51, -2.20, -3.62% для смесей KBr-KI, KCl-KBr, KCl-KI, KF-KCl, KF-KBr, КF-КІ соответственно. Отклонение молекулярной скорости звука от идеальных значений свидетельствует о том, что смешение солей с одинаковым катионом сопровождается локальным усилением связи катион-анион. Согласно модели заряженных твердых сфер произвольного диаметра с учетом исключенного объема [32], структурные и фазовые превращения в расплавах с преимущественно кулоновским типом межчастичных связей определяются различной экранирующей способностью ионов. При определенном соотношении размеров ионов становится возможным даже расслоение расплава на две жидкие фазы с разным содержанием компонентов [33]. Очевидно, что чем меньше размер иона, тем лучше он экранирует электростатические взаимодействия. В результате катион и анион с меньшими размерами стремятся к локальной сегрегации с образованием ассоциатов (для изученных смесей преимущественно К⁺-F⁻ или К⁺-Cl⁻). Ионы с большими размерами (Br⁻ или I⁻) располагаются между этими ассоциатами во второй сфере. Такая модель предполагает, что микронеоднородность жидкой фазы должна расти по мере увеличения разности в размерах замещающих друг друга анионов смесей и с уменьшением радиуса общего иона. Это подтверждается результатами ультразвуковых исследований смесей галогенидов щелочных металлов с общим катионом [16, 17, 19, 20, 28], согласно которым именно таким образом от соотношения размеров ионов зависят отрицательные отклонения скорости звука от аддитивных значений (рис. 2).

На одну особенность формирования локальной неоднородности в ионных расплавах с общим катионом хотелось бы обратить внимание. Явление микросегрегации, как сказано выше, состоит из двух процессов: образование ассоциатов, идущее с выделением энергии, и формирование второй сферы, которая, по-видимому, ответственна за избыточный мольный объем смеси по отношению к аддитивному значению [23] и сопровождается затратой энергии. Поскольку при смешивании жидких галогенидов щелочных металлов с общим катионом обнаружен эндотермический эффект [34], можно заключить, что энергии ассоциации не хватает для разупорядочения фазы по вторым сферам. Экзотермический эффект смешения компонентов с общим анионом [35, 36] свидетельствует, что энергия ассоциации всегда превышает энергию разупорядочения.

Для подтверждения модели микронеоднородности ионных расплавов, несомненно, нужны дополнительные сведения, получаемые в том числе высокотемпературными рентгеновскими и молекулярно-динамическими методами.

ЗАКЛЮЧЕНИЕ

Приведены температурные зависимости скорости звука в бинарных расплавленных смесях галогенидов калия для разных содержаний компонентов. С использованием литературных данных по плотности рассчитаны адиабатическая сжимаемость и молекулярная скорость звука. Найдены отрицательные отклонения скорости звука и положительные отклонения для сжимаемости от аддитивных значений, величины которых зависят от соотношения размеров смешиваемых анионов. Обнаруженные закономерности объяснены с позиций существования микронеоднородностей в объеме ионных расплавов, вызванных разной экранирующей способностью ионов.

Работа выполнена в рамках темы АААА-А19-119020590010-2.

СПИСОК ЛИТЕРАТУРЫ

- 1. Bockris J.O'M., Richards N.E. The Compressibilities, Free Volumes, and Equation of State for Molten Electrolytes: Some Alkali Halides and Nitrates // Proc. Roy. Soc. 1957. V. 241A. № 1224. P. 44.
- Sternberg S., Vasilescu V. Compressibilities and Other Volumetric Properties of Fused Alkali Chloride Mixtures // J. Chem. Thermodyn. 1971. V. 3. P. 877.
- Smirnov M.V., Minchenko V.I., Bukharov A.N. Sound Absorption in Molten Alkali Chlorides, Bromides, Iodides, and their Mixtures // Electrochim. Acta. 1988. V. 33. № 2. P. 213.
- 4. Блинкин В.Л., Новиков В.Н. Жидкосолевые ядерные реакторы. М.: Атомиздат, 1978. 111 с.
- Игнатьев В.В., Фейнберг О.С., Загнитько А.В., Мерзляков А.В., Суренков А.И., Панов А.В., Субботин В.Г., Афоничкин В.К., Хохлов В.А., Кормилицын М.В. Жидкосолевые реакторы: новые возможности, проблемы и решения // Атомная энергия. 2012. Т. 112. № 3. С. 135.
- Molten Salts Chemistry. From Lab to Applications / Eds. Lantelme F., Groult H. Amsterdam: Elsevier, 2013.
- Sternberg S., Vasilescu V. Ultrasonic Velocity, Compressibility, and Excess Volume of Molten Salts: NaCl + (Li, K, Kb, Cs)Cl // Rev. Roum. Chim. 1970. V. 15. № 11. P. 1665.
- 8. Рукавишникова И.В., Локетт В.Н., Бурухин А.С., Степанов В.П. Плотность и поверхностное натя-

жение высокотемпературных расслаивающихся смесей бромидов щелочных металлов с фторидом лития // ЖФХ. 2006. Т. 80. № 12. С. 2139.

- 9. Stepanov V.P., Minchenko V.I. Ultrasound Velocity in Dissolving Alkali Halide Melts // J. Chem. Thermodyn. 2011. V. 43. № 3. P. 467.
- Lockett V.N., Rukavishnikova I.V., Stepanov V.P., Tkachev N.K. Interfacial Tension in Immiscible Mixtures of Alkali Halides // Phys. Chem. Chem. Phys. 2010. V. 12. № 5. P. 1139.
- Stepanov V.P., Babushkina L.M., Dokashenko S.I. Liquid + Liquid Equilibrium in Mixtures of Lithium Fluoride with Potassium and Rubidium Halides // J. Chem. Thermodyn. 2012. V. 51. № 8. P. 12.
- Stepanov V.P., Minchenko V.I. Ultrasonic Velocity for an Equimolar Mixture of Molten AgI and NaCl in the Biphasic Region // J. Chem. Thermodyn. 2013. V. 59. № 4. P. 250.
- Stepanov V.P., Minchenko V.I. Sound Velocities for a Dissolving AgI + LiCl Melts // J. Chem. Eng. Data. 2014. V. 59. № 11. P. 3888.
- Stepanov V.P., Minchenko V.I. An Anion Effect on the Separation of AgI-containing Melts Using Sound Waves // J. Chem. Thermodyn. 2015. V. 87. № 8. P. 65.
- Степанов В.П. Плотность и адиабатическая сжимаемость смесей LiF + KBr в двухфазной области // ТВТ. 2019. Т. 57. № 3. С. 371.
- Минченко В.И., Смирнов М.В., Степанов В.П. Сжимаемость расплавленных смесей CsF-CsCl, CsF-CsBr, CsF-CsI // ЖФХ. 1981. Т. 55. № 5. С. 1151.
- 17. Минченко В.И., Смирнов М.В., Коновалов Ю.В. Адиабатическая сжимаемость расплавленных смесей NaF–NaCl, NaF–NaBr, NaF–NaI // Расплавы. 1988. Т. 2. № 4. С. 110.
- Sternberg S., Vasilevscu V. Ultrasonic Velocity and Adiabatic Compressibility in Molten Salts Mixtures: KCl–KBr, PbCl₂–NaCl, PbCl₂–KCl // Rev. Roum. Chim. 1967. V. 12. № 10. P. 1107.
- 19. Степанов В.П. Скорость звука и адиабатическая сжимаемость бинарных смесей галогенидов натрия // ТВТ. 2018. Т. 56. № 5. С. 745.
- Степанов В.П. Ультразвуковое исследование адиабатической сжимаемости бинарных расплавленных смесей галогенидов цезия // ЖФХ. 2019. Т. 93. № 5. С. 645.
- Warren R.W. Procedures and Apparatus for Zone Purification of the Alkali Halides // Rev. Sci. Instrum. 1965. V. 36. № 6. P. 731.
- 22. Шишкин В.Ю., Митяев В.С. Очистка галогенидов щелочных металлов методом зонной плавки // Изв. АН СССР. Неорг. материалы. 1982. Т. 18. № 11. С. 1917.
- Smirnov M.V., Stepanov V.P. Density and Surface Tension of Molten Alkali Halides and their Binary Mixtures // Electrochim. Acta. 1982. V. 27. P. 1551.
- 24. *Ptit G., Blanc M.* Les Techniques Dilatometriques, calorimetriques ultra-sonores a haute temperature dans l'etude du liquide salin // Rev. Internat. Rautes Temperat. Refract. 1967. V. 4. № 3. P. 133.
- 25. Минченко В.И., Смирнов М.В., Коновалов Ю.В. Скорость звука в расплавленных солях LiF–NaF, LiF– КF, NaF–KF и их адиабатическая сжимаемость // Журн. прикл. химии. 1985. Т. 58. № 9. С. 2150.

- Смирнов М.В., Минченко В.И., Степанов В.П., Коновалов Ю.В. Сжимаемость и теплоемкость расплавленных смесей KF–KCl, KF–KBr, KF–KI // ЖФХ. 1983. Т. 57. № 2. С. 430.
- Минченко В.И., Смирнов М.В., Коновалов Ю.В., Бухаров А.Н. Сжимаемость и теплоемкость расплавленных смесей LiF–LiCl, LiCl–LiBr, LiBr–LiI // Расплавы. 1987. Т. 1. Вып. 4. С. 117.
- 28. Prissyajnyi V., Vasilescu V., Sternberg S. Ultrasonic Velocity and Compressibility in Reciprocal Fused Salt Pairs (Cd, K; Cl, Br) and (Li, K; Cl, Br) // J. Chem. Thermodyn. 1971. V. 3. № 6. P. 867.
- Rao M.R. Velocity of Sound in Liquids and Chemical Constitution // J. Chem. Phys. 1941. V. 9. P. 682.
- Кудрявцев Б.Б. Применение ультраакустических методов в практике физико-химических исследований. М.–Л.: ГИТТЛ, 1952. 324 с.

- Higgs R.V., Litovitz T.A. Ultrasonic Absorption and Velocity in Molten Salts // J. Amer. Acoust. Soc. 1960. V. 32. № 9. P. 1103.
- 32. *Ткачев Н.К.* Ограниченная растворимость солевых расплавов и различия в размерах ионов // Расплавы. 1999. № 4. С. 90.
- Margheritis Ch., Flor G., Sinistri C. Miscibility Gaps in Fused Salts // Z. Naturforsch. 1973. B. 28a. S. 1329.
- 34. *Melnichak M.E., Kleppa O.J.* Enthalpies of Mixing in the Binary Systems Alk(Cl–Br), Alk(Cl–I), and Alk(Br–I) // J. Chem. Phys. 1972. V. 57. № 12. P. 5231.
- Melnichak M.E., Kleppa O.J. Enthalpies of Mixing in Binary Liquid Alkali Iodide Mixtures // J. Chem. Phys. 1970. V. 52. № 4. P. 1790.
- 36. *Hong K.C., Kleppa O.J.* Enthalpies of Mixing in Some Binary Liquid Alkali Fluoride Mixtures // J. Chem. Thermodyn. 1976. V. 8. № 1. P. 31.