УДК 544.31.031:546.881.5

ТЕРМОДИНАМИКА ИСПАРЕНИЯ ТРИБРОМИДА ИТТРИЯ В ФОРМЕ МОЛЕКУЛ YBr₃ И Y₂Br₆

© 2020 г. Е. Л. Осина^{1, *}, Л. Н. Горохов¹, Д. М. Ковтун^{1, 2}

¹Объединенный институт высоких температур РАН, Москва, Россия ²Химический факультет, Московский государственный университет, Москва, Россия

**E-mail: j-osina@yandex.ru* Поступила в редакцию 07.05.2019 г. После доработки 24.07.2019 г. Принята к публикации 22.10.2019 г.

В результате критического анализа теоретических данных по структуре и частотам колебаний мономерных и димерных молекул трибромида иттрия выбраны значения молекулярных постоянных и рассчитаны термодинамические функции для YBr₃ и Y₂Br₆. С использованием литературных данных об отношении парциальных давлений димерных и мономерных молекул по методу "третьего закона термодинамики" определена энтальпия реакции YBr₃(кр., ж) + YBr₃(г) = Y₂Br₆(г) и рассчитан состав пара бромида иттрия в температурном интервале 1218–1492 К, для которого в литературе приведены данные по полному давлению. Установлено, что в данном температурном интервале отношение давлений $P_{\rm q}/P_{\rm M}$ увеличивается от 0.06 до 0.15. По найденным парциальным давлениям рассчитаны величины энтальпии сублимации трибромида иттрия в форме мономерных и димерных молекул и энтальпии образования YBr₃(г) и Y₂Br₆(г). Полученные величины введены в базу данных программного комплекса ИВТАНТЕРМО.

DOI: 10.31857/S0040364420010147

ВВЕДЕНИЕ

Данная работа является продолжением исследований термодинамических свойств тригалогенидов скандия и иттрия, опубликованных в [1–4]. Особенность этих соединений состоит в том, что насыщенный пар над тригалогенидами имеет сложный состав и состоит не только из мономерных MX_3 (M = Sc, Y), но и димерных молекул M_2X_6 . В связи с этим для надежного определения термодинамических характеристик процессов парообразования тригалогенидов необходимо исследовать роль димерных молекул в широком интервале температур. Такое исследование выполнено для трихлорида иттрия в работе [5].

Цели настоящей работы следующие:

1) расчет термодинамических функций для молекул $YBr_3(\Gamma)$ и $Y_2Br_6(\Gamma)$ на основе современных данных по структурным и энергетическим свойствам, так как данные о термодинамических свойствах этих соединений отсутствуют;

2) расчет состава пара трибромида иттрия, $P_{\rm A}/P_{\rm M}$ и парциальных давлений мономерных и димерных молекул на основе экспериментальных данных по общему давлению пара трибромида иттрия;

 расчет энтальпий сублимации и образования мономерных и димерных молекул трибромида иттрия с использованием рассчитанных в данной работе таблиц термодинамических функций $YBr_3(\Gamma)$ и $Y_2Br_6(\Gamma)$.

ВЫБОР МОЛЕКУЛЯРНЫХ ПОСТОЯННЫХ И РАСЧЕТ ТЕРМОДИНАМИЧЕСКИХ ФУНКЦИЙ YBr₃(г) И Y₂Br₆(г)

Трибромид иттрия YBr₃(г). Структура молекулы трибромида иттрия экспериментально исследовалась методом газовой электронографии в [6, 7]. В работе [6], проведенной на раннем этапе развития электронографического метода, в предположении о присутствии в исследуемом паре только молекул YBr₃ и их плоской структуре найдено межатомное расстояние $r_g(Y-Br) = 2.63(3)$ Å. Несовершенная методика стала причиной большой неточности определения этого структурного параметра.

Авторы работы [7], в которой электронографическое исследование сопровождалось измерением масс-спектра паров, зарегистрировали наличие в паре порядка 1% димерных молекул. Ввиду малого количества димера электронограммы в [7] проанализированы без его учета. Установлено, что структура YBr₃ слегка пирамидальная с валентным углом $\angle_g Br-Y-Br = 117.3(8)^\circ$ и расстоянием $r_g(Y-Br) = 2.594(5)$ Å. Сравнение этого параметра с соответствующим параметром для других тригалогенидов третьей группы (Sc, Y, La)

Молекула	$I_A I_B I_C \times 10^{117}, r^3 \mathrm{cm}^6$	ν_1	v_2	v ₃	ν_4	v ₅	ν_6	v ₇
YBr ₃	44.3×10^{5}	201	43	293(2)	49(2)	_	_	_
Y_2Br_6	25.5×10^{7}	296	291	269	252	205	171	169 ^a

Таблица 1. Молекулярные постоянные $YBr_3 u Y_2Br_6 (p_x = 1)$

Примечание. Числа симметрии $\sigma(YBr_3) = 6$, $\sigma(Y_2Br_6) = 4$; $p_x -$ статистический вес основного состояния; ^a $v_8 = 163$, $v_9 = 88$, $v_{10} = 58$, $v_{11} = 47$, $v_{12} = 47$, $v_{13} = 38$, $v_{14} = 36$, $v_{15} = 35$, $v_{16} = 31$, $v_{17} = 20$, $v_{18} = 9$ см⁻¹.

[1, 3], а также результаты квантово-химических расчетов [7-9] и настоящей работы свидетельствуют в пользу плоской структуры YBr₃ с симметрией D_{3h} . Теоретические расчеты [7—9] выполнены в разных приближениях. Расчеты наиболее высокого уровня CISD+Q представлены в [8]. В настоящей работе использовались методы теории возмущений MP2 и связанных кластеров с учетом возбуждений третьего порядка CCSD(T). Были использованы корреляционно-согласованные базисы серий сс-рVTZ-PP и сс-рwCVXZ-PP для Y [10] и Br [11, 12] с релятивистскими псевдопотенциалами, позволяющими учесть релятивистские вклады для тяжелых атомов Y и Br. С помощью этих базисов для атома У явно учитываются 11 электронов (внешний остов 4*sp*, валентные электроны $5s^24d^1$), а для атома Br – 25 электронов (внешний остов 3spd, валентные электроны $4s^{2}4p^{5}$). Использование в настоящей работе двух вариантов расчетов (MP2 и CCSD(T)), вызванное трудоемкостью расчетов методом CCSD(T), позволяет сравнить полученные результаты и составить представление о возможной их погрешности. Значения $r_{e}(Y-Br)$, полученные в расчетах, в пределах погрешностей согласуются (2.603 [8]; 2.575 и 2.589 Å, данная работа). Произведение моментов инерции $I_A I_B I_C$, приведенное в табл. 1, рассчитано для плоской структуры молекулы с межъядерным расстоянием $r_{e}(Y-Br) = 2.575(20)$ Å, полученным в данной работе методом MP2(FC)/ cc-pVTZ-PP.

Колебательный спектр молекулы YBr₃ экспериментально не исследован. В литературе имеются данные только теоретических расчетов [7–9]. Значения гармонических частот колебаний, полученные в расчетах [7-9] и данной работе, согласуются. Расхождения не превышают 10%. Исключение составляет частота неплоского колебания v_2 . Низкие значения v_2 получены в случае расчета методом функционала плотности B3LYP для обоих использованных авторами [9] базисов (LANL2DZ и SDD; 10 и 23 см⁻¹ соответственно). В случае настоящего расчета [8] и [9] (RHF ограниченный метод Хартри-Фока) получены близкие более разумные значения $v_2 = 43, 44$ и 40 (LANL2DZ) и 44 (SDD) см⁻¹. В работе [7] ее величина немного ниже и составляет 35 см⁻¹ (B3LYP). Значения частот колебаний, приведенные в табл. 1,

приняты по данным расчета, выполненного в настоящей работе методом теории возмущений MP2 с базисом сс-pVTZ-PP. Погрешности принятых частот колебаний оценены в 10% для валентных частот и 15% для деформационных.

Димер трибромида иттрия Y₂Br₆(г). В литературе отсутствуют экспериментальные структурные данные для молекулы димера трибромида иттрия Y₂Br₆. Структурные параметры молекулы рассчитаны теоретически методами функционала плотности DFT и ab initio RHF в [9] и методами теории возмушений МР2 и связанных кластеров CCSD(Т) в настоящей работе. Во всех расчетах установлена структура с плоским четырехчленным циклом $Br_b - Y - Br_b - Y$ симметрии D_{2h} . Произведение моментов инерции $I_A I_B I_C$ в табл. 1 вычислено со структурными параметрами – $r(Y-Br_t) =$ = 2.563(10), $r(Y-Br_b) = 2.752(20) \text{ Å}, \angle Br_b - Y-Br_b =$ = 88.4(5.0), $\angle Br_t - Y - Br_t = 118.5(2.0)^\circ (Br_t - конце$ вой атом брома, Br_b – атом брома в плоском четырехчленном цикле), принятыми по результатам авторского расчета, выполненного методом МР2 с базисом сс-рVTZ-РР.

Колебательные спектры Y2Br6 также экспериментально не изучены. Частоты колебаний этих молекул рассчитаны в [9] и настоящей работе. Теоретические расчеты [9] выполнены в приближениях RHF и B3LYP с базисами LanL2DZ и SDD. В данной работе частоты $v_1 - v_{18}$ рассчитаны методом теории возмущений Меллера-Плессе MP2(FC) с базисом сс-рVTZ-PP и приведены в табл. 1. Вычислить частоты колебаний Y₂Br₆ методом связанных кластеров CCSD(T) не представлялось возможным. По этой причине структурные параметры и частоты колебаний обеих молекул YBr_3 и Y_2Br_6 приняты по результатам расчетов методом МР2. Погрешности частот колебаний оценены в 10% для валентных частот и 15-20% для деформационных.

Термодинамические функции. Термодинамические функции $YBr_3(r)$ и $Y_2Br_6(r)$ вычислены в приближении "жесткий ротатор—гармонический осциллятор" в интервале температур 298.15—3000 К. Возбужденные электронные состояния при расчете термодинамических функций не учитывались, поскольку ион Y^{+3} имеет заполненную электронную конфигурацию ...4 s^24p^6 . Результаты

Интервал температур, К	φ ₁	φ ₂	$\phi_3 \times 10^{-4}$	$\phi_4 \times 10^{-1}$	φ ₅	φ ₆	φ ₇			
YBr ₃										
298.15-1500	588.7491	82.34784	-12.85631	5.224067	9.633827	-28.07685	41.38646			
1500-3000	369.2991	-32.68232	2364.053	-112.747	558.6859	-664.2036	415.5024			
Y ₂ Br ₆										
298.15-1500	1094.226	186.9518	-38.49719	14.50614	-60.949	211.9423	-366.8609			
1500-3000	1332.472	313.918	-2736.7	147.2452	-632.1733	752.3484	-471.0451			

Таблица 2. Коэффициенты полиномов, аппроксимирующих значения $\Phi^{\circ}(T)$ для молекул YBr₃ и Y₂Br₆

Таблица 3. Термодинамические функции $YBr_3 u Y_2Br_6$

Т, К	$C_p^{\circ}(T)$	$\Phi^{\circ}(T)$	$S^{\circ}(T)$	$H^{\circ}(T) - H^{\circ}(0)$	$C_p^{\circ}(T)$	$\Phi^{\circ}(T)$	$S^{\circ}(T)$	$H^{\circ}(T) - H^{\circ}(0)$
	Дж моль ⁻¹ К ⁻¹			кДж моль ⁻¹	Дж моль ⁻¹ К ⁻¹			кДж моль ⁻¹
	YBr ₃				Y ₂ Br ₆			
298.15	79.901	315.821	383.780	20.262	176.067	480.197	625.656	43.369
1000	82.833	404.956	482.862	77.906	182.268	673.533	843.793	170.260
2000	83.066	459.929	540.376	160.894	182.754	793.912	970.338	352.852
3000	83.109	492.738	574.066	243.986	182.844	865.905	1044.459	535.660

расчетов термодинамических функций так же, как и в работе [13], представлены полиномами. Для увеличения точности аппроксимации значений термодинамических функций температурный интервал 298.15–3000 К разбивался на два подынтервала 298.15–1500 и 1500–3000 К. При этом отклонение рассчитанных и аппроксимированных значений приведенной энергии Гиббса $\Phi^{\circ}(T)$ в каждом интервале не превышало 0.001 Дж моль⁻¹ К⁻¹. Коэффициенты полиномов

$$\Phi^{\circ}(T) = \varphi_1 + \varphi_2 \ln X + \varphi_3 X^{-2} + \varphi_4 X^{-1} + \varphi_5 X + \varphi_6 X^2 + \varphi_7 X^3$$

приведены в табл. 2. В табл. 3 собраны значения термодинамических функций $YBr_3(r)$ и $Y_2Br_6(r)$ при температурах 298.15, 1000, 2000 и 3000 К.

Погрешности термодинамических функций обусловлены как погрешностями рассчитанных значений молекулярных постоянных, так и методом расчета (жесткий ротатор—гармонический осциллятор) и составляют 8, 11, 13 и 19, 27 и 34 Дж моль⁻¹ К⁻¹ в приведенной энергии Гиббса $\Phi^{\circ}(T)$ при T = 298.15, 1000, 3000 К для YBr₃ и Y₂Br₆ соответственно. Термодинамические функции YBr₃ и Y₂Br₆ рассчитаны впервые.

РАСЧЕТ СОСТАВА ПАРА И ПАРЦИАЛЬНЫХ ДАВЛЕНИЙ МОНОМЕРНЫХ И ДИМЕРНЫХ МОЛЕКУЛ

Процесс испарения трибромида иттрия исследован в интервале температур 1193—1450 К в [14, 15] и 1218—1492 К в [16]. Измерения насыщенного пара над расплавленным трибромидом иттрия во всех работах выполнялись методом "точки кипения" с использованием платиновых ампул, предотвращающих реакцию бромидов с кварцем. В дальнейшем изложении используется информация из работы [16], в которой в широком интервале температур представлены данные для всех устойчивых при высоких температурах трибромидов лантанидов и иттрия. В этой работе для каждого бромида методом наименьших квадратов получено уравнение зависимости логарифма давления насыщенного пара от температуры:

$$\lg P(\text{MM pT cT.}) = A - B/T - C\lg T.$$
(1)

Для бромида иттрия A = 27.1(0.16), B = 13390(103). Коэффициент $C = \Delta C_p/R$ введен для учета изменения теплоемкости в процессе испарения, и в [16] для всех трибромидов принято приближенное значение C = 5. При этом предполагалось, что насыщенный пар над трибромида-

ми практически не содержит димерных молекул. Погрешности коэффициентов уравнения (1) являются среднеквадратичными ошибками, рассчитанными для доверительной вероятности 0.95.

Данные [16] использованы в настоящей работе при расчете состава пара, т.е. отношения давлений димерных и мономерных молекул $P_{\rm m}/P_{\rm m}$, являющихся константами равновесия реакции

$$YBr_3(\kappa p., \mathbf{x}) + YBr_3(\mathbf{r}) = Y_2Br_6(\mathbf{r})$$
(2)

при разных температурах.

Для этой цели необходима хотя бы одна опорная точка с известным значением P_{π}/P_{M} . В литературе имеется единственное значение $P_{\Pi}/P_{M} = 0.013$ при 1062 К, полученное при масс-спектрометрическом измерении состава пара в ходе электронографического исследования [7]. Из сопоставления суммарных ионных токов для принятого в [7] состава пара следует, что отношение сечений ионизации димера и мономера авторами [7] принято равным 2. С учетом того обстоятельства, что значительная часть осколочных ионов димера совпадает по массе с гораздо более интенсивными ионами мономера, целесообразно принять практически общепринятое значение отношений сечений ионизации, равное 1.5. В таком случае принятая опорная точка становится равной $P_{\pi}/P_{M} = 0.017$ (T = 1062 K). С использованием этой величины рассчитана энтальпия реакции (2) по уравнению "метода третьего закона термодинамики" (см. [17]):

$$\Delta_r H^{\circ}(0) = T(\Delta_r \Phi^{\circ}(T) - R \ln K_p).$$

Термодинамические функции YBr₃(кр., ж), необходимые для расчетов, взяты из базы данных программного комплекса ИВТАНТЕРМО. Значение энтальпии реакции (2) получено равным $\Delta_r H^{\circ}(0) = 103.4 \pm 15$ кДж моль⁻¹. Погрешность этой величины обусловлена главным образом погрешностью термодинамических функций участников реакции (2). Найденное значение $\Delta_r H^{\circ}(0)$ дает возможность рассчитать отношения парциальных давлений мономера YBr₃(г) и димера Y₂Br₆(г) в любой температурной точке. Расчеты показали, что в интервале 1218–1492 К отношение парциальных давлений $P_{\pi}/P_{\rm M}$ возрастает от 0.06 до 0.15.

На основании расчетов по составу пара из данных по общему давлению в интервале 1218—1492 К [16] рассчитаны значения парциальных давлений $P_{\rm M}$ и $P_{\rm R}$ для YBr₃ и Y₂Br₆. Полученные величины использованы для расчета энтальпий сублимации YBr₃(кр.) в форме мономера и димера. Средние значения, рассчитанные в интервале 1218—1492 К, приведены ниже (кДж моль⁻¹):

$$\Delta_{s} H^{\circ}(YBr_{3}, \kappa p., 0 \text{ K}) = 291.3 \pm 7,$$

$$\Delta_{s} H^{\circ}(YBr_{3}, \kappa p., 298.15 \text{ K}) = 289.5 \pm 7,$$

$$2YBr_{3}(\kappa p.) = Y_{2}Br_{6}(\Gamma):$$
(3)

$$\Delta_s H^{\circ}(2YBr_3, \ \kappa p. \to Y_2Br_6(r), \ 0 \ K) = 394.6 \pm 12,$$

$$\Delta_s H^{\circ}(2YBr_3, \ \kappa p. \to Y_2Br_6(r), \ 298.15 \ K) =$$

$$= 394.0 \pm 12.$$

Погрешности принятых энтальпий сублимации приведены с учетом как воспроизводимости измерений давления пара, погрешности отношения $P_{\rm g}/P_{\rm M}$, так и неточности использованных в вычислениях термодинамических функций YBr₃(кр., ж), YBr₃(г) и Y₂Br₆(г). Полученные величины энтальпий сублимации трибромида иттрия в форме мономерных и димерных молекул приводят к величине энергии диссоциации димерных молекул (д) на мономерные (м):

$$D_0 (д = 2M) =$$

= $2\Delta_s H^{\circ}(YBr_3, \ \kappa p., \ 0 \ K) - \Delta_s H^{\circ}((3), 0 \ K) =$
= $188 \pm 12 \ \kappa Дж \ моль^{-1}.$

.

,

Расчет энергии диссоциации методом CCSD(T, FC1)/cc-pVQZ-PP с учетом поправки BSSE(QZ) и поправки на нулевые колебания Δ ZPE(FC1) дал величину 198 кДж моль⁻¹. Расчет состава пара с этим значением энергии диссоциации приводит к величинам отношений давлений димера и мономера (от 0.17 до 0.26 в интервале 1218–1492 К).

Для расчета энтальпий образования молекул $YBr_3(\Gamma)$ и $Y_2Br_6(\Gamma)$ необходима энтальпия образования $YBr_3(\text{кр.})$. Так же как и в предыдущей работе [5] по термодинамике испарения трихлорида иттрия, в данной работе использованы результаты работы [18] и для энтальпии образования $YBr_3(\text{кр.})$ принята величина —858.1 ± 2.0 кДж моль⁻¹.

Комбинация принятых величин энтальпий сублимации с энтальпией образования YBr₃(кр.) [18] дает значения энтальпий образования молекул YBr₃ и Y₂Br₆ (кДж моль⁻¹):

$$\Delta_f H^{\circ}(YBr_3, \ r, \ 298.15) = -568.6 \pm 8$$

и $\Delta_f H^{\circ}(YBr_3, \ r, \ 0) = -546.1 \pm 8 \ \kappa Дж \ моль^{-1},$

$$\Delta_f H^{\circ}(\mathbf{Y}_2 \mathbf{Br}_6, \ \mathbf{\Gamma}, \ 298.15) = -1322.2 \pm 16$$

и
$$\Delta_f H^{\circ}(\mathbf{Y}_2 \mathbf{Br}_6, \mathbf{\Gamma}, \mathbf{0}) = -1280.1 \pm 16 \text{ кДж моль}^{-1}.$$

Значения энтальпий сублимации и образования YBr_3 и Y_2Br_6 получены впервые.

ЗАКЛЮЧЕНИЕ

Проведен критический анализ литературных данных для мономерных и димерных молекул трибромида иттрия $YBr_3(r)$ и $Y_2Br_6(r)$. Выбраны значения молекулярных постоянных и рассчи-

таны термодинамические функции $YBr_3(r)$ и $Y_2Br_6(r)$. Впервые получены значения энтальпий сублимации и энтальпий образования трибромида иттрия в форме мономерных и димерных молекул. Также впервые получено значение энергии диссоциации $Y_2Br_6 = 2YBr_3$. Проведенная обработка литературных данных по давлению насыщенного пара позволила рассчитать состав пара в широком интервале температур.

Квантово-химические расчеты выполнены Д.М. Ковтуном с использованием оборудования Центра коллективного пользования сверхвысокопроизводительными вычислительными ресурсами МГУ им. М.В. Ломоносова [19].

СПИСОК ЛИТЕРАТУРЫ

- 1. Осина Е.Л., Гусаров А.В. Термодинамические функции и энтальпии образования молекул тригалогенидов скандия // ТВТ. 2015. Т. 53. № 6. С. 858.
- 2. *Осина Е.Л., Горохов Л.Н.* Новое значение энтальпии образования молекул ScF₃ // ТВТ. 2017. Т. 55. № 4. С. 631.
- 3. *Осина Е.Л., Ковтун Д.М.* Термодинамические функции молекулы трифторида иттрия и его димера // ЖФХ. 2018. Т. 92. № 5. С. 697.
- Горохов Л.Н., Осина Е.Л., Ковтун Д.М. Термодинамика испарения трифторида иттрия в форме молекул YF₃ и Y₂F₆ // ЖФХ. 2018. Т. 92. № 11. С. 1676.
- Осина Е.Л., Горохов Л.Н., Осин С.Б. Термодинамика испарения трихлорида иттрия в форме молекул YCl₃ и Y₂Cl₆ // ЖФХ. 2019. Т. 93. № 5. С. 650.
- Акишин П.А., Наумов В.А., Татевский В.М. Электронографическое исследование строения молекул галогенидов галлия и иттрия // Кристаллография. 1959. Т. 4. С. 194.
- Shlykov S.A., Oberhammer H. Austin Symposium on Molecular Structure and Dynamics. Book of abstracts. Dallas, Texas, USA, 2012. P. 163.
- Соломоник В.Г., Марочко О.Ю. Строение и колебательные спектры молекул MHal₃ (M = Sc, Y, La, Lu; Hal = F, Cl, Br, I) // ЖФХ. 2000. Т. 74. № 12. C. 2296.
- 9. Zhang Y., Zhao J., Tang G., Zhu L. Ab initio and DFT Studies on Vibrational Spectra of Some Halides of

Group III B Elements // Spectrochimica Acta. Pt. A. 2005. V. 62. P. 1.

- Peterson K.A., Figgen D., Dolg M., Stoll H. Energy-consistent Relativistic Pseudopotentials and Correlation Consistent Basis Sets for the Elements Y-Pd // J. Chem. Phys. 2007. V. 126. P. 124101.
- Peterson K.A., Figgen D., Goll E., Stoll H., Dolg M. Systematically Convergent Basis Sets with Relativistic Pseudopotentials. II. Small-core Pseudopotentials and Correlation Consistent Basis Sets for the Post-*d* Group 16–18 Elements // J. Chem. Phys. 2003. V. 119. P. 11113.
- Peterson K.A., Yousaf K.E. Molecular Core-valence Correlation Effects Involving the Post-*d* Elements Ga– Rn: Benchmarks and New Pseudopotential-based Correlation Consistent Basis Sets // J. Chem. Phys. 2010. V. 133. P. 174116.
- Осина Е.Л. Термодинамические функции молекул оксидов германия в газовой фазе: GeO₂(г), Ge₂O₂(г) и Ge₃O₃(г) // ТВТ. 2017. Т. 55. № 2. С. 223.
- Дудчик Г.П., Махмадмуродов А., Поляченок О.Г. Давление насыщенного пара бромидов иттрия и гольмия // ЖФХ. 1975. Т. 49. № 8. С. 2159.
- Махмадмуродов А., Дудчик Г.П., Поляченок О.Г. Давление насыщенного пара бромидов иттрия и гольмия // Химия и хим. технол. Сб. Вып. 9. Минск: Вышэйш. школа. 1975. С. 13.
- Махмадмуродов А., Темурова Н., Шарипов А. Термодинамика парообразования бромидов редкоземельных элементов // Изв. АН Тадж. ССР. Отд. физ. мат., хим. и геолог. 1989. № 1. С. 39.
- Гурвич Л.В., Вейц И.В., Медведев В.А. и др. Термодинамические свойства индивидуальных веществ. Т. 1. Кн. 1. М.: Наука, 1978.
- Xiang-Yun W., Tian Zhu J., Goudiakas J., Fuger J. Thermodynamics of Lanthanide Elements IV. Molar Enthalpies of Formation of Y³⁺(aq), YCl₃(cr), YBr₃(cr), and YI₃(cr) // J. Chem. Thermodyn. 1988. V. 20. Iss. 10. P. 1195.
- Sadovnichy V., Tikhonravov A., Voevodin Vl., Opanasenko V. "Lomonosov": Supercomputing at Moscow State University. In: Contemporary High Performance Computing: from Petascale Toward Exascale (Chapman & Hall/CRC Computational Science). Boca Raton, USA: CRC Press, 2013. P. 283.