———— ИССЛЕДОВАНИЕ ПЛАЗМЫ ———

УДК 533.95

ТОРМОЖЕНИЕ НАМАГНИЧЕННОГО ТЕЛА ПРИ ВЗАИМОДЕЙСТВИИ ЕГО МАГНИТНОГО ПОЛЯ С ПОТОКОМ РАЗРЕЖЕННОЙ ПЛАЗМЫ

© 2020 г. В. А. Шувалов^{1, *}, Н. А. Токмак¹, Ю. П. Кучугурный¹, Н. П. Резниченко¹

¹Институт технической механики Национальной академии наук Украины (ИТМ), г. Днепр, Украина *E-mail: vashuvalov@ukr.net

Поступила в редакцию 20.05.2019 г. После доработки 06.11.2019 г. Принята к публикации 24.12.2019 г.

Методами физического моделирования изучены особенности обтекания и динамического взаимодействия намагниченной сферы с гиперзвуковым потоком разреженной плазмы. Для осевой и ортогональной ориентаций векторов потока плазмы и индукции собственного магнитного поля тела получены зависимости коэффициентов электромагнитной силы сопротивления сферы от отношения магнитного давления к скоростному напору набегающего потока. Показано, что при индукции собственного магнитного поля сферы 0.8–1.5 Тл электромагнитная сила, генерируемая в системе "магнитное поле сферы—окружающая плазма", сравнима с импульсом, инжектируемым плазменными ускорителями специальных космических аппаратов, предназначенных для принудительной ("активной") очистки околоземного пространства от объектов космического мусора торможением их плазменной струей, уводом на более низкие орбиты и утилизацией при сгорании в плотных слоях атмосферы Земли. Для создания энергоэкономичных, компактных источников собственного магнитного поля этих объектов с индукцией 0.8–1.5 Тл могут быть использованы малогабаритные постоянные магниты, сгруппированные по специальной схеме (магнитные сборки Халбаха).

DOI: 10.31857/S0040364420020180

введение

В 50-е годы прошлого столетия сформулирована идея применения для управления движением спускаемых аппаратов (СА) в атмосфере Земли электромагнитной силы, генерируемой магнитогидродинамической (МГД) системой [1–4]. Основными элементами МГД-системы являются собственное магнитное поле СА и окружающая плазма. Собственное магнитное поле большой сферы – планеты Земля и потоки плазмы солнечного ветра – элементы натурной МГД-системы. Для космических аппаратов МГД-систему формируют их собственное магнитное поле и потоки плазмы:

 в межпланетном пространстве — плазма солнечного ветра;

в ионосфере Земли – ионосферная плазма;

 на высотах 80–40 км в атмосфере Земли – плазма, образующаяся за ударной волной перед затупленной поверхностью СА.

К настоящему времени по результатам многочисленных публикаций, посвященных решению задачи магнитной гидродинамики — исследованию особенностей, закономерностей и механизмов взаимодействия в системе "намагниченные тело—поток плазмы", сформировались два независимых, но взаимодополняющих друг друга направления:

– МГД-взаимодействие СА при $U_{\infty} \uparrow \downarrow B_W$, где U_{∞} – вектор скорости набегающего потока плазмы, B_W – вектор индукции собственного магнитного поля "намагниченного" СА. Первые публикации с решением задачи для СА в атмосфере Земли при $U_{\infty} \uparrow \downarrow B_W$ относятся к 1957–1958 гг. [1, 2]. По результатам публикаций за 60-летний цикл исследований показано, что при $U_{\infty} \uparrow \downarrow B_W$ электромагнитный эффект проявляется в дополнительном МГД-торможении "намагниченного" СА и уменьшении конвективных тепловых потоков на его затупленную поверхность [5–9]. В литературе этот случай известен как режим движения СА под "магнитным парашютом";

– МГД-взаимодействие "намагниченных" космических аппаратов (КА) с плазмой солнечного ветра в межпланетном пространстве, когда $U_{\infty} \perp B_{W}$ [10–12]. Установлено, что электромагнитный эффект проявляется в генерировании дополнительной тяги, ускорении "намагниченного" КА в потоке плазмы солнечного ветра. Режим МГД-взаимодействия в этом случае известен как "движение под магнитным парусом".

В обоих случаях электромагнитный эффект порождает определенные надежды на получение

дополнительных преимуществ от использования МГД-систем для летательных аппаратов.

Исследования особенностей динамического взаимодействия, использования электромагнитной силы. генерируемой в МГД-системе "намагниченный КА-ионосферная плазма", немногочисленны. Это, по-видимому, связано в первую очередь с ограниченными возможностями практического применения электромагнитных сил для управления движением КА в ионосфере Земли. Ситуацию изменила проблема загрязнения околоземного пространства объектами космического мусора (ОКМ), и в первую очередь крупными с линейным размером более 0.5 м (топливные баки, последние ступени ракет-носителей, исчерпавшие ресурс эксплуатации КА и т.д.) [13–16]. Проблемы, связанные с загрязнением околоземного пространства, породили надежды на использование силы. генерируемой при взаимодействии собственного магнитного поля КА с ионосферной плазмой, для реализации процедуры очистки ионосферы при электромагнитном торможении ОКМ, увода их на более низкие орбиты с последующей утилизацией при сгорании в плотных слоях атмосферы Земли. С учетом актуальности и сложности проблемы очистки космического пространства от ОКМ задача исследования процессов и механизмов генерирования электромагнитной силы в системе "КА-ионосферная плазма" приобретает практическую направленность и значимость. Прежде всего, речь идет о формировании мини-магнитосферы КА и использовании электромагнитной силы в качестве движущей силы в системе "КА-ионосферная плазма".

В отличие от условий движения управляемых СА в атмосфере Земли при $U_{\infty} \uparrow \downarrow B_W$ и КА в межпланетном пространстве при $U_{\infty} \perp B_W$, крупные нестабилизированные ОКМ в ионосфере хаотично "кувыркаются" на орбите: угол θ между векторами U_{∞} и B_W может изменяться в широком диапазоне. При этом на практике процедура увода ОКМ на более низкие орбиты может быть эффективна только с использованием в качестве источника собственного магнитного поля ОКМ постоянного магнита (без дополнительного энергопотребления).

Целью данной работы являются:

 исследование методами физического моделирования структуры мини-магнитосферы, формируемой при обтекании "намагниченной" сферы (с постоянным магнитом) гиперзвуковым потоком разреженной плазмы;

 определение зависимостей коэффициента силы сопротивления "намагниченной" сферы от параметров, характеризующих взаимодействие КА с ионосферной плазмой, таких как отношение магнитного давления собственного магнитного поля $P_{B_W} = B_W^2/2\mu$ к скоростному напору ионов набегающего потока разреженной плазмы $P_d = \rho_i U_{\infty}^2/2$ ($U_i = U_{\infty}$ и ρ_i – направленная скорость и плотность ионов, μ – магнитная проницаемость) и угла θ между векторами U_{∞} и B_W в диапазоне $0 \le \theta \le \pi/2$;

 оценка возможностей применения малогабаритных постоянных магнитов (сборки Халбаха)
 в качестве источников собственного магнитного поля тела для генерирования электромагнитной силы.

В качестве модели при физическом моделировании динамического взаимодействия в системе "КА—ионосферная плазма" используется сфера. Это обусловлено следующими обстоятельствами:

произвольно вращающиеся ("кувыркающиеся") крупные ОКМ (последние ступени, топливные баки ракет-носителей, фрагменты обтекателей, исчерпавшие ресурс эксплуатации КА и т.д.) в аэродинамике моделируются сферой [17];

2) для натурной МГД-системы "Земля—солнечный ветер" ($\mathbf{U}_{\infty} \perp \mathbf{B}_{\mathbf{W}}$) проведены многочисленные исследования, результаты которых могут быть использованы в качестве тестовых;

3) особенности динамического взаимодействия сферы с гиперзвуковым потоком разреженного газа хорошо изучены (аэродинамика разреженных газов) и также могут быть использованы как тестовые [18–20].

ФИЗИЧЕСКОЕ МОДЕЛИРОВАНИЕ ТОРМОЖЕНИЯ КА В ИОНОСФЕРНОЙ ПЛАЗМЕ

Параметры взаимодействия. При физическом (стендовом) моделировании процессов и явлений, протекающих в космическом пространстве, необходимо, чтобы безразмерные параметры, входящие в уравнения, описывающие конкретные явления, были близки по порядку величин или одинаковы в ионосфере и на стенде. При этом если какой-либо безразмерный параметр в ионосфере много меньше или больше единицы, то и в модельном эксперименте этот параметр должен быть соответственно существенно много меньше или больше единицы [21].

Динамическое взаимодействие КА ионосферной разреженной плазмой характеризуют семь параметров подобия и масштабных коэффициентов [22]:

— магнитное число Рейнольдса $\text{Re}_m = \mu \sigma U_{\infty} r_W$ (σ — проводимость плазмы, r_W — характерный размер KA);

– отношение $S_{ie} = U_{\infty}/\overline{V}_{s}$ скорости U_{∞} полета КА к скорости $\overline{V_s} = \sqrt{kT_e/M_i}$ ионного звука ($k - \frac{1}{2}$ постоянная Больцмана, T_e – температура электронов, M_i – масса ионов);

– отношение r_W/λ_D характерного размера r_W к дебаевскому радиусу λ_D в невозмущенной плазме;

– отношение r_W/r_e характерного размера r_W к ларморовскому радиусу г_е электрона;

– отношение r_W/r_{iT} характерного размера r_W к тепловому ларморовскому радиусу r_{iT} иона;

– число Кнудсена ионов плазмы $Kn_i = l_{ii}/r_W$ (*l_{ii}* – длина свободного пробега для ион-ионых соударений);

- безразмерный потенциал поверхности КА $\Phi_W = e \phi_W / k T_e$ ($\phi_W = \phi_f - \phi_0$ – потенциал ϕ_f на поверхности тела относительно потенциала Фо плазмы).

Семь параметров подобия определяют требования к чистоте модельного эксперимента. Состояние плазмы характеризуют также степень ионизации $\varepsilon_i = N_{e,i}/N_n$ и параметр Холла $\omega_{\alpha B} v_{\alpha \delta}^{-1}$ $(\alpha = i - для ионов, \alpha = e - для электронов,$ $v_{\alpha\delta} = v_{\alpha i} + v_{\alpha n}$ – средние частоты соударений электронов и ионов с нейтралами).

Кроме того, динамическое взаимодействие КА с ионосферной плазмой характеризуют и условия МГД-приближения [23]:

1) $\tau_c \gg \omega_{ep}^{-1}$, где $\tau_c = 2 r_W / U_{\infty}$ – временно́й мас-штаб макроскопических изменений в плазме, *ω*_е, – плазменная (ленгмюровская) частота;

2) $\tau_c \gg v_{em} / \omega_{ep}^2$, где $v_{em} = v_{ei} + v_{en} -$ средние частоты соударений электронов с ионами и нейтралами;

3) $\tau_c \gg v_{em}^{-1}$.

Физическое (стендовое) моделирование взаимодействия КА с ионосферной разреженной плазмой проводилось на плазмодинамическом стенде Института технической механики НАН Украины (ИТМ). Стенд относится к классу плазменных аэродинамических труб. Безмасляная откачивающая система производительностью ~50 м³/с, наличие криопанелей, охлаждаемых жидким азотом, обеспечивают в вакуумной камере стенда (цилиндр диаметром 1.2 м, длиной 3.5 м) остаточное давление 3×10^{-5} H/м². По результатам масс-спектроскопического анализа в остаточном газе преобладают два компонента: $CO + N_2$ и H_2 , в небольшом количестве присутствуют водяной пар H₂O и CO₂. При рабочем давлении 4 × 10^{-3} H/м² в струе плазмы (рабочий

газ – азот высшей очистки) преобладающим компонентом являются ионы азота. Степень диссоциации ионного компонента $\xi_{di} \approx 0.6$, средняя молекулярная масса ионов $M_i = 19.6$ а. е. м. Исследования проводились для двух режимов работы плазменного ускорителя:

1) концентрация $N_i = 2.1 \times 10^{15} \text{ м}^{-3}$ и направленная скорость ионов $U_i = 15.6 \text{ км/c}$;

2) $N_i = 9.6 \times 10^{15}$ м⁻³ и $U_i = 28.3$ км/с при температуре электронов $T_e = 2.6$ эВ, ионов $T_i = 0.52$ эВ, нейтралов $T_n = 0.18$ эВ и скорости нейтральных частиц U_n = 0.6 км/с. Источником плазмы служил газоразрядный ускоритель с осцилляцией электронов во внешнем магнитном поле с саморазгоном плазмы. Индукция внешнего магнитного поля в рабочем сечении струи $B_0 = 2 \times 10^{-2}$ Тл; диаметр рабочего сечения струи ~ 0.35×10^{-1} м (рабочее сечение струи – зона с равномерными распределениями скорости, концентрации ионов и индукции внешнего магнитного поля); скоростной напор (газодинамическое давление) ионов $8.3 \times 10^{-3} \le P_d \le 1.3 \times 10^{-1} \text{ H/m}^2.$

Для диагностики потока разреженной плазмы на стенде использовались: микроволновой интерферометр, работающий на частоте 5.45 ГГц; система электрических зондов (цилиндрический, плоский, многоэлектродный зонд-анализатор); цилиндр Фарадея и двухканальный зонд давления [24–26]. Зонды установлены на подвижной платформе, перемещающейся в горизонтальной и вертикальной плоскостях и вращающейся вокруг вертикальной оси. Погрешность линейных перемещений $\sim 0.5 \times 10^{-3}$ м, угловых $\sim 0.5^{\circ}$. Состав остаточного газа и степень диссоциации ионного компонента контролируется масс-спектрометром и по ионной ветви вольт-амперной характеристики цилиндрического зонда [25]. В качестве моделей использовались сферы радиусами $r_{W_1} = 4.35 \times 10^{-2}$ м и $r_{W_2} = 5.25 \times 10^{-2}$ м, изготовленные из картона с металлическими (алюминиевая фольга) и диэлектрическими (полимерные пленки) покрытиями. Параметры подобия, характеризующие взаимодействие тел со среднеширотной ионосферной плазмой при $r_W \approx 1.0$ м, $U_{\infty} =$ = 7.5 км/с и среднем уровне солнечной активности (день, ночь) на высоте ~700 км, вычисленные по данным [27] и модели ионосферы IRI-2015, приведены в табл. 1. Эти данные свидетельствуют, что для большинства параметров подобия и безразмерных масштабных коэффициентов условия на стенде ИТМ близки или соответствуют условиям взаимодействия "ненамагниченного" тела ($\mathbf{B}_{\mathbf{W}} = 0$) с ионосферной разреженной плазмой. На стенде, как и в ионосфере на высоте

Параметры подобия	S _{ei}	Kn _i	Re _m	<i>М_i</i> , а.е.м.	ε _i	$r_W/\lambda_{\rm D}$	r_W/r_{iT}	$r_W/r_{iU_{\infty}}$	r _₩ /r _e	Φ_W	$\omega_{eB} v_{em}^{-1}$	$\omega_{iB} v_{im}^{-1}$
Ионосфера, (день-ночь)	5.8-7.3	$(4-6) \times 10^3$	1.7-3.6	14.0	$(3-8) \times 10^{-2}$	$(1-1.2) \times 10^2$	$(2-2.5) \times 10^{-1}$	$3.8 \times \\ \times 10^{-3}$	24-30	-(2.1- 2.4)	$(1.2-9) \times 10^4$	7×10^{2}
Стенд (сфера <i>т</i> _{W1,2})	4.4-8.0	$(0.8-1.0) \times 10^2$	1.3-4.8	19.6	$(1.4-9) \times 10^{-2}$	$(1.5-3.8) \times 10^2$	$(1.9-2.5) \times 10^{-2}$	$(1.6-3.6) \times 10^{-3}$	1.6–1.9	-(2.9- 3.6)	1.4×10^3	$(0.1-1) \times 10^1$

Таблица 1. Параметры подобия, характеризующие динамическое взаимодействие "КА-плазма" в ионосфере на высоте ~700 км и "модель КА (сфера)-плазма" на стенде ИТМ

При оценке значений магнитного числа Рейнольдса учитывалась анизотропия проводимости ионосферной плазмы в магнитном поле Земли $\sigma_{\parallel} = 2\sigma_{\perp}$ [28], индукция магнитного поля в ионосфере Земли $B_E \approx 0.4 \times 10^{-4}$ Тл, $r_{iU_{\infty}}$ – ларморовский радиус ионов, движущихся с направленной скоростью U_{∞} .

~700 км, третье условие МГД-приближения $\tau_c \gg v_{em}^{-1}$ не выполняется.

Сопротивление "ненамагниченной" сферы в потоке плазмы. Силовое воздействие потока частично ионизированного газа на тело определяется несколькими составляющими: $F_x = F_{xn}$ + F_{xi} + F_{xe} + F_{xg} . Здесь F_{xn} обусловлена бомбардировкой нейтральными частицами; F_{xi} – воздействие ионов плазмы; F_{xe} – давление электронов; *F_{xg}* – сила, обусловленная процессами газовыделения, распыления и десорбции частиц с поверхности тела. Как правило, $F_{xe} + F_{xg} \ll F_{xn} + F_{xi}$ и $F_x \simeq F_{xn} + F_{xi}$. Сила F_{xn} зависит от коэффициентов передачи импульса и энергии частиц определенного сорта конкретному материалу поверхности. Для сферы в гиперзвуковом потоке разреженного газа применительно к условиям полета КА в ионосфере задача решена в рамках аэродинамики разреженных газов [18-20, 29]. По результатам многочисленных исследований, физического и численного моделирования, статической обработки измерений орбит спутников установлено, что $F_{xn} = c_{xn} 0.5 \rho_n U_{\infty}^2 \pi r_W^2$, где $c_{xn} \simeq 2.1 - 2.3 -$ коэффициент силы сопротивления сферы для условий эксплуатации КА в ионосфере Земли [18, 20, 30, 31],

 ρ_n — плотность нейтральных частиц.

Заряженные частицы потока плазмы формируют на поверхности твердого тела равновесный ("плавающий"), как правило отрицательный, потенциал Φ_W . Для сферы в гиперзвуковом потоке разреженной плазмы $\Phi_W = -\ln\left(\sqrt{2kT_e/\pi m_e U_{\infty}^2}\right) = -\ln(0.25\overline{V_e}/U_{\infty})$ [22], где m_e и $\overline{V_e} = \sqrt{8kT_e/\pi m_e} -$ масса и средняя скорость электронов. Расчетные значения Φ_W в ионосфере и на стенде приведены в табл. 1. При ненулевом отрицательном потенциале поверхности тела ионы ускоряются в возмущенной зоне размером в несколько дебаевских радиусов и переносят на нее дополнительный импульс — составляющую силы "электрического"

взаимодействия в системе "ион-поверхность". Сила сопротивления (торможения) "ненамагниченной" сферы в гиперзвуковом потоке разреженной плазмы, обусловленная бомбардировкой газовыми ионами, определяется как сумма двух составляющих $F_{xi} = F_{0x} + F_{\Phi x}$, где $F_{0x} =$ $= c_{0x} 0.5 \rho_i U_i^2 \pi r_W^2$ — сила контактного взаимодействия ионов набегающего потока плазмы с поверхностью твердого тела, $F_{\Phi x} = c_{\Phi x} 0.5 \rho_i U_i^2 \pi r_W^2 -$ сила "электрического" взаимодействия ионов с поверхностью заряженного тела. Составляющая силы F_{0x} определяется по аналогии с F_{xn} с помощью коэффициентов передачи импульса и энергии газовых ионов конкретному материалу поверхности твердого тела. Сила $F_{\Phi x}$ зависит от параметров Φ_W и r_W/λ_D . Коэффициент силы сопротивления "ненамагниченного" тела ($\mathbf{B}_{\mathbf{W}} = 0$) в гиперзвуковом потоке разреженной плазмы $c_{xi} = c_{0x} + c_{\Phi x}$.

По результатам измерений коэффициента "электрической" составляющей силы сопротивления $c_{\Phi x}$ проводящей "ненамагниченной" сферы радиусом $r_{W_1} = 4.35 \times 10^{-2}$ м на стенде ИТМ и данным [32–34] авторами для $r_W/\lambda_D \ge 50$ получена аппроксимация $c_{\Phi x}/c_{0x} =$ $= \left[1 - \exp\left(-\Phi_W^{0.5}/0.233 r_W/\lambda_D\right)\right]\eta^{2/3}$, где $\eta =$ $= \Phi_W/S_{ie}^2 = 2e\phi_w/M_i U_i^2$.

Измерения силы сопротивления сферы на стенде ИТМ проводились с применением микровесов двух типов [35, 36]:

1) микровесы компенсационного типа с магнитоэлектрической системой управления. Компенсационный ток прямо пропорционален силе воздействия потока плазмы на сферу. На плече длиной 0.5 м диапазон измеряемых сил изменяется в пределах от 10^{-8} до 10^{-3} H, погрешность измерения не более ±4.5%;

 микровесы с повышенной помехозащищенностью к воздействию внешних электрических и магнитных полей. Измерительным элементом этих микровесов служит тензометрический датчик. Сигнал с тензометрического датчика пропорционален деформации плеча, вызванной воздействием внешней силы. Диапазон измеряемых сил – от 10^{-6} до 10^{-1} H, погрешность измерения – не более ±3%.

Для условий на стенде при равновесном ("плавающем") потенциале на поверхности алюминиевой сферы $\eta = 0.09 - 0.37$, ему соответствуют максимальные значения отношения $(c_{\Phi x}/c_{0x})_{\max} =$ = 0.017-0.047. Максимальное значение коэффициента "электрической" составляющей силы сопротивления "ненамагниченной" сферы на стенде не превосходит (0.8-2.35)% от значения коэффициента силы сопротивления незаряженной сферы $c_{0x} \approx 2.1 - 2.3$ [37]. В ионосфере на высоте 700 км (ночь, день, средний уровень солнечной активности): $0.08 \le \eta \le 0.14$ и $(c_{\Phi x}/c_{0x})_{\max}$ = 0.016-0.022. Максимальное значение коэффициента силы сопротивления сферы составляет (0.8-1.1)% от коэффициента незаряженной сферы. Таким образом, при $r_W/\lambda_D \ge 50$ доля "электрической" составляющей пренебрежимо мала: интегральная сила, действующая на КА в ионосфере $F_x \simeq F_{xn}$, а на стенде $F_x \simeq F_{xi}$. Дополнительным критерием точности модельного эксперимента по динамическому взаимодействию "ненамагниченного" КА с ионосферной плазмой может служить равенство коэффициентов силы сопротивления сферы $c_{xn} \approx c_{xi}$, измеренных на стенде, расчетных значений при численном моделировании [20, 31, 38] и данных анализа измерений орбит по торможению КА в атмосфере Земли [18].

Измерения коэффициентов силы сопротивления $c_x \approx c_{xi}$ на стенде проводились для сфер радиусами $r_{W_1} = 4.35 \times 10^{-2}$ м и $r_{W_2} = 5.25 \times 10^{-2}$ м с проводящими (алюминиевая фольга, фольга нержавеющей стали 12Х18Н10Т) и непроводящими (пленка фторопласт-4, полиимид ПМ-А, экранно-вакуумная теплоизоляция (ЭВТИ), которая служит внешним покрытием III ступени ракетыносителя "Циклон-3" [35]) покрытиями. Результаты измерения приведены в табл. 2.

Для всех измерений c_{xi} на стенде, как и в ионосфере, реализован режим обтекания гиперзвуковым потоком "холодной" ($T_W/T_{i,n} < 1$) сферы. Измеренные в гиперзвуковом потоке разреженной плазмы на стенде значения c_{xi} согласуются с результатами измерения коэффициентов c_{xn} для "холодной" сферы в гиперзвуковых потоках нейтральных частиц $c_{xn} = 2.1-2.3$ [37] и с расчетными значениями c_{xi} , выполненными с использованиТаблица 2. Коэффициенты силы сопротивления "ненамагниченных" сфер в гиперзвуковом потоке разреженной плазмы на стенде ИТМ

	101/1011/075	×		ODTU		-		
для различных материалов покрытия сфер								
	Коэффициент силы сопротивления <i>c_{xi}</i>							

Al	12X18H10T	Фторопласт-4	ЭВТИ	ПМ-А
2.11	2.16	2.08	2.24	2.17

ем угловых зависимостей коэффициентов передачи нормального и тангенциального импульсов газовых ионов [29].

Другими словами, при $r_W/\lambda_D \ge 50$ "электрическая" составляющая силы, действующей на сферический КА в ионосфере и на проводящие и диэлектрические сферы в гиперзвуковом потоке разреженной плазмы на стенде, пренебрежимо мала. При гиперзвуковом свободно-молекулярном обтекании "ненамагниченной" сферы в ионосфере и на стенде $c_{xn} \approx c_{xi} \approx c_{0x} \approx 2.1-2.3$. Дополнительное требование к точности физического моделирования динамического взаимодействия в системе "КА-плазма" на стенде ИТМ выполняется.

ТОРМОЖЕНИЕ "НАМАГНИЧЕННОЙ" СФЕРЫ В ПОТОКЕ ПЛАЗМЫ

При проведении экспериментальных исследований на стенде ИТМ в качестве модели использовались две диэлектрические сферы (картон, покрытый пленкой фторопласта-4) с источниками собственного магнитного поля, размещенными в центре. Для сферы радиусом $r_{W_1} = 4.35 \times 10^{-2}$ м источником поля служил постоянный магнит из шести секций – неодимовых дисков диаметром $D_{s_1} = 4.8 \times 10^{-2}$ м и толщиной $h_{s_1} = 1.1 \times 10^{-2}$ м каж-дый. Суммарная длина постоянного магнита $l_{s} = 6.7 \times 10^{-2}$ м. Вариацией количества секций индукция магнитного поля B_{Woz} на поверхности сферы в точке, соответствующей полюсу магнита, изменялась в пределах от 1.1×10^{-2} до 3.4×10^{-1} Тл. Для измерения индукции магнитного поля использовался универсальный тесламетр типа 43205 с диапазоном измерения B_W от 1×10^{-5} до 3.5 Тл. Источником собственного магнитного поля сферы радиусом $r_{W_2} = 5.25 \times 10^{-2}$ м служил соленоид с внешним диаметром $D_{s_2} = 6 \times 10^{-2}$ м, длиной $l_{s_2} = 7 \times 10^{-2}$ м и внутренним диаметром $d_{s_{2}} = 1.5 \times 10^{-2}$ м. В соленоиде использовался медный провод диаметром $d_c = 0.75 \times 10^{-3}$ м с числом витков $N_C = 2700$. При пропускании тока от 0.5

Рис. 1. Структура поля течения при обтекании "намагниченной" сферы радиусом $\eta_{W_1} = 4.35 \times 10^{-2}$ м: (a) – U_∞ ↓↑ **B**_W, (б) – U_∞ ⊥ **B**_W.

до 10 А индукция магнитного поля $B_{W_{0z}}$ на поверхности сферы в точке, соответствующей полюсу соленоида, лежит в пределах от $B_{W_{0z}}^{\min} = 8.7 \times 10^{-3}$ Тл до $B_{W_{0z}}^{\max} = 2.1 \times 10^{-1}$ Тл. Внутри сферы соленоид термоизолирован — покрыт экрано-вакуумной теплоизоляцией. Источники магнитного поля помещены в герметичный корпус из алюминиевой фольги толщиной 0.3×10^{-3} м. Механический контакт внутренней поверхности сферы с источником собственного магнитного поля обеспечивается через сетчатый диэлектрический каркас. Сфера с источником поля в центре является чувствительным элементом микровесов, используемых для измерения силы в системе "плазма—сфера—магнитное поле" [36].

Осевая ориентация ($U_{\infty} \uparrow \downarrow B_W$, $\theta = 0$). Магнитное поле формирует у поверхности сферы плазменное образование струйного типа. Распределение осевой составляющей $B_{W_z}/B_{W_{0_z}}$ магнитного поля сфер пропорционально (z/r_W)^{*n*}. Поле соленоида ближе к дипольному (n = 3), а для постоянного магнита поле спадает медленнее (n < 3). Структуру поля течения при обтекании "намагниченной" сферы радиусом $r_{W_1} = 4.35 \times 10^{-2}$ м (постоянный шестисекционный магнит) при $U_{\infty} \uparrow \downarrow B_W$ иллюстрирует рис. 1. Структуры поля течения при обтекании сфер с соленоидом [36] и с постоянным магнитом при равных значениях индукции магнитного поля $B_{W_{0_z}}$ на их поверхности практически идентичны.

Схему токов и сил для системы "поток плазмы — магнитное поле" при $U_{\infty} \downarrow \uparrow B_W$ иллюстрирует рис. 2.

Механизм генерирования электромагнитной силы в такой системе может быть сформулирован по аналогии с [8, 38] следующим образом: магнит с индукцией поля $\mathbf{B}_{\mathbf{W}}$, помещенный в затупленное тело, формирует вокруг сферы неоднородное магнитное поле \mathbf{B} и кольцевой ток \mathbf{J} , индуцированный взаимодействием магнитного поля с потоком плазмы. Электромагнитный эффект такого взаимодействия — сила Лоренца $\mathbf{F}_{\mathbf{L}} = \mathbf{J} \times \mathbf{B}$, направленная против потока плазмы. Сила $\mathbf{F}_{\mathbf{L}}$ тормозит поток плазмы и генерирует реактивную силу $\mathbf{F}_{\mathbf{X}} = \mathbf{F}_{\mathbf{L}}$, действующую на магнит и тормозящую "намагниченное" тело.

На рис. 3 приведена зависимость коэффициента силы сопротивления c_x/c_{0x} "намагниченной" сферы при обтекании гиперзвуковым пото-

Рис. 2. Схема токов и сил для системы "поток плазмы-намагниченная сфера" при $U_{\infty} \downarrow \uparrow B_W$.

ком разреженной плазмы (верхняя кривая — осевая ориентация, $\mathbf{U}_{\infty} \downarrow \uparrow \mathbf{B}_{\mathbf{W}}, \theta = 0$) от параметра $P_{B_{W}}/P_{d}$. Аппроксимация авторов (кривая *10*)

$$c_{x}/c_{0x} = \exp\left[1.1 \times 10^{-2} \ln^{2} \left(P_{B_{W}}/P_{d}\right)\right] = f_{1}\left(P_{B_{W}}/P_{d}\right),$$
(1)

где $c_{0x} = 2.15$ — коэффициент силы сопротивления "ненамагниченной" сферы [20, 31]. Измеренные значения коэффициента сопротивления c_x "намагниченной" сферы с соленоидом и с постоянным магнитом в качестве источников собственного магнитного поля согласуются между собой в пределах погрешности, не превышающей $\pm 7\%$ при $U_x \downarrow \uparrow B_w$.

Ортогональная ориентация ($\mathbf{U}_{\infty} \perp \mathbf{B}_{\mathbf{W}}, \boldsymbol{\theta} = \pi/2$). Зависимости $B_{W_z}(z/r_W)/B_{W_{0\rho}}$ индукции магнитного поля соленоида и постоянного магнита в направлении, перпендикулярном к их оси симметрии, близки. Структура поля течения при обтекании "намагниченной" сферы радиусом $r_{W_1} = 4.35 \times 10^{-2}$ м (постоянный магнит) гиперзвуковым потоком разреженной плазмы при $\mathbf{U}_{\infty} \perp \mathbf{B}_{\mathbf{W}}$ показана на рис. 1. У поверхности сферы формируется мини-магнитосфера.

Зависимость коэффициента силы сопротивления "намагниченной" сферы при взаимодействии гиперзвукового потока разреженной плазмы с собственным магнитным полем, создаваемым соленоидом и постоянным магнитом, от параметра P_{B_W}/P_d для ориентации $\mathbf{U}_{\infty} \perp \mathbf{B}_{\mathbf{W}}$, показана на рис. 3 (11–17). Аппроксимация авторов (кривая 17)

$$c_x/c_{0x} = f_1(P_{BW}/P_d)f_2.$$
 (2)

Схема токов и сил взаимодействия в системе "плазма—"намагниченная" сфера" при $U_{\infty} \perp B_{w}$, приведена на рис. 4. Взаимодействие "намагниченной" сферы с гиперзвуковым потоком разреженной плазмы при $\mathbf{U}_{\infty}\perp \mathbf{B}_{\mathbf{W}}$ характеризуют четыре безразмерных параметра [40]: число Маха М, магнитное число Рейнольдса $\operatorname{Re}_{mL} = \mu \sigma U_{\infty} L$ (L – характерный размер мини-магнитосферы), отношение ларморовского радиуса ионов на границе магнитосферы L_i к характерному размеру магнитосферы L, отношение толщины магнитопаузы $\Delta = c/\omega_{ep}$ к характерному размеру магнитосферы Δ/L . С учетом диффузионного движения электронов вместо Δ/L используется отношение $\Delta_d/L = \operatorname{Re}_{mL}^{-1}$, где $\Delta_d = \left(c^2/\omega_{e\rho}^2\right)\left(0.5 \operatorname{lv}_{em}/U_{\infty}\right)$. Структура мини-магнитосферы на рис. 1 $(\mathbf{U}_{\infty} \perp \mathbf{B}_{\mathbf{W}})$ получена при обтекании сферы радиусом $r_{W_1} = 4.35 \times 10^{-2}$ м (постоянный магнит) при c_x/c_{0x}

Рис. 3. Зависимость коэффициента силы сопротивления c_x/c_{0x} "намагниченной" сферы P_{B_W}/P_d при обтекании гиперзвуковым потоком разреженной плазмы от параметра: *1*−*10* – осевая ориентация, $U_{\infty} \downarrow \uparrow \mathbf{B}_{W}$, $\theta = 0$; *11*−*17* – ортогональная, $U_{\infty} \perp \mathbf{B}_{W}$, $\theta = \pi/2$; *1*, *2*, *11*, *12* – измерения авторов для сферы $r_{W_1} = 4.35 \times 10^{-2}$ м с постоянным магнитом, режимы 1 (*1*, *11*) и 2 (*2*, *12*); *3*, *4*, *13*, *14* – сфера радиусом $r_{W_2} = 5.25 \times 10^{-2}$ м с соленоидом, режимы 1 (*3*, *13*) и 2 (*4*, *14*); *5* – сфера, расчет [13]; *6* – численное моделирование [12]; *7* – расчет [7]; *8*, *9* – полусфера с цилиндрической юбкой, расчет [8] (*8*), измерения [39] (*9*); *10* – аппроксимация авторов (1); *15* – расчет [10]; *16* – расчеты [11, 12]; *17* – аппроксимация авторов (2) при $f_2 \approx 0.573$.

 $L/r_{W_1} \approx 4.6, P_{B_W}/P_d \ge 4 \times 10^3$ для режима 2. Этому режиму соответствуют следующие значения параметров: М = 8.9, $B_W = 4 \times 10^{-2}$ Тл, $\Delta = 5.6 \times 10^{-2}$ м, $\Delta_d = 4.6 \times 10^{-3}$ м, $L_{i_T} = 5.7 \times 10^{-1}$ м, $L_{i_U} = 7.1$ м, для которых выполняются условия М ≥ 1 , Re_{mL} ≥ 1 , $\Delta/L \approx 0.2 < 1, \Delta_d/L = \text{Re}_{mL}^{-1} = 2 \times 10^{-2} \ll 1$, $L_{iU}/L \ge 1, L_{iT}/L \approx 2.4 (L_{iT} - ларморовский ради-ус "тепловых" ионов с энергией <math>E_i \approx 0.52$ эВ, $L_{iU} - ларморовский радиус ионов набегающего потока с энергией <math>E_i = 82$ эВ на границе минимагнитосферы). Число Кнудсена для ион-ионных

2020

Рис. 4. Схема токов и сил при $U_{\infty} \perp B_W$.

соударений Kn_i = $l_{ii}/L \approx 2.6$. Представленным на рис. 1 структурам соответствует переходный (между МГД и кинетическим) режим взаимодействия мини-магнитосферы с гиперзвуковым потоком разреженной плазмы. В [11] такой режим определяется как "лоренцево взаимодействие". Для него измеренные коэффициенты силы сопротивления "намагниченной" сферы $c_x (\theta = \pi/2)$ при $c_{0x} = 2.15$, $f_2 = 0.573$ согласуются с данными численного моделирования МГД и кинетического взаимодействия в системе "плазма—"намагниченное" тело" в пределах погрешности не более 10% [10–12].

ОБТЕКАНИЕ ИСТОЧНИКА "ТОЧЕЧНОГО" МАГНИТНОГО ПОЛЯ ПОТОКОМ ПЛАЗМЫ

В качестве источников собственного магнитного поля для КА могут быть использованы малогабаритные постоянные неодимовые магниты, сгруппированные по специальной схеме — сборки Халбаха. На рис. 5 показаны структуры обтекания сферы с усеченными вершинами (два соединенных последовательно шаровых слоя) радиусом $r_W = 3.65 \times 10^{-2}$ м и высотой каждого шарового слоя $h_W \approx 3.4 \times 10^{-2}$ м потоком разреженной плазмы при $\mathbf{U}_{\infty} \downarrow \uparrow \mathbf{B}_{\mathbf{W}}$ и $\mathbf{U}_{\infty} \perp \mathbf{B}_{\mathbf{W}}$.

Источником "точечного" собственного магнитного поля служит постоянный неодимовый магнит с характерным размером $\delta_W \simeq 4.5 \times 10^{-3}$ м и размером полюса $\delta_{B_{w}} \simeq 1.5 \times 10^{-3}$ м. В качестве модели (полусферы с усеченной вершиной) используется стандартная сборка Халбаха [41]. Приведенные на рис. 5 структуры свидетельствуют о том, что источник "точечного" постоянного магнитного поля в гиперзвуковом потоке разреженной плазмы формирует мини-магнитосферу - структуру, соответствующую модели Чэпмена-Ферраро [42, 43]. Для $z/\delta_{B_W} \ge 1$ и $\rho/\delta_{B_W} \ge 1$ на поверхности шарового слоя $\ddot{B}_W = 0$. Для структур на рис. 5 измеренные значения характерных параметров L, B_L согласуются с расчетными для системы "плазма-магнитный диполь". При $B_W = 1.0$ T π и $\delta_W = 4.5 \times 10^{-3}$ м имеем $L \approx 9.6 \times 10^{-2}$ м, $B_L = (\mu P_d)^{1/2} = B_W (\delta_W / L)^3 \approx$ ≈ 1×10⁻⁴ Тл при $P_d = 8.3 \times 10^{-3}$ Н/м² (L – характерный размер, расстояние до подсолнечной точки магнитопаузы; B_L – индукция магнитного поля в этой точке). При $U_{\infty} \downarrow \uparrow B_W$ (рис. 6, одиночный источник точечного магнитного поля) и $L = 9.6 \times 10^{-2}$ м коэффициент электромагнитной силы сопротивления в соответствии с аппроксимацией (1) существенно превосходит составляющую кинетического воздействия ионов потока плазмы $c_{0x} \ll c_{B_x} (c_{0x} \approx 2.15)$. Расчетное значение давления, создаваемого электромагнитной силой $P_{B_x} (\theta = 0^\circ, \pi) \approx c_{B_x} 0.5 \rho_{\infty} U_{\infty}^2 \approx 5.6 \times 10^{-1}$ Н/м². При $U_{\infty} \perp B_W$ ($L = 6 \times 10^{-2}$ м) имеем $P_{B_x} (\theta = \pi/2) \approx 2.1 \times 10^{-1}$ Н/м². Для двух вертикально соединенных (встык) "точечных" источников при $U_{\infty} \downarrow \uparrow B_W$ расстояние до подсолнечной точки магнитопаузы увеличивается в 1.2 раза (рис. 6), а для четырех соединенных встык и накрест сборок L увеличивается в 1.5 раза.

Давление электромагнитной силы P_{B_x} для такой схемы возрастает в 1.2 раза: $P_{B_v}(\theta = 0, \pi) \approx$ ≈ 6.7×10^{-1} H/м². С увеличением количества сборок наблюдается суперпозиция струйных образований у поверхности устройства. Структура поля течения на рис. 6 ($\mathbf{U}_{\infty} \downarrow \uparrow \mathbf{B}_{\mathbf{W}}$) свидетельствует о возможности создания устройства в виде сборки Халбаха с пространственно распределенным у его фронтальной поверхности постоянного магнитного поля с индукцией ~1.0-1.5 Тл. Это подтверждает и расчет распределения индукции постоянного магнитного поля сборки Халбаха из семи (k = 7) неодимовых магнитных кубиков с характерным размером $l_k = 2 \times 10^{-2}$ м. В центре кубика $B_k \approx 0.5$ Тл, на кромках $B_k \approx 1.0$ Тл. Результаты расчетов по программе FEMM [44] на рис. 7 свидетельствует о том, что на фронтальной поверхности сборки при $z = 1 \times 10^{-4}$ м индукция постоянного магнитного поля лежит в пределах от $B_{W\min} \approx 0.7$ Тл до $B_{W\max} \approx 1.4$ Тл.

ЭЛЕКТРОМАГНИТНАЯ СИЛА, ТОРМОЗЯЩАЯ "НАМАГНИЧЕННУЮ" СФЕРУ В ПОТОКЕ ПЛАЗМЫ

Для электромагнитной силы общепринятым является выражение $F_x = c_x 0.5 \rho_{\infty} U_{\infty}^2 \pi L^2$. Для ионосферы и магнитных полей с индукцией $B_W \ge 0.8$ Тл следует $r_W \ll L$, а $c_x = c_{0x} + c_{B_x} \approx c_{B_x}$, так как $c_{0x} \ll c_{B_x}$. Тогда для электромагнитной силы, действующей на "намагниченное" тело в ионосферной плазме, $F_x = c_{B_x} 0.5 \rho_{\infty} U_{\infty}^2 \pi r_W^2$. На рис. 8

Рис. 5. Структуры обтекания сферы с "точечным" постоянным магнитом при $U_{\infty} \downarrow \uparrow B_W$ (а) и $U_{\infty} \perp B_W$ (б).

приведены значения электромагнитной силы F_x , тормозящей "намагниченную" сферу радиусом $r_W = 1.0$ м с источником собственного магнитного поля $B_W = 0.8$ Тл на высотах 200–1000 км (день, средний уровень солнечной активности). Для ионов плазмы использовались данные [27] и модель IRI-2015.

Кроме аппроксимации (1), при определении коэффициента c_{B_x} применялось решение задачи для "намагниченной" сферы с магнитным диполем в центре [14] при $U_{\infty} \downarrow \uparrow B_{W}$: $F_{B_x} = 4\pi (\rho_{\infty} U_{\infty}^2/2) (eP_m/M_i U_{\infty}) 0.51$, или в виде $F_{B_x} = c_{B_x} 0.5 \rho_{\infty} U_{\infty}^2 \pi r_W^2$, где $c_{B_x} = (4\pi r_W \overline{V_i}/r_i U_{\infty}) =$ $= (4\pi \omega_{iB} r_W/U_{\infty}), P_m$ – магнитный момент диполя. Для случая $U_{\infty} \perp B_W (\theta = \pi/2)$ использовались (2) и аппроксимация $c_{B_x} \approx 0.5 (P_{B_W}/P_d)^{1/3}$, полученная с учетом данных [45]: $F_{B_x} \approx (P_m/\mu) (B_L/L)$, где $B_L = (\mu P_d)^{1/2}, L = r_W (2P_{B_W}/P_d)^{1/6}$, а также результатов численного решения задачи (рис. 10 в [46]): $F_{B_x} = c_{B_x} 0.5 \rho_{\infty} U_{\infty}^2 \pi L^2, c_{B_x} \approx 0.5$. Электромагнитная сила, тормозящая "намагниченную" сферу ради-

2020

Рис. 6. Структуры поля течения при обтекании магнитных сборок Халбаха потоком разреженной плазмы на стенде ИТМ с одним (а), двумя (б) и четырьмя (в) источниками точечного поля.

усом $r_W = 1.0$ м в ионосфере при $B_W = 0.8-1.0$ Тл, сравнима с импульсом, генерируемым плазменными ускорителями специальных КА [15, 16, 35, 47], и значительно превосходит силу сопротивления из-за взаимодействия "ненамагниченной" сферы с атмосферой Земли.

ЗАКЛЮЧЕНИЕ

Экспериментально в гиперзвуковом потоке разреженной плазмы, моделирующем взаимодействие КА с ионосферой, изучены особенности

Рис. 7. Расчет индукции постоянного магнитного поля, генерируемого сборкой Халбаха из семи неодимовых магнитных кубиков (стрелками показано направление векторов индукции магнитов) на различных расстояниях от фронтальной поверхности сборки: $1 - z = 1 \times 10^{-4}$ м, $2 - 1 \times 10^{-3}$, $3 - 5 \times 10^{-3}$, $4 - 1 \times 10^{-2}$.

Рис. 8. Электромагнитная сила F_x , тормозящая "намагниченную" сферу радиусом $\eta_W = 1.0$ м на высотах 200–1000 км при $\mathbf{U}_{\infty} \downarrow \uparrow \mathbf{B}_{\mathbf{W}}, \theta = 0^{\circ}, \pi$: *1* – аппроксимация $c_{Bx} = c_{ox} f_1 (P_{B_W} / P_d), 2$ – расчет [14]; при $\mathbf{U}_{\infty} \perp \mathbf{B}_{\mathbf{W}}, \ \theta = \pi/2$: *3* – аппроксимация авторов $c_{Bx} = c_{ox} f_1 f_2, 4 - c_{B_x} \approx 0.5 (P_{B_W} / P_d)^{1/3}$.

обтекания "намагниченной" сферы при осевой и ортогональной ориентации векторов набегающего потока и индукции собственного магнитного поля тела. В качестве источников магнитного поля использовались соленоид, постоянный цилиндрический магнит и источник "точечного" постоянного магнитного поля. Установлено, что для всех источников собственного магнитного поля в гиперзвуковом потоке разреженной плазмы у поверхности "намагниченной" сферы формируется плазменное образование, по структуре соответствующее модели Чэпмена–Ферраро, система токов которой генерирует электромагнитную силу, тормозящую сферу. Для источника "точечного" магнитного поля выполняются условия, характеризующие взаимодействие в системе "поток плазмы—магнитный диполь". Для осевой и ортогональной ориентаций векторов потока плазмы и индукции собственного магнитного поля получены зависимости коэффициентов электромагнитной силы сопротивления сферы от отношения магнитного давления к скоростному напору потока плазмы.

Показано, что при индукции собственного магнитного поля $B_W \ge 0.8$ Тл электромагнитная сила, тормозящая КА в ионосфере на высотах 200-1000 км, сравнима с импульсом, генерируемым плазменными ускорителями специальных КА, предназначенных для принудительного ("активного") торможения крупных объектов космического мусора и очистки околоземного космического пространства от ОКМ при сгорании их в плотных слоях атмосферы Земли. Для создания магнитных полей с индукцией 0.8-1.5 Тл, обеспечивающих при взаимодействии в системе "плазма-магнитное поле КА" генерирование электромагнитной силы, достаточной для увода крупных ОКМ на более низкие орбиты в ионосфере Земли, могут быть использованы постоянные магниты, сгруппированные по схеме Халбаха.

Работа выполнялась в рамках проекта "Целевой комплексной программы Национальной академии наук Украины по научным космическим исследованиям на 2018—2022 гг.".

СПИСОК ЛИТЕРАТУРЫ

- 1. Bush W.B. Magnetohydrodynamic Hypesonic Flow Past a Blunt Body // J. Aerospace Sci. 1958. V. 25. № 11. P. 685.
- 2. *Куликовский А.Г.* Об обтекании намагниченных тел проводящей жидкостью // ДАН СССР. 1957. Т. 117. № 2. С. 199.
- 3. *Куликовский А.Г., Любимов Г.А.* Магнитная гидродинамика. М.: Физматлит, 1962. 246 с.
- Бай Ши–и. Магнитная газодинамика и динамика плазмы. М.: Мир, 1964. 302 с.
- 5. Битюрин В.А., Бочаров А.Н., Попов А.Н. Исследование МГД-торможения в атмосфере Земли // ТВТ. 2010. Т. 48. № 1 (доп. вып.). С. 113.
- Бочаров А.Н. Исследование МГД-торможения в атмосфере Земли (эффекты индуцированного магнитного поля) // ТВТ. 2010. Т. 48. № 4. С. 483.
- Битюрин В.А., Ватажин А.Б., Гуськов О.В., Копченов В.И. Обтекание головной части тела гиперзвуковым потоком при наличии магнитного поля // Изв. РАН. МЖГ. 2004. № 4. С. 169.
- Katsurayama H., Kawamura M., Matsuda A., Abe T. Kinetic and Continuum Simulation of Electromagnetic Control of a Simulated Reentry Flow // J. Spacecr. Rockets. 2008. V. 45. № 2. P. 248.

- Bityurin V.A., Bocharov A.N., Popov N.A. Magnetohydrodynamic Deceleration in the Earth's Atmosphere // J. Phys. D: Appl. Phys. 2019. V. 52. № 35. 354001.
- Zubrin P.M., Andrews D.G. Magnetic Sail and Interplanetary Travel // J. Spacecr. Rockets. 1991. V. 28. № 2. P. 197.
- Fujita K. Particle Simulation of Moderately-sized Magnetic Sails // J. Space Technol. Sci. 2005. V. 20. № 2. P. 26.
- 12. Nishida H., Funaki I. Analysis of Trust Characteristics of a Magnetic Sail in Magnetized Solar Wind // J. Propuls. Power. 2012. V. 28. № 3. P. 636.
- Fujino T., Shimosowa Y. Numerical Study of Magnetohydrodynamic Flow Control along Superorbital Reentry Trajectories // J. Spacecr. Rockets. 2016. V. 53. № 3. P. 528.
- 14. Гунько Ю.Ф., Курбатова Г.И., Филиппов Б.В. Методика расчета аэродинамических коэффициентов тел в сильно разреженной плазме при наличии собственного магнитного поля // Аэродинамика разреженных газов. Вып. 6. Л.: ЛГУ, 1973. С. 54.
- 15. Inamori T., Kawashima R., Saisutjarit P., Sako N., Ohsaki H. Magnetic Plasma Deorbit System for Nanoand Micro-satellites Using Magnetic Torquer Interference with Space Plasma in Low Earth Orbit // Acta Astronautica. 2015. V. 112. P. 192.
- Kawashima R., Bak J., Matsurawa S., Inamori T. Particle Simulation of Plasma Drag Force Generation in the Magnetic Plasma Deorbit // J. Spacecr. Rockets. 2018. V. 55. № 5. P. 1074.
- Галкин В.С. Определение моментов и сил, действующих на вращающиеся тела в свободномолекулярном потоке и в потоке света // Инж. журн. 1965. Т. 5. № 5. С. 954.
- Moe K., Moe M.M., Wallace S.D. Improved Satellite Drag Coefficient Calculation from Orbital Measurements of Energy Accommodation // J. Spacecr. Rockets. 1998. V. 35. № 3. P. 266.
- Основы газовой динамики / Под ред. Эммонса Г. М.: Изд-во иностр. лит., 1963. 702 с.
- 20. Mehta P.M., Walker A., McLaughlin C.A., Koller J. Comparing Physical Drag Coefficients Computed Using Different Gas-Surface Interaction Models // J. Spacecr. Rockets. 2014. V. 51. № 3. P. 873.
- Подгорный И.М., Сагдеев Р.З. Физика межпланетной плазмы и лабораторные эксперименты // УФН. 1968. Т. 98. № 3. С. 409.
- Альперт Я.Л., Гуревич А.В., Питаевский Л.П. Искусственные спутники в разреженной плазме. М.: Наука, 1964. 382 с.
- Митчнер М., Кругер И. Частично ионизованные газы. М.: Мир, 1976. 496 с.
- Котельников В.А., Котельников М.В. Использование формулы Бома и ее аналогов в зондовой диагностике // ТВТ. 2017. Т. 55. № 4. С. 493.
- Шувалов В.А., Кочубей Г.С., Приймак А.И., Резниченко Н.П., Токмак Н.А., Лазученков Д.Н. Контактная диагностика высокоскоростных потоков разреженной плазмы // ТВТ. 2005. Т. 43. № 3. С. 343.
- 26. Мустафаев А.С.-У., Некучаев В.О., Сухомлинов В.С. Влияние упругих столкновений на функцию распределения ионов в плазме газового разряда в собственном газе // ТВТ. 2018. Т. 56. № 2. С. 168.

ТЕПЛОФИЗИКА ВЫСОКИХ ТЕМПЕРАТУР том 58 № 2 2020

- 27. Spacecraft/Plasma Interaction, and Electromagnetic Effects in LEO and Polar Orbits. Final Report. ESA/ESTEC Contract Report. V. 1. № 7989/88/ NL/PB(SC). Culham Laboratory, Abingdon, Oxon, UK, 1990. 325 p.
- Брагинский С.И. Явления переноса в плазме. В кн.: Вопросы теории плазмы. Вып. 1. М.: Госатомиздат, 1963. С. 191.
- 29. Шувалов В.А. Об обмене энергией и импульсом ионов потока разреженной плазмы с электропроводящей поверхностью, покрытой тонким слоем диэлектрика // ТВТ. 1987. Т. 25. № 4. С. 644.
- Cook G.E. Satellite Drag Coefficients // Planet. Space Sci. 1965. V. 13. P. 926.
- Pyarnpuu A.A. Computer Study of Gas Atoms Scattering from Solid Surface with Application to Calculation of Satellite Drag Coefficient // Entropie. 1971. № 42. P. 91.
- 32. *Нечтел Е., Питтс У.* Экспериментальные исследования сопротивления движению спутников, обусловленного электрическими силами // Ракетная техника и космонавтика. 1964. Т. 2. № 6. С. 222.
- 33. Масленников М.В., Сигов В.С., Чуркина Г.П. Численные эксперименты по обтеканию тел различной формы разреженной плазмой // Космические исследования. 1968. Т. 6. № 2. С. 220.
- 34. *Вуд* Г.П. Электрическое торможение спутника в верхней атмосфере Земли // Газовая динамика космических аппаратов. М.: Мир, 1965. С. 258.
- 35. Шувалов В.А., Горев Н.Б., Токмак Н.А., Кочубей Г.С. Физическое моделирование длительного воздействия плазменной струи на объект космического мусора // Космические исследования. 2018. Т. 56. № 3. С. 243.
- 36. Шувалов В.А., Токмак Н.А., Письменный Н.И., Кулагин С.Н., Кочубей Г.С. Торможение "намагниченной" сферы в гиперзвуковом потоке разреженной плазмы // ТВТ. 2018. Т. 56. № 4. С. 490.
- 37. Хаджимихалис К., Брандин К. Влияние температуры стенки на сопротивление сферы в гиперзвуко-

вом потоке разреженного газа. В. кн.: Динамика разреженных газов / Под. ред. Шидловского В.П. Вып. 6. М.: Мир, 1976. С. 274.

- Katsurayama H., Abe T. DSME Simulation of Electrodynamics Aerobraking in a Hypersonic Rarefied Nitrogen Atmosphere // 49th AJAA Aerospace Sci. Meeting. Orlando. Florida, 2011. 8 p.
- 39. Kawamura H., Matsuda A., Katsurayama H., Otsu H., Konigroshi D., Sato S., Abe T. Experiment on Drag Enhancement for a Blunt Body with Electrodynamics Heat Shield // J. Spacecr. Rockets. 2009. V. 46. № 6. P. 1171.
- 40. Funaki I., Kojima H., Yamakawa H., Nakayama Y., Shimizu Y. Laboratory Experiment of Plasma Flow around Magnetic Sail // Astrophys. Space Sci. 2007. № 307. P. 63.
- Halbach K. Application of Permanent Magnets in Accelerators and Electron Storage Rings // J. Appl. Phys. 1985. V. 57. № 1. P. 3605.
- 42. Chapman S., Ferraro V.C. A New Theory of Magnetic Storms // Terrestial Magnetism and Atmospheric Electricity. 1931. V. 36. № 3. P. 77.
- 43. *Ferraro V.C.* On the Theory of the First Phase of the Geomagnetic Storm: A New Illustrative Calculation Based on a Idealized (Plane not Cylindrical) Model Field Distribution // Terrestial Magnetism and Atmospheric Electricity. 1940. V. 45. № 9. P. 245.
- 44. *Meeker D.* FEMM: Finite Element Method Magnetics. Ver. 4.2. User Manual. 2018. 161 p.
- Toivanen P.K., Janhunen P., Koskinen H.E.J. Magnetospheric Propulsion (eMPii). ESTEC/Contractor N16361/02/NL/LvH. Final Report. Iss. 1.3. Apr. 5, 2004. 78 p.
- 46. *Nishida H., Ogawa H., Funaki I., Fujita K., Yamakawa H.* Two-dimensional Magnetohydrodynamic Simulation of a Magnetic Sail // J. Spacecr. Rockets. 2006. V. 43. № 3. P. 667.
- 47. *Mark C.P., Kamath S.* Review of Active Space Debris Removal Methods // Space Policy. 2019. V. 47. P. 194.