УДК 669.2:669.715

ВЛИЯНИЕ ЛИТИЯ НА УДЕЛЬНУЮ ТЕПЛОЕМКОСТЬ И ИЗМЕНЕНИЯ ТЕРМОДИНАМИЧЕСКИХ ФУНКЦИЙ АЛЮМИНИЕВОГО СПЛАВА АБ1

© 2020 г. И. Н. Ганиев^{1,} *, М. Т. Назарова², У. Ш. Якубов¹, А. Г. Сафаров³, М. З. Курбонова²

¹Институт химии им. В.И. Никитина АН Республики Таджикистан, г. Душанбе, Таджикистан

²Таджикский национальный университет, г. Душанбе, Таджикистан ³Физико-технический институт им. С.У. Умарова АН Республики Таджикистан, г. Душанбе, Таджикистан *E-mail: ganiev48@mail.ru Поступила в редакцию 05.11.2018 г. После доработки 02.10.2019 г. Принята к публикации 22.10.2019 г.

В работе определялась теплоемкость алюминиевого сплава АБ1 (Al + 1 мас. % Ве) с литием в режиме охлаждения по известной теплоемкости эталонного образца из меди. Получены уравнения, описывающие скорости охлаждения образцов сплава АБ1 с литием и эталона. По рассчитанным величинам скоростей охлаждения эталона и образцов сформированы температурные зависимости теплоемкостей сплавов и эталона. Интегрированием удельной теплоемкости вычислены температурные зависимости изменений энтальпии, энтропии и энергии Гиббса сплава АБ1 с литием. Теплоемкость, энтальпия и энтропия сплава АБ1 с ростом концентрации лития и температуры увеличиваются, а энергия Гиббса уменьшается.

DOI: 10.31857/S0040364420020064

введение

Основой разработки новых алюминиевых сплавов, совершенствования технологии производства и улучшения их свойств является наряду с решением технологических задач развитие фундаментальных научных металловедческих исследований. Это привело в теоретическом плане к построению двойных диаграмм состояния алюминия почти со всеми элементами периодической системы, выяснению характера физико-химического взаимодействия во многих тройных и более сложных системах, установлению закономерностей строения и свойств сплавов. В практическом отношении созданы конструкционные алюминиевые сплавы с особыми свойствами, в том числе сверхлегкие сплавы с удельным весом 1.30-1.45 г/см³, т.е. приближающиеся к удельному весу легких пластмасс [1-4].

Технический прогресс в ряде важных отраслей промышленности определяется качеством легких сплавов на основе алюминия. Среди них наибольшее применение находят алюминиево-бериллиевые сплавы благодаря малому удельному весу, высокой удельной прочности, способности выдерживать большие температуры, высокой коррозионной стойкости, теплопроводности и теплоемкости. В качестве конструкционных материалов они широко применяются в авиации, атомной, ракетной и космической технике, а также в электронике и электротехнике [1-4].

Применение алюминиево-бериллиевых сплавов в космических аппаратах в качестве конструкционного материала может дать значительную экономию в весе по сравнению с алюминиево-магниевыми сплавами или чистым бериллием. Эти сплавы обладают высокой пластичностью, технологичностью, свариваемостью, значительно меньшей чувствительностью к поверхностным дефектам. Стоимость их заметно ниже, чем стоимость чистого бериллия [3, 4].

В литературе имеются сведения о теплофизических свойствах алюминиевого сплава AБ1, легированного некоторыми редкоземельными металлами. Показано, что теплоемкость сплава AБ1 увеличивается с ростом температуры, а с увеличением содержания редкоземельных металлов незначительно уменьшается [4].

Теплофизические свойства алюминиево-литиевого сплава Al + 6% Li с редкоземельными металлами исследованы в [5] в интервале 353–775 К. Установлен рост теплоемкости с увеличением температуры.

Цель работы заключается в исследовании влияния добавок лития на температурные зависимости удельной теплоемкости и изменений термодинамических функций алюминиевого сплава АБ1 (Al + 1 мас. % Ве).

Рис. 1. Установка для определения теплоемкости твердых тел в режиме охлаждения.

РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТАЛЬНЫХ ИССЛЕДОВАНИЙ И ИХ ОБСУЖДЕНИЕ

Сплавы для исследования были получены в шахтной лабораторной печи сопротивления типа СШОЛ (сопротивление шахтное опытное лабораторное) в интервале температур 750–850°С из алюминия марки А995, алюминиево-бериллиевой лигатуры (1 мас. % Ве) и лигатуры на основе алюминия, содержащей 10 мас. % лития. Лигатуры предварительно изготавливались в вакуумной печи сопротивления типа СНВ 2.4.2/16. Из полученных сплавов в графитовую изложницу отливались цилиндрические образцы диаметром 16 мм и длиной 30 мм.

Сплав АБ1 с литием подвергался химическому анализу на содержание основных компонентов в Центральной заводской лаборатории алюминиевой компании ГУП "ТАлКо". Содержание лития в сплаве колебалось от 0.05 до 1.0 мас. %. Состав полученных сплавов контролировался также взвешиванием образцов до и после сплавления. В дальнейшем исследованию подвергались сплавы, у которых разница в массе до и после сплавления не превышала 2% (отн.).

Как известно, теплоемкость твердых тел в режиме охлаждения определяется по уравнению

$$C_{P_2}^0 = C_{P_1}^0 \frac{m_1}{m_2} \frac{(dT/d\tau)_1}{(dT/d\tau)_2},$$
(1)

где $m_1 = \rho_1 V_1$ — масса эталона, $m_2 = \rho_2 V_2$ — масса исследуемого образца; $(dT/d\tau)_1$, $(dT/d\tau)_2$ — скорости охлаждения эталона и образцов сплавов при данной температуре.

Для определения скорости охлаждения строят кривые охлаждения образцов.

Передача тепла от более нагретого тела к менее нагретому — процесс, стремящийся к установлению термодинамического равновесия в системе, состоящей из огромного числа частиц, т.е. релаксационный процесс, который можно описать во времени экспонентой. В рассматриваемом случае нагретое тело передает свое тепло окружающей среде, т.е. телу с бесконечно большой теплоемкостью. Поэтому температуру окружающей среды можно считать постоянной T_0 . Тогда закон изменения температуры тела во времени τ можно записать в виде $\Delta T = \Delta T_1 e^{-\tau/\tau_1}$, где ΔT – разность температур нагретого тела и окружающей среды; ΔT_1 – разность температур нагретого тела и окружающей среды при $\tau = 0$; τ_1 – постоянная охлаждения, численно равная времени, за которое разность температур между нагретым телом и окружающей средой уменьшается в е раз.

Теплоемкость измерялась по методике, описанной в работах [6–13], на установке, схема которой представлена на рис. 1. Электропечь 1смонтирована на стойке 2, по которой она может перемещаться вверх и вниз (стрелка показывает направление перемещения). Образец 3 и эталон 4(тоже могут перемещаться) представляют собой цилиндры длиной 30 мм и диаметром 16 мм с высверленными каналами с одного конца, в которые вставлены термопары 5. Концы термопар подведены к цифровым термометрам "Digital Multimeter DI9208L" (6, 7 и 8).

Электропечь 1 запускается через лабораторный автотрансформатор (ЛАТР) 9, нужная температура устанавливалась с помощью терморегулятора 10. По показаниям цифровых термометров 6-8 фиксируется значение начальной температуры. Образец 3 и эталон 4 нагреваются в электропечи 1 до нужной температуры, которая контролируется по показаниям цифровых термометров на компьютере 11. Образец и эталон одновременно извлекаются из электропечи и с этого момента фиксируется их температура. Показания цифровых термометров 6-8 записываются на компьютер 11 через каждые 5, 10, 20 с до охлаждения образца и эталона.

Обработка результатов измерений и построение графиков производились с помощью программ MS Excel и Sigma Plot. Коэффициент корреляции составил $R_{\text{корр}} > 0.9426$, что подтверждает правильность выбора аппроксимирующей функции. Временной интервал фиксации температуры соответствовал 10 с. Относительная ошибка измерения температуры в интервале от 40°C до 400°C составляла ±1%, а выше 400°C – ±2.5%. Погрешность измерения теплоемкости по предлагаемой методике не превышает 4% (табл. 1 и 2).

Предварительно для определения погрешности метода измерялась теплоемкость меди марки M00 по отношению к алюминию марки A7, а также теплоемкость меди относительно алюминия. Результаты измерения для трех параллельных экспериментов представлены в табл. 1 и 2. Установленное значение погрешности измерений теплоемкости меди марки M00 не превышает 1.5%. Далее в качестве эталона взята медь марки M00. В этом плане именно медь является более надежным металлом, поскольку она характеризу-

<i>Т</i> , К		Си марки М00		Эталон (Аl марки А7)			
	первое измерение	второе измерение	третье измерение	первое измерение	второе измерение	третье измерение	
300	0.028967	0.00632	-0.01414	0.5911	3.4538×10^{-6}	-0.0442	
400	0.223644	0.07284	0.111668	0.8817	1.30251×10^{-3}	-0.0124	
500	0.393825	0.1852	0.218325	0.9975	2.75455×10^{-3}	0.0262	
600	0.544436	0.34436	0.305212	1.0033	4.43715×10^{-3}	0.0896	
700	0.680403	0.55128	0.371711	0.9639	6.39682×10^{-3}	0.1958	
800	0.806652	0.80692	0.417204	0.9441	8.68005×10^{-3}	0.3628	

Таблица 1. Экспериментальные значения скорости охлаждения (*dT*/*d*τ, K/c) образцов из меди марки M00 и эталона (Al марки A7)

Таблица 2. Теплоемкость (кДж/(кг К)) меди марки М00 и эталона (Al марки А7)

<i>Т</i> , К	Си марки М00	Си марки М00 по отнош	Al марки A7		
	по данным [14]	первое измерение	второе измерение	третье измерение	по данным [15]
300	0.3850	0.3759	0.3699	0.3678	0.9032
400	0.3977	0.3883	0.3820	0.3800	0.9472
500	0.4080	0.3984	0.3919	0.3899	0.9879
600	0.4169	0.4070	0.4004	0.3984	1.0306
700	0.4251	0.4151	0.4083	0.4064	1.0803
800	0.4336	0.4234	0.4164	0.4146	1.1424

ется более высокой температурой плавления и достоверными значениями теплоемкости, определенными многими авторами разными параллельными методами [14].

Сравнение экспериментально полученных значений теплоемкости меди по отношению к Al марки A7 показывает почти 99%-ную сходимость с данными, приведенными в справочнике [14].

Полученные кривые охлаждения образцов сплавов описываются уравнением вида

$$T = a \mathrm{e}^{-b\tau} + p \mathrm{e}^{-k\tau},\tag{2}$$

где a, b, p, k — постоянные для данного образца, τ — время охлаждения.

Результаты исследования температуры охлаждения изучаемых сплавов представлены на рис. 2. В общем случае полученные графики температуры *T* от времени охлаждения т для образцов сплавов AБ1 с литием показывают непрерывное уменьшение температуры образцов и эталона по мере их охлаждения. На кривых охлаждения термических эффектов, связанных с фазовым превращением, не обнаружено.

Дифференцируя уравнение (2) по т, получаем уравнение для скорости охлаждения сплавов

$$\frac{dT}{d\tau} = -abe^{-b\tau} - pke^{-k\tau}.$$
(3)

ТЕПЛОФИЗИКА ВЫСОКИХ ТЕМПЕРАТУР том 58 №

По формуле (3) вычислены скорости охлаждения образцов сплавов AБ1 + Li и эталона. Кривые скорости охлаждения образцов представлены на рис. 3. Обработкой данных о скорости охлаждения получены значения коэффициентов a, b, p, k, ab, pk в (3), которые приведены в табл. 3.

Рис. 2. График изменения температуры *T* от времени охлаждения т для образцов из сплава AБ1 с литием: *I* – эталон (Си марки M00), 2 - AБ1, 3 - AБ1 + 0.05% Li, 4 - AБ1 + 0.1% Li, 5 - AБ1 + 0.5% Li, 6 - AБ1 + 1.0% Li.

№ 1 2020

Рис. 3. Температурная зависимость скорости охлаждения образцов из сплава АБ1 с литием: *1*-*6* - см. рис. 2.

С использованием данных о скорости охлаждения по уравнению (1) вычислена удельная теплоемкость сплавов АБ1 с литием и эталона. Результаты через 100 К представлены в табл. 4. Теплоемкость сплава АБ1 с ростом температуры и концентрации лития увеличивается. Рассчитанные значения теплоемкости сплава АБ1 сопоставлены с ранее полученными авторами [4] результатами для данного сплава. Например, при температуре 400 К по данным [4] теплоемкость равна 980 Дж/(кг К), а по настоящим данным составляет 961.1 Дж/(кг К). Таким образом, относительная погрешность измерений теплоемкости сплава составляет 1.9%, что является вполне приемлемым.

После проведения полиномной регрессии получено следующее общее уравнение для описания температурной зависимости удельной теплоемкости сплавов АБ1 с литием:

$$C_P^0 = \alpha + \beta T + \gamma T^2 + \delta T^3.$$
(4)

Значения коэффициентов α , β , γ , δ уравнения (4) представлены в табл. 5.

С использованием значений удельной теплоемкости и скорости охлаждения образцов вычис-

Таблица 3. Значения коэффициентов уравнения (3)

Состав сплавов, мас. %	<i>a</i> , K	$b \times 10^{-3}$, c ⁻¹	<i>p</i> , K	$k \times 10^{-4}, c^{-1}$	ab, K c ⁻¹	$pk \times 10^{-2}$, K c ⁻¹
АБ1	419.5347	6.56	339.8051	1.46	2.75	4.97
АБ1 + 0.05% Li	417.4269	6.91	349.2331	1.51	2.89	5.27
АБ1 + 0.1% Li	397.7948	7.11	343.9754	1.55	2.83	5.34
АБ1 + 0.5% Li	412.6103	6.94	349.3616	1.51	2.86	5.27
АБ1 + 1.0% Li	406.6929	7.35	344.4824	1.59	2.99	5.49
Эталон (Си марки М00)	403.5145	5.74	360.922	1.66	2.32	5.98

Таблица 4. Температурная зависимость удельной теплоемкости (кДж/(кг К)) сплава АБ1 с литием

	Т, К							
Состав сплавов, мас. %	300	400	500	600	700	Рост C_p^0 , %		
АБ1	0.7929	0.9611	1.1185	1.2391	1.2966	63.538		
АБ1 + 0.05% Li	0.7832	0.8978	1.0927	1.2756	1.3542	72.893		
АБ1 + 0.1% Li	0.7939	0.8806	1.1053	1.3181	1.3688	72.420		
АБ1 + 0.5% Li	0.7952	0.8798	1.1263	1.3600	1.4224	78.873		
АБ1 + 1.0% Li	0.7962	0.8791	1.1348	1.3876	1.4615	83.559		
Рост C_p^0 , %	0.422	-8.529	1.458	11.983	12.715	_		
Эталон	0.3850	0.3977	0.4080	0.4169	0.4251	10.419		

Таблица 5. Значения коэффициентов уравнения (4)

Состав сплавов, мас. %	α, Дж/(кг К)	β, Дж/(кг К ²)	ү, Дж/(кг К ³)	δ, Дж/(кг К ⁴)	$R_{\rm kopp}, \%$
АБ1	484.3323	0.0159	4.68×10^{-3}	-4.35×10^{-6}	0.9876
АБ1 + 0.05% Li	1846.042	-8.9067	0.0225	-1.54×10^{-5}	0.9672
АБ1 + 0.1% Li	2861.675	-15.7127	0.0369	-2.50×10^{-5}	0.9489
АБ1 + 0.5% Li	3101.956	-17.3513	0.0404	-2.72×10^{-5}	0.9458
АБ1 + 1.0% Li	3342.236	-18.9898	0.0438	-2.93×10^{-5}	0.9426
Эталон	324.4543	0.2751	-2.87×10^{-4}	1.42×10^{-7}	1.0

59

лен коэффициент теплоотдачи сплавов АБ1 + Li по уравнению

$$\alpha_T = \frac{C_P^0 m \frac{dT}{d\tau}}{(T - T_0)S}$$

где T и T_0 — температуры образца и окружающей среды; S, m — площадь поверхности и масса образца соответственно. Температурные зависимости коэффициента теплоотдачи для сплавов AБ1 с литием представлены на рис. 4.

Для расчета температурной зависимости изменений энтальпии, энтропии и энергии Гиббса использовано уравнение (4) для удельной теплоемкости

$$\begin{split} & \left[H^{0}(T)-H^{0}(T_{0})\right] = \alpha(T-T_{0}) + \frac{\beta}{2}(T^{2}-T_{0}^{2}) + \\ & + \frac{\gamma}{3}(T-T_{0}^{3}) + \frac{\delta}{4}(T^{4}-T_{0}^{4}), \quad \left[S^{0}(T)-S^{0}(T_{0})\right] = \\ & = \alpha \ln \frac{T}{T_{0}} + \beta(T-T_{0}) + \frac{\gamma}{2}(T^{2}-T_{0}^{2}) + \frac{\delta}{3}(T^{3}-T_{0}^{3}), \\ & \left[G^{0}(T)-G^{0}(T_{0})\right] = \left[H^{0}(T)-H^{0}(T_{0})\right] - \\ & - T\left[S^{0}(T)-S^{0}(T_{0})\right], \end{split}$$

где $T_0 = 298.15$.

Результаты расчета температурных зависимостей изменений энтальпии, энтропии и энергии Гиббса представлены на рис. 5.

Рис. 5. Температурные зависимости изменений энтальпии (а), энтропии (б) и энергии Гиббса (в) сплава AБ1 с литием и эталона: 1-6 – см. рис. 2.

ЗАКЛЮЧЕНИЕ

В режиме охлаждения по известной теплоемкости эталонного образца из меди получена теплоемкость сплавов АБ1 с литием. С помощью установленных полиномных зависимостей показано, что с ростом температуры теплоемкость, энтальпия и энтропия сплавов увеличиваются, а значения энергии Гиббса уменьшаются. Добавки лития в изученном концентрационном интервале (0.05-1.0 мас. %) увеличивают теплоемкость сплава АБ1. Энтальпия и энтропия сплава с ростом содержания лития увеличиваются, а значения энергии Гиббса уменьшаются. Указанные изменения теплофизических свойств и термодинамических функций алюминиевого эвтектического сплава АБ1 при модифицировании его литием связано с измельчением и ростом степени гетерогенности его структуры [16, 17].

СПИСОК ЛИТЕРАТУРЫ

- 1. Коган Б.И., Капустинская К.А., Топунова Г.А. Бериллий. М.: Наука, 1975. 372 с.
- 2. *Рохлин Л.Л.* Магниевые сплавы, содержащие редкоземельные металлы. М.: Наука, 1980. 190 с.
- Fridlyander I.N., Yatsenko K.P., Semenova Z.G., Nekrasova G.A. Aluminum–Beryllium Base Alloys // Metal Sci. Heat Treatment. 1965. V. 7. Iss. 3. P. 143.
- Сафаров А.М., Ганиев И.Н., Одиназода Х.О. Физикохимия алюминиевых сплавов с бериллием и редкоземельными металлами. Душанбе: Изд-во филиала МГУ им. М.В. Ломоносова, 2011. 372 с.
- Назаров Ш.А. Физико-химические свойства алюминиевого сплава Al + 6% Li с редкоземельными металлами (Y, La, Ce, Pr, Nd). Автореф. дис. ... канд. тех. наук. Душанбе: Ин-т химии им. В.И. Никитина AH Республики Таджикистан, 2018. 25 с.
- Азимов Х.Х., Ганиев И.Н., Амонов И.Т., Иброхимов Н.Ф. Влияние лития на теплоемкость и изменения термодинамических функций алюминиевого сплава АЖ2.18 // Вестн. МГТУ им. Г.И. Носова. 2018. Т. 16. № 1. С. 37.

- 7. Иброхимов Н.Ф., Ганиев И.Н., Ганиева Н.И. Влияние иттрия на теплофизические свойства сплава АМг2 // Науч. вестн. НГТУ. 2017. № 2(67). С. 177.
- Ганиев И.Н., Якубов У.Ш., Сангов М.М., Сафаров А.Г. Влияние кальция на температурную зависимость удельной теплоемкости и изменений термодинамических функций алюминиевого сплава АЖ5К10 // Вестн. Казанск. технол. ун-та. 2018. Т. 21. № 8. С. 11.
- 9. Ганиев И.Н., Сафаров А.Г., Одинаев Ф.Р., Якубов У.Ш., Кабутов К. Температурная зависимость теплоемкости и изменений термодинамических функций сплава АЖ4.5 с оловом // Изв. вузов. Цветная металлургия. 2019. № 1. С. 50.
- Якубов У.Ш., Ганиев И.Н., Махмадизода М.М., Сафаров А.Г., Ганиева Н.И. Влияние стронция на температурную зависимость удельной теплоемкости и изменений термодинамических функций сплава АЖ5К10 // Вестн. СПГУТД. Сер. естеств. наук. 2018. № 3. С. 61.
- Иброхимов Н.Ф., Ганиев И.Н., Низомов З., Ганиева Н.И., Иброхимов С.Ж. Влияние церия на теплофизические свойства сплава АМг2 // ФММ. 2016. Т. 117. № 1. С. 53.
- 12. Ганиев И.Н., Отаджонов С.Э., Иброхимов Н.Ф., Махмудов М. Температурная зависимость теплоемкости и изменений термодинамических функций сплава AK1, легированного стронцием // ТВТ. 2019. Т. 57. № 1. С. 26.
- Ганиев И.Н., Муллоева Н.М., Низомов З., Обидов Ф.У., Ибрахимов Н.Ф. Температурная зависимость теплоемкости и термодинамических функций сплавов системы Pb-Ca // TBT. 2014. № 1. С. 147.
- Зиновьев В.Е. Теплофизические свойства металлов при высоких температурах. М.: Металлургия, 1989. 384 с.
- 15. Низомов З., Гулов Б.Н., Ганиев И.Н., Саидов Р.Х, Обидов Ф.У., Эшов Б.Б. Исследование температурной зависимости удельной теплоемкости алюминия марок ОСЧ и А7 // Докл. АН Республики Таджикистан. 2011. Т. 54. № 1. С. 53.
- Ганиев И.Н., Вахобов А.В. Стронций эффективный модификатор силуминов // Литейное производство. 2000. № 5. С. 28.
- Каргаполова Т.Б., Ганиев И.Н., Махмадуллоев Х.А., Хакдодов М.М. Барий – новый модификатор силуминов // Литейное производство. 2000. № 10. С. 9.