УДК 536.24:621.039.53/54

ТЕРМОДИНАМИЧЕСКАЯ ОЦЕНКА СТАБИЛЬНОСТИ МЕТАЛЛИЧЕСКИХ И КЕРАМИЧЕСКИХ МАТЕРИАЛОВ В БИНАРНОМ РАСПЛАВЕ Sn-20% Li

© 2020 г. В. П. Красин^{1, *}, С. И. Союстова¹

¹ФГБО ВО "Московский политехнический университет", Москва, Россия

**E-mail: vkrasin@rambler.ru* Поступила в редакцию 05.11.2019 г. После доработки 09.02.2020 г. Принята к публикации 10.03.2020 г.

На основе информации об избыточных энергиях Гиббса смешения для жидкой фазы в форме полиноминального разложения Редлиха—Кистера для соответствующих бинарных систем методом термодинамического моделирования рассчитаны температурные зависимости растворимости никеля, железа, хрома, молибдена и вольфрама в жидком сплаве Sn-20% Li. Также проведена термодинамическая оценка стабильности ряда двойных и тройных оксидов металлов в жидком сплаве $Li_{20}Sn_{80}$ при температурах 500 и 800°С.

DOI: 10.31857/S0040364420030102

введение

Развитие технологий, в которых используются легкоплавкие металлы, невозможно без расширения базы исследований физико-химических свойств жидких металлов [1–4].

Жидкие сплавы литий—олово обладают таким набором физико-химических свойств, который делает их привлекательными с точки зрения возможного использования в качестве жидкометаллического компонента капиллярно-пористых систем (КПС) в токамаках [5]. По сравнению с жидким литием, с которого и началась реализация идеи использования жидких металлов при проектировании внутрикамерных компонентов токамака, сплавы Li—Sn характеризуются более низкими значениями давления пара над расплавом [6]. Это может позволить повысить максимально допустимую температуру при их использовании в КПС.

Сплавы Li–Sn стали возможной альтернативой литию, но существует ряд обстоятельств, которые требуют дополнительных исследований для обоснования возможности применения этих сплавов во внутрикамерных компонентах токамака. В частности, одной из таких проблем может оказаться загрязнение плазмы токамака оловом как элементом с высоким значением зарядового числа Z вследствие ионного распыления. При использовании сплавов литий—олово следует учитывать, что олово является одним из наиболее агрессивных жидких металлов по отношению к конструкционным материалам. В частности, в работах [7, 8] отмечается, что олово реагирует со сталями с образованием интерметаллидов FeSn, и FeSn, вследствие чего жидкое олово или жидкие сплавы, содержащие Sn, не могут использоваться в качестве теплоносителя в контурах, изготовленных из ферритной или аустенитной стали, при температурах, существенно превышающих температуру плавления жидкого сплава. По оценкам авторов работы [8], удовлетворительной коррозионной стойкостью в жидком олове в более широком диапазоне температур должны обладать материалы на основе Мо, W и Re. Результаты кратковременных (1 ч) изотермических коррозионных испытаний образцов аустенитной нержавеющей стали, молибдена и вольфрама [9] также показали, что только Мо и W оказались устойчивыми к воздействию жидкого олова при температурах выше 400°С.

Одним из основных параметров, определяющих кинетику и динамику массообмена в контуре с жидким металлом, является растворимость компонентов конструкционного материала в легкоплавком металле или сплаве. Отсутствие достоверных данных о равновесной растворимости компонентов конструкционных материалов в жидком металле затрудняет определение температурного диапазона применимости этих материалов.

Если несистематизированные данные по растворимости железа, хрома, никеля и молибдена в жидком олове можно найти в литературе, то для растворимости перечисленных выше металлов, а также вольфрама в бинарных расплавах Li–Sn такая информация отсутствует. Экспериментальные работы, в которых имелась бы достоверная информация о растворимости вольфрама в жидком литии и жидком олове также неизвестны, что объясняется чрезвычайно низкими значениями растворимости этого металла практически во всех жидких металлах [10]. Отсутствие надежных термодинамических данных о растворимостях и активностях компонентов конструкционных материалов в расплавах Li–Sn существенно затрудняет понимание механизмов коррозионных процессов в таких системах.

Среди возможных кандидатов для использования во внутрикамерных компонентах токамака рассматриваются сплавы Li–Sn, в которых содержание лития варьируется от 20 до 30 ат. %. В настоящей работе в качестве объекта исследования выбран жидкий сплав с содержанием компонентов 20 ат. % Li и 80 ат. % Sn, для которого в дальнейшем будет использоваться обозначение $Li_{20}Sn_{80}$.

С помощью термодинамического моделирования сделана попытка расчетным путем получить информацию о растворимостях компонентов конструкционных материалов в расплаве $Li_{20}Sn_{80}$ в диапазоне температур, представляющем практический интерес. В качестве таких компонентов рассмотрены следующие металлы: Fe, Ni, Cr, Mo, W. Таким образом, поставленная задача сводится к рассмотрению фазовых равновесий с участием жидкой фазы в определенных диапазонах концентраций в следующих трехкомпонентных системах: Li–Sn–Fe, Li– Sn–Ni, Li–Sn–Cr, Li–Sn–Mo и Li–Sn–W.

Одной из задач настоящей работы является проведение термодинамической оценки влияния температуры и содержания лития в жидком сплаве Li-Sn на стабильность ряда двойных и тройных оксидов в жидкометаллической среде. Как известно, нанесение оксидных (или других керамических) покрытий на внутренние поверхности каналов охлаждения бланкета термоядерного реактора – один из способов преодоления магнитогидродинамических перепадов давления в жидкометаллическом контуре. В последние десятилетия проводятся интенсивные исследования по созданию керамических покрытий, выполняющих функцию барьера от проникновения трития через материалы, из которых предполагается изготавливать трубы контуров и другие поверхности, контактирующие с бланкетом [11].

ТЕРМОДИНАМИЧЕСКОЕ МОДЕЛИРОВАНИЕ

Состояние чистого элемента в твердом состоянии в его стабильной форме при $T_0 = 298.15$ К выбиралось для сравнения в рассматриваемой системе. Энергия Гиббса ${}^{\circ}G_i(T) - H_i^{\text{SER}}(T)$ для элемента *i* (*i* = Li, Sn, Fe, Ni, Cr, Mo, W) в фазе φ описывается следующим уравнением:

$${}^{\circ}G_{i}(T) - H_{i}^{\text{SER}}(T_{0}) = a + bT + c\ln(T) + \sum_{n} d_{n}T^{n},$$

где T – абсолютная температура, К; $H_i^{\text{SER}}(T_0)$ – молярная энтальпия элемента *i* при температуре 298.15 К и давлении 10^5 Па в его стандартном состоянии¹. В качестве источника необходимых для расчетов термодинамических данных чистых элементов выбрана база данных SGTE (Scientific Group Thermodata Europe) [12].

Жидкометаллические растворы так же, как и твердые растворы, рассматривались как растворы замещения. Молярная энергия Гиббса G_m^{ϕ} раствора (фаза ϕ) может быть записана в следующем виде:

$$G_{m}^{\phi} - H^{\text{SER}} = {}^{\text{ref}}G + {}^{\text{id}}G^{\phi} + {}^{xs}G^{\phi},$$

$${}^{\text{ref}}G = \sum_{i} \left(G_{i}(T) - H_{i}^{\text{SER}}(T_{0}) \right) x_{i},$$

$${}^{\text{id}}G^{\phi} = RT \sum_{i} x_{i} \ln(x_{i}), \quad {}^{xs}G^{\phi} = \sum_{i \neq j} x_{i} x_{j} \times$$

$$\times \left[L_{ij}^{0} + (x_{i} - x_{j}) L_{ij}^{1} + (x_{i} - x_{j})^{2} L_{ij}^{2} + \dots \right],$$

(1)

где *i*, *j* = Li, Sn, Fe, Ni, Cr, Mo, W; ^{геf}G – энергия Гиббса фазы φ , состоящей из чистых компонентов, или, как ее еще называют, в состоянии сравнения; ^{id}G^{φ} – энергия смешения в случае идеальных растворов; ^{xs}G^{φ} – избыточная энергия Гиббса смешения, которая представлена в виде полиноминального разложения Редлиха—Кистера [13]; L_{ij}^0 , L_{ij}^1 , L_{ij}^2 – парные параметры взаимодействия для данной бинарной системы, которые являются также функциями температуры; x_i и x_j – мольные доли компонентов системы. Методы критической оценки и оптимизации термодинамических параметров для бинарных систем подробно изложены в монографии [14].

В случае, когда в полиноминальном разложении (см. последнее уравнение в (1)) оставляются только члены с коэффициентами L_{ij}^0 и L_{ij}^1 и при этом сохраняется зависимость этих коэффициентов от температуры, такая модель раствора называется псевдо-субрегулярной [15, 16]. Тогда последнее уравнение в (1) переписывается в следующем виде:

$${}^{xs}G^{\varphi} = \sum_{i \neq j} x_i x_j \Big[\Omega^i_{ij}(T) x_i + \Omega^j_{ij}(T) x_j \Big], \qquad (2)$$

где $\Omega_{ij}^{i}(T) = \left(\tilde{\Omega}_{ij}^{i} + \bar{\Omega}_{ij}^{i}T\right)$ и $\Omega_{ij}^{j}(T) = \left(\tilde{\Omega}_{ij}^{j} + \bar{\Omega}_{ij}^{j}T\right) -$ парные параметры взаимодействия для бинарной системы $A_{i} - A_{j}$.

В качестве некоторого преимущества, которое дает использование уравнения (2), следует отме-

¹ Индекс SER является английской аббревиатурой "standard element reference".

ТЕРМОДИНАМИЧЕСКАЯ ОЦЕНКА СТАБИЛЬНОСТИ

гаолица 1. Парные параметры взаимодеиствия для жидкой фазы в ойнарных системах					
Система	Парные параметры, Дж/моль	Диапазон концентраций	Источник		
Li–Sn	$\Omega_{\text{LiSn}}^{\text{Li}}(T) = -1.4252 \times 10^5 + 22.0141T$ $\Omega_{\text{LiSn}}^{\text{Sn}}(T) = -4.936 \times 10^4 + 0.28945T$	$0 \le x_{\mathrm{Li}} \le 0.5$	[17]		
Li–Fe	$\Omega_{\text{LiFe}}^{\text{Li}} = \Omega_{\text{LiFe}}^{\text{Fe}} = 58059.7 + 44.950T$	$0 \le x_{\rm Fe} \le 0.1$	[18]		
Sn–Fe	$\Omega_{SnFe}^{Sn} = 28659 - 1.7881T$ $\Omega_{SnFe}^{Fe} = 20054 - 1.7881T$	$0 \le x_{\rm Fe} \le 0.25$	[19]		
Li–Ni	$\Omega_{\rm LiNi}^{\rm Li} = \Omega_{\rm LiNi}^{\rm Ni} = 60732.8 - 0.8386T$	$0 \le x_{ m Ni} \le 0.1$	[20]		
Sn–Ni	$\Omega_{\text{SnNi}}^{\text{Sn}} = -87255 + 280.03T - 31.934T \ln(T)$ $\Omega_{\text{SnNi}}^{\text{Ni}} = -205955 + 528.66T - 63.868T \ln(T)$	$0 \le x_{ m Ni} \le 0.5$	[19]		
Li–Cr	$\Omega_{\rm LiCr}^{\rm Li} = \Omega_{\rm LiCr}^{\rm Cr} = 170966.6 - 52.341T$	$0 \le x_{\rm Cr} \le 0.1$	[20]		
Sn–Cr	$\Omega_{SnCr}^{Sn} = 37105 + 8.566T$ $\Omega_{SnCr}^{Cr} = 21257 + 1.196T$	$0 \le x_{\rm Cr} \le 0.5$	[19]		
Li–Mo*	$\Omega_{\rm LiMo}^{\rm Li} = \Omega_{\rm LiMo}^{\rm Mo} = 2.5085 \times 10^5 - 55.4900T$	$0 \le x_{Mo} \le 0.1$	[21]		
Sn–Mo	$\Omega_{\rm LiMo}^{\rm Li} = \Omega_{\rm LiMo}^{\rm Mo} = 69000 + 11.72T$	$0 \le x_{\mathrm{Mo}} \le 0.1$	[22]		
Li–W*	$\Omega_{\rm LiW}^{\rm Li} = \Omega_{\rm LiW}^{\rm W} = 219001.7 - 61.187T$	$0 \le x_{\mathrm{W}} \le 0.1$	[21]		
Sn–W*	$\Omega_{\text{SnW}}^{\text{Sn}} = \Omega_{\text{SnW}}^{\text{W}} = 244970.5 - 62.367T$	$0 \le x_{\mathrm{W}} \le 0.1$	[21]		

Таблица 1. Парные параметры взаимолействия лля жилкой фазы в бинарных системах

* Теоретическая оценка по модели А. Миедемы [21].

тить возможность получения аналитических зависимостей коэффициентов термодинамической активности компонентов металлических растворов в виде функции температуры и состава в случае трехкомпонентной системы $(i, j = 1-3; i \neq j)$. В частности, для коэффициента термодинамической активности третьего компонента A_3 в системе Li–Sn– A_3 справедливо следующее соотношение:

где

$$RT \ln \gamma_3 = x_1 Q_{31} + x_2 Q_{32} - \Delta H_{\text{mix}},$$

$$\begin{split} \Delta H_{\min} &= \sum_{i \neq j} \left\{ x_i x_j \left[\Omega_{ij}^i \left(T \right) \left(\frac{x_i}{x_i + x_j} \right) + \right. \\ &+ \left. \Omega_{ij}^j \left(T \right) \left(\frac{x_j}{x_i + x_j} \right) \right] \right\}, \\ Q_{31} &= \Omega_{13}^1 \left(T \right) \left(\frac{x_1}{x_1 + x_3} \right) + \left. \Omega_{13}^3 \left(T \right) \left(\frac{x_3}{x_1 + x_3} \right) + \right. \\ &+ \left(\frac{x_1}{x_1 + x_3} \right) \left(\frac{x_3}{x_1 + x_3} \right) \left[\Omega_{13}^3 \left(T \right) - \Omega_{13}^1 (T) \right], \end{split}$$

 $Q_{32} = \Omega_{23}^{2}(T) \left(\frac{x_{2}}{x_{2} + x_{3}}\right) + \Omega_{23}^{3}(T) \left(\frac{x_{3}}{x_{2} + x_{3}}\right) + \left(\frac{x_{2}}{x_{2} + x_{3}}\right) \left(\frac{x_{3}}{x_{2} + x_{3}}\right) \left[\Omega_{23}^{3}(T) - \Omega_{23}^{2}(T)\right].$

В данном случае $A_3 = Fe$, Ni, Cr, Mo, W.

Поскольку в литературе отсутствуют экспериментальные данные о коэффициентах термодинамической активности таких элементов, как Li, Sn, Fe, Ni, Cr, Mo и W в жидкометаллических расплавах Li–Sn–Fe, Li–Sn–Ni, Li–Sn–Cr, Li–Sn– Мо и Li–Sn–W, для нахождения необходимых термодинамических параметров перечисленных выше трехкомпонентных систем использовались полученные из литературы экспериментальные данные соответствующих бинарных систем.

Величины парных параметров взаимодействия для жидкой фазы в бинарных системах, которые применялись в расчете по уравнениям псевдосубрегулярной модели, приведены в табл. 1.

Представленные в табл. 1 температурные зависимости парных параметров взаимодействия являются результатом применения уравнений регрессионной модели к массиву эксперимен-

2020

Рис. 1. Диаграмма состояния Mo-Sn [24].

тальных данных, относящихся к конкретной бинарной системе, включая информацию, полученную из соответствующих фазовых диаграмм [10]. Метод оптимизации, разработанный авторами работы [23], использовался при получении полиномиальных выражений избыточной энергии Гиббса как функции состава и температуры для всех исследуемых здесь бинарных систем.

Если рассматривать диаграммы бинарных систем Fe–Sn, Ni–Sn, Cr–Sn, Mo–Sn и Sn–W, то только для двух последних из перечисленных характерно отсутствие областей растворимости более тугоплавкого металла в жидком олове (рис. 1 и 2). Как видно из диаграммы состояния Sn–W (рис. 2), эта система относится к классу систем с практически полным отсутствием взаимодействия между компонентами в твердом и жидком состояниях, что заметно выделяет ее среди других рассматриваемых здесь бинарных систем, в которых помимо областей взаимной растворимости еще зафиксировано образование промежуточных фаз [10].

Также в качестве исходных данных для расчетов в настоящей работе использовались полученные из анализа экспериментальных данных температурные зависимости растворимости металлов в жидком литии и жидком олове (табл. 2).

Как результат термодинамического моделирования ниже приводятся полученные зависимости предельных растворимостей Fe, Ni, Cr, Mo и W в расплаве $Li_{20}Sn_{80}$ в диапазоне температур 623–1173 К:

$$x_{\text{Fe}}^{\text{sat}} = \exp\left(2.851 - \frac{9951}{T}\right),$$

$$x_{\text{Ni}}^{\text{sat}} = \exp\left(3.330 - \frac{9746}{T}\right),$$

$$x_{\text{Cr}}^{\text{sat}} = \exp\left(3.794 - \frac{11520}{T}\right),$$

$$x_{\text{Mo}}^{\text{sat}} = \exp\left(2.612 - \frac{18260}{T}\right),$$

$$x_{\text{W}}^{\text{sat}} = \exp\left(-8.0 \times 10^{-4} - \frac{23940}{T}\right).$$
(3)

Из представленных на рис. 3 и 4 зависимостей следует, что из пяти переходных металлов, исследуемых в настоящей работе, никель обладает наи-

Рис. 2. Диаграмма состояния Sn–W[25] при *P*=0.1 МПа.

большей растворимостью в расплаве $Li_{20}Sn_{80}$ в указанном диапазоне температур. Результаты термодинамического моделирования показывают, что из рассмотренных металлов только Мо и W характеризуются приемлемыми уровнями растворимости в $Li_{20}Sn_{80}$ при температурах выше 600°C.

Можно оценить, как отклонение жидкой фазы в какой-либо из рассматриваемых здесь трехкомпонентных систем от идеального поведения повлияло на величину растворимости компонента конструкционных материалов в жидкометаллическом расплаве. Остановимся, например, на си-

Рис. 3. Температурные зависимости растворимости хрома (1), железа (2) и никеля (3) в жидком сплаве $Li_{20}Sn_{80}$, полученные в результате термодинамического моделирования, и растворимости Fe в $Li_{20}Sn_{80}$, рассчитанной по модели, в которой бинарный растворитель рассматривался как идеальный (4), а также растворимости Fe в жидком олове (5) по данным [26] (эксперимент).

стеме Li–Sn–Fe и выберем в качестве такой фазы разбавленный раствор железа в жидкой фазе Li–Sn, в которой мольные доли компонентов удовлетворяют соотношению $x_{\text{Li}}: x_{\text{Sn}} = 20:80$. Если пред-

Металл	Раствор	Истонник	
	Li	Sn	Источник
Fe	$x_{\rm Fe(Li)}^{\rm sat} = \exp(5.409 - 6.987 \times 10^3/T)$	$x_{\rm Fe(Sn)}^{\rm sat} = \exp(3.974 - 8.001 \times 10^3/T)$	[18, 26]
Cr	$x_{\rm Cr(Li)}^{\rm sat} = \exp(6.299 - 20.57 \times 10^3/T)$	$x_{\rm Cr(Sn)}^{\rm sat} = \exp(4.053 - 8.474 \times 10^3/T)$	[20, 27]
Ni	$x_{\rm Ni(Li)}^{\rm sat} = \exp(0.1009 - 7.308 \times 10^3/T)$	$x_{\rm Ni(Sn)}^{\rm sat} = \exp(2.335 - 5.523 \times 10^3/T)$	[20, 28]
Мо	$x_{\text{Mo(Li)}}^{\text{sat}} = \exp(6.678 - 30.19 \times 10^3 / T)$	$x_{\text{Mo(Sn)}}^{\text{sat}} = \exp(1.203 - 12.89 \times 10^3/T)$	[21]*, [22]
W	$x_{W(Li)}^{sat} = \exp(7.363 - 26.35 \times 10^3/T)$	$x_{W(Sn)}^{sat} = \exp(7.505 - 29.48 \times 10^3/T)$	[21]*

Таблица 2. Температурная зависимость растворимости металлов (мол. дол.) в жидком литии и жидком олове при 673–1173 К

* Теоретическая оценка по модели А. Миедемы.

Рис. 4. Температурные зависимости растворимости вольфрама (1) и молибдена (2) в жидком сплаве $Li_{20}Sn_{80}$, полученные в результате термодинамического моделирования, а также растворимости Мо в жидком олове (3) по данным [22] (эксперимент).

положить, что раствор лития в олове является идеальным, то, в соответствии с [29], для оценки растворимости Fe в расплаве $Li_{20}Sn_{80}$ применимо следующее уравнение:

$$\ln x_{\rm Fe(Li-Sn)}^{\rm sat} = x_{\rm Li} \ln x_{\rm Fe(Li)}^{\rm sat} + x_{\rm Sn} \ln x_{\rm Fe(Sn)}^{\rm sat}, \qquad (4)$$

где $x_{Li} = 0.2$ и $x_{Sn} = 0.8$ — мольные доли лития и олова в бинарном жидком сплаве Li–Sn.

Расчет по уравнению (4) приводит к завышенным значениям (рис. 3) растворимости железа в сплаве Li₂₀Sn₈₀ по сравнению с данными, полученными в результате строгого термодинамического моделирования (3). Это представляется вполне объяснимым, если принять во внимание, что жидкие сплавы системы Li–Sn принадлежат к классу расплавов с сильным химическим взаимодействием компонентов, для которых характерны значительные отрицательные отклонения от идеального поведения [17]. Следует отметить, что растворимость Fe в Li₂₀Sn₈₀ даже при 1000°C не превышает 2 ат. %. Рассматривая трехкомпонентный раствор Li-Sn-Fe с позиции модели центрального атома [30, 31], можно отметить особенность системы Li–Sn (γ_{Li} ≪ 1). Она определенно

указывает на то, что в растворе существует тенденция к образованию таких атомных группировок², в которых в первой координационной сфере вокруг атома Sn преимущественно располагаются атомы Li. Соответственно, снижается доля атомных группировок, в которых в первой координационной сфере вокруг атома Sn преимущественно располагаются атомы Fe, и, таким образом, в реальном расплаве Li–Sn–Fe уменьшается величина $x_{Fe(Li-Sn)}^{sat}$ по сравнению с тем уровнем растворимости, который мог бы иметь место в случае, если жидкий раствор Li–Sn по своим свойствам можно было бы считать идеальным.

Об исследованиях совместимости конструкционных материалов с жидкими сплавами Li–Sn из литературы известно крайне мало. О высоком уровне растворимости Fe в жидком сплаве $Li_{20}Sn_{80}$ сообщают авторы работы [33], в которой изучалась коррозия ферритно-мартенситной стали JLF-1 (Fe–9Cr–2W–0.1C) в сплаве $Li_{20}Sn_{80}$ при 600°C. Эти данные хорошо согласуются с результатами настоящей работы, из которых следует, что по такому параметру, как растворимость основных компонентов конструкционных материалов, жидкий сплав $Li_{20}Sn_{80}$ близок к жидкому олову.

Рассматривая настоящие расчеты (рис. 3 и 4) с точки зрения их возможного практического применения к промышленным сплавам на основе молибдена и вольфрама, необходимо учитывать влияние химических реакций между оксидами этих тугоплавких металлов и оксидом лития на процесс растворения компонентов конструкционного материала в жидком сплаве Li₂₀Sn₈₀. Возможность протекания таких реакций не может быть исключена, поскольку присутствие небольшого количества оксидов по границам зерен и на поверхности сплавов непосредственно связано с современными технологиями получения этих материалов. Из анализа литературы следует, что в качестве наиболее термодинамически стабильных соединений среди других сложных оксидов, являющихся продуктами реакций с участием простых оксидов тугоплавких металлов и Li₂O, в системах Li-Mo-O и Li-W-O можно рассматривать Li₂MoO₄ и Li₂WO₄. В [34] показана возможность образования сложного оксида лития и молибдена в результате следующей реакции:

 $Li_2O(cr) + MoO_3(cr) \rightarrow Li_2MoO_4(cr),$

² В расплаве атомы находятся в непрерывном движении, поэтому имеет смысл говорить об усредненной в течение некоторого времени *t* короткоживущей конфигурации атомов. Для таких конфигураций разумная оценка времени усреднения лежит в диапазоне $\tau_0 < t < \tau_D$ (τ_0 – период колебаний атома в положении равновесия; τ_D – время "оседлой жизни" атома [32]). По данным [32], $\tau_0 \approx 10^{-13}$ с и $\tau_D \approx 10^{-11}$ с.

для которой изменение энергии Гиббса в результате реакции при 298.15 К составляет $\Delta_r G^\circ = -(180 \pm 3) \ \kappa Дж/моль.$ Несмотря на то, что факт образования сложного оксида Li₂WO₄ экспериментально подтвержден [35], установить достоверное значение величины $\Delta_{L}G^{\circ}$ реакции образования этого соединения из оксидов металлов в настоящее время не представляется возможным вследствие существенного разброса термодинамических данных. Термодинамическая стабильность Li₂MoO₄ и Li₂WO₄ с повышением температуры снижается, и, по мнению некоторых исследователей [36], часть этих соединений переходит в жидкометаллический расплав, что может приводить к увеличению эффективной растворимости Мо и W в жидкой фазе системы.

ТЕРМОДИНАМИКА ВЗАИМОДЕЙСТВИЯ ЖИДКИХ СПЛАВОВ Li–Sn С БИНАРНЫМИ И ТРОЙНЫМИ ОКСИДАМИ МЕТАЛЛОВ

Для решения ряда вопросов (см. Введение), связанных с возможным использованием жидких сплавов Li–Sn в жидкометаллических системах токамаков, возникает потребность в прогнозировании химической стабильности керамических материалов при контакте с этими сплавами. Термодинамический анализ взаимодействий между сплавом Li–Sn и тройными оксидами металлов (в состав которых входит литий) также представляет практический интерес, поскольку тройные оксиды, как известно из работ по изучению процессов с участием жидких сплавов Li₁₇Pb₈₃, могут являться продуктами коррозионных процессов при контакте конструкционных материалов с жидкими металлами [37].

Из литературы известна только одна работа [33], посвященная изучению коррозионного поведения конструкционных материалов в жидких сплавах Li-Sn. Некоторый опыт при исследовании растворов водорода в расплавах литий-олово [38], а также наличие общих черт, характерных для диаграмм состояния двух бинарных систем Li–Sn и Li–Pb, указывает на то, что именно кислород в расплаве Li–Sn, несмотря на свою чрезвычайно низкую растворимость, является той примесью, значение термодинамического потенциала которой определяет направление протекания многих химических процессов в этой жидкометаллической среде. В этом сплавы Li-Sn близки к сплавам системы Li-Pb и отличаются от жидкого лития, в котором роль коррозионно-активной примеси принадлежит азоту [39, 40].

В двухкомпонентном расплаве Li—Sn именно химическая активность лития как одного из компонентов расплава определяет термодинамику и кинетику взаимодействия этого сплава с оксидами других металлов, включая и тройные оксиды с участием лития. Это объясняется достаточно просто, если принять во внимание, что оксид лития Li₂O является высокостабильным соединением, которое характеризуется значительной по абсолютной величине отрицательной стандартной энергией

Гиббса образования соединения $\Delta_f G_{298}^0(\text{Li}_2\text{O}) = -561.2 \text{ кДж/(г - атом кислорода)}$. Олово образует существенно менее стабильный, с точки зрения термодинамики, оксид SnO₂, для которого

$$\Delta_f G_{298}^0(\text{SnO}_2) = -259.9 \text{ кДж}/(\Gamma - \text{атом кислорода}).$$

Термодинамический анализ взаимодействий между жидкими сплавами Li—Sn и оксидами металлов существенно облегчается, если использовать методику, предложенную в [39] для прогнозирования совместимости различных керамик с эвтектическим расплавом Li₁₇Pb₈₃. Сделать обоснованный прогноз о том, будет ли тот или иной оксид стабилен при контакте с жидким сплавом Li—Sn, можно, рассчитав изменение энергии Гиббса $\Delta_r G$ реакции одного из двух типов. В первом случае, когда исследуется совместимость двойного оксида М_xO_y с расплавом Li₂₀Sn₈₀, рассматривается следующая реакция:

$$M_x O_y \xrightarrow{\text{жидкий сплав Li}_{20}Sn_{80}} y O_{(Li_{20}Sn_{80})} + xM,$$
 (5)

$$\Delta_r G = (1/x) [y \Delta_f G^0(\text{Li}_2\text{O}) - 2yRT \ln(a_{\text{Li}}) + + 2yRT \ln(x_0/x_0^{\text{sat}}) - \Delta_f G^0(\text{M}_x\text{O}_y)],$$
(6)

где $a_{\rm Li}$ — термодинамическая активность лития в жидком ${\rm Li}_{20}{\rm Sn}_{80}$, $x_{\rm O}$ — содержание кислорода в ${\rm Li}_{20}{\rm Sn}_{80}$ в мол. дол., $x_{\rm O}^{\rm sat}$ — концентрация насыщения кислорода в ${\rm Li}_{20}{\rm Sn}_{80}$ при данной температуре, $\Delta_f G^0 ({\rm M}_x {\rm O}_y)$ и $\Delta_f G^0 ({\rm Li}_2 {\rm O})$ — энергии Гиббса образования оксидов ${\rm M}_x {\rm O}_y$ и ${\rm Li}_2 {\rm O}$ при температуре T, R — универсальная газовая постоянная.

Во втором случае для оценки стабильности тройного оксида $\text{Li}_w M_x O_y$ при контакте с жидким $\text{Li}_{20} \text{Sn}_{80}$ необходимо рассмотреть следующую реакцию:

$$\begin{array}{c} \text{Li}_{w}M_{x}O_{y} \xrightarrow{\text{жидкий сплав Li}_{20}Sn_{80}} \\ \rightarrow yO_{(\text{Li}_{20}Sn_{80})} + w\text{Li}_{(\text{Li}_{20}Sn_{80})} + xM, \end{array}$$

$$(7)$$

$$\Delta_r G = (1/x) \left[y \Delta_f G^0 \left(\text{Li}_2 \text{O} \right) - (2y - w) RT \times \times \ln(a_{\text{Li}}) + 2y RT \ln\left(x_{\text{O}} / x_{\text{O}}^{\text{sat}} \right) - \Delta_f G^0 \left(\text{Li}_w \text{M}_x \text{O}_y \right) \right].$$
(8)

В обоих случаях получаемые по уравнениям (6) и (8) значения $\Delta_r G$ отнесены к одному молю металла М. При проведении расчетов по обоим уравнениям использовалась следующая зависимость термодинамической активности лития в жидком Li₂₀Sn₈₀:

2020

Соединение	Li ₂₀ Sn ₈₀ , насыщенный по кислороду		Li, содержащий x _O ≈ 3.21×10 ⁻⁶ мол. дол. О (холодная ловушка при 473 К)	
	773 K	1073 K	773 K	1073 K
Y ₂ O ₃	275.0	299.0	38.3	2.8
Sc ₂ O ₃	276.4	300.1	39.7	3.9
Er ₂ O ₃	270.8	294.2	34.0	-2.0
BeO	158.9	175.1	1.1	-22.3
LiAlO ₂	228.7	259.6	-25.5	-71.8
Al_2O_3	154.9	176.5	-81.8	-119.7
$Li_2Si_2O_5$	95.9	135.6	-237.2	-294.5
LiCrO ₂	-18.3	18.6	-272.6	-312.7
Cr ₂ O ₃	-95.7	-65.8	-332.4	-362.1
LiVO ₃	-210.6	-160.2	-622.6	-689.0
Fe ₂ O ₃	-257.0	-229.6	-493.7	-525.8
NiO	-207.8	-190.4	-365.6	-387.9

Таблица 3. Энергия Гиббса $\Delta_r G$ реакций между различными оксидами и жидким литием и сплавом Li₂₀Sn₈₀ при температурах 773 и 1073 К (в кДж на моль металла)

$$a_{\rm Li} = \exp(-0.91789 - 6674.64/T).$$
 (9)

Формула (9) является уравнением регрессии, полученным на основании обработки большого массива экспериментальных данных для Li–Sn, систематизированных в обзоре [17].

Следует отметить, что данные о растворимости кислорода в двойных сплавах Li-Sn в литературе отсутствуют. Однако, исходя из уже отмеченного сходства между двумя системами Li-Sn и Li–Pb, а также учитывая низкие значения растворимости кислорода в двух жидких металлах Li, Sn и сплаве $\text{Li}_{17}\text{Pb}_{83}$ (при 700°C для Sn $x_{\text{O}}^{\text{sat}} = 4.1 \times$ $\times 10^{-5}$ мол. дол., для Li $x_0^{\text{sat}} = 2.0 \times 10^{-3}$ мол. дол., для $Li_{17}Pb_{83}$ $x_0^{sat} = 3.0 \times 10^{-7}$ мол. дол.) [39, 41], можно предположить, что растворимость кислорода в Li₂₀Sn₈₀ будет также низкой. Таким образом, в реальных условиях, близких к условиям функционирования жидкометаллических систем энергетических установок, раствор кислорода в жидком Li₂₀Sn₈₀ близок к насыщенному, когда рассматриваемый расплав находится в равновесии с кристаллами Li₂O. Это позволяет при проведении вычислений по уравнениям (6) и (8) принять отношение x/x_{sat} равным единице.

В качестве источника данных об энтальпиях и энтропиях образования оксидов металлов использовалось справочное издание [42].

Поскольку при проектировании внутрикамерных компонентов токамака в качестве возможного жидкометаллического компонента рассматриваются и жидкий литий, и сплавы Li–Sn, то представляется полезным провести сравнение результатов термодинамической оценки стабильности керамик в жидком сплаве $Li_{20}Sn_{80}$ с аналогичными оценками для тех же керамик в среде жидкого лития.

В отличие от оценок, проводимых для сплавов Li–Sn, в том случае, когда оценивается стабильность соединений в среде жидкого лития, расчеты $\Delta_{L}G$ соответствующей реакции следует проводить при концентрации кислорода в литии, отличной от концентрации насыщения. Так же как это было сделано авторами работы [39], в настоящей работе $\Delta_{r}G$ рассчитывались при значении концентрации кислорода в литии, которое в жидкометаллическом контуре обеспечивается работой холодной ловушки, функционирующей при температуре 473 К (это соответствует $x_0 = x_0^{CT}(473) \approx$ $\approx 3.21 \times 10^{-6}$ мол. дол.). Также учитывалось, что в сильно разбавленных растворах лития можно принять $a_{1i} = 1$. С учетом этих замечаний при рассмотрении реакций (5) и (7) в среде жидкого лития уравнения (6) и (8) должны быть преобразованы к следующему виду:

$$\Delta_{r}G = (1/x) \Big[y \Delta_{f}G^{0} (\text{Li}_{2}\text{O}) + + 2yRT \ln (x_{\text{O}}^{\text{CT}}/x_{\text{sat}}) - \Delta_{f}G^{0} (\text{M}_{x}\text{O}_{y}) \Big], \Delta_{r}G = (1/x) \Big[y \Delta_{f}G^{0} (\text{Li}_{2}\text{O}) + + 2yRT \ln (x_{\text{O}}^{\text{CT}}/x_{\text{sat}}) - \Delta_{f}G^{0} (\text{Li}_{w}\text{M}_{x}\text{O}_{y}) \Big].$$

 $\Delta G_{\rm r}$, кДж/моль

Рис. 5. Зависимость изменения энергии Гиббса реакции между оксидами металлов и насыщенными по кислороду жидкими сплавами Li–Sn от содержания лития в бинарном расплаве: $1 - Cr_2O_3$, $2 - LiCr_2O_3$, $3 - Er_2O_3$.

Результаты расчета $\Delta_r G$ для обеих жидкометаллических сред приведены в табл. 3. Положительные значения $\Delta_r G$ свидетельствуют о стабильности оксида при контакте с жидкометаллическим расплавом, и, наоборот, в случае отрицательных величин $\Delta_r G$ следует ожидать, что равновесие в реакциях (5) и (7) будет смещаться вправо, т.е. будет проходить процесс восстановления оксида до металла.

Рис. 5 показывает, как при увеличении содержания лития в бинарном расплаве Li–Sn изменяется энергия Гиббса $\Delta_r G$ реакций между Er₂O₃, Cr₂O₃, LiCrO₂, с одной стороны, и расплавами Li–Sn, с другой. Выбор температуры 800°С для построения концентрационной зависимости $\Delta_r G$ обусловлен тем, что при температурах ниже 783°С рассматриваемая бинарная система не находится полностью в жидком состоянии, поскольку в ней зафиксировано образование интерметаллического соединения Li₇Sn₂ [17]. Значения энергии Гиббса реакций получены для расплавов Li–Sn, насыщенных по кислороду ($x/x_{sat} = 1$). Стабильность оксидов уменьшается с увеличением содержания лития в сплаве (рис. 5). Как видно из табл. 3, при повышении температуры стабильность керамик в сплавах $Li_{20}Sn_{80}$, насыщенных по кислороду, возрастает, о чем свидетельствует увеличение значений $\Delta_r G$ для всех рассмотренных здесь соединений. Точно такая же закономерность отмечена в работе [39], в которой оценивалась стойкость оксидов металлов в жидком сплаве $Li_{17}Pb_{83}$. В обеих системах это можно объяснить тем, что при повышении температуры содержание кислорода в жидкой фазе увеличивалось, чтобы обеспечить выполнение условия $x/x_{sat} = 1$.

Из вычислений следует, что в насыщенном кислородом жидком сплаве $Li_{20}Sn_{80}$ большинство двойных оксидов металлов (например, Y_2O_3 , Al_2O_3 , Er_2O_3 , BeO) стабильны в отношении восстановления до металла и только некоторые (например, Cr_2O_3 , Fe_2O_3 , NiO) не стабильны. Значения Δ_rG для реакций между оксидами металлов и литием реакторной чистоты (очищенным холодной ловушкой при 473 K) свидетельствуют о том, что только небольшая часть из всех рассмотренных соединений (Y_2O_3 , Er_2O_3 , Sc_2O_3) стабильны в жидком литии при температурах 773 K и 1073 K.

Известна более ранняя работа [43] по прогнозированию стабильности различных керамик в бинарном расплаве Li-25% Sn, но, как отмечено самими авторами [43], в их расчетах вместо термодинамических данных для системы Li-Sn использовались приближенные оценки. Получение более достоверных прогнозных оценок о стабильности керамик в жидком сплаве Li-Sn стало возможным в настоящей работе благодаря использованию концентрационных и температурных зависимостей термодинамической активности лития в бинарной системе Li-Sn, полученных из анализа экспериментальных работ [17, 44].

ЗАКЛЮЧЕНИЕ

На основе информации об энергиях Гиббса компонентов в различных фазах бинарных систем, а также с использованием базы термодинамических данных для чистых элементов методом термодинамического моделирования рассчитаны температурные зависимости для растворимости никеля, железа, хрома, молибдена и вольфрама в жидком сплаве Sn-20% Li. Среди рассмотренных переходных металлов только Мо и W характеризуются приемлемыми уровнями растворимости в Li₂₀Sn₈₀ при температурах выше 600°C. Результаты расчетов хорошо согласуются с известными из литературы данными коррозионных испытаний ферритно-мартенситной стали JLF-1 (Fe-9Cr-2W-0.1C) в сплаве Li₂₀Sn₈₀.

Анализ результатов расчета энергии Гиббса реакций между оксидами металлов и жидкими

сплавами Li-Sn позволил оценить влияние температуры и содержания лития в сплаве на стабильность некоторых керамик в жидкометаллической среде. С учетом низких значений растворимости кислорода в расплавах литий-олово, решения приводились для условий, близких к условиям функционирования жидкометаллических систем энергетических установок, когда раствор кислорода в жидком сплаве Li–Sn близок к насышенному по этому химическому элементу.

Сравнение результатов термодинамической оценки стабильности керамик в жилком сплаве Li₂₀Sn₈₀ с аналогичными оценками для тех же керамик в среде жидкого лития показало, что количество оксидов, подверженных разложению при взаимодействии с жидким литием, существенно превышает число соединений, которые будут восстанавливаться до металла в расплаве Li-20% Sn. Отличия в поведении оксидных керамик в этих двух жидкометаллических средах связано с отрицательными отклонениями жидких растворов системы Li-Sn от идеальности, о чем свидетельствуют низкие значения термодинамической активности лития в данных растворах.

Статья подготовлена в рамках выполнения базовой части государственного задания ФГБОУ ВО "Московский политехнический университет" (проект FZRR-2020-027).

СПИСОК ЛИТЕРАТУРЫ

- 1. Асхадуллин Р.Ш., Мартынов П.Н., Рачков В.И. и др. Контроль и регулирование содержания кислорода в тяжелых жидкометаллических теплоносителях для противокоррозионной защиты сталей // TBT. 2016. T. 54. № 4. C. 595.
- 2. Алчагиров Б.Б., Дышекова Ф.Ф. Поверхностное натяжение расплавов свинец-висмутовой эвтектики с литием // ТВТ. 2016. Т. 54. № 6. С. 866.
- 3. Круглов А.Б., Круглов В.Б., Рачков В.И. и др. Методика измерения теплопроводности жидкого свинца в диапазоне температур 350-1000°С // ТВТ. 2015. T. 53. № 4. C. 596.
- 4. Красин В.П., Союстова С.И. Оценка параметров коррозионных процессов в эвтектическом расплаве Na-К с использованием моделей металлических растворов // ТВТ. 2018. Т. 56. № 4. С. 533.
- 5. Tabarés F.L., Oyarzabal E., Martin-Rojo A.B., Tafalla D., de Castro A., Soleto A. Reactor Plasma Facing Component Designs Based on Liquid Metal Concepts Supported in Porous Systems // Nuclear Fusion. 2017. V. 57. № 1. https://doi.org/10.1088/0029-5515/57/1/016029

- 6. Красин В.П., Союстова С.И. Термодинамические параметры сплавов литий-олово, важные с точки зрения их использования в токамаках // ТВТ. 2019. T. 57. № 2. C. 212.
- 7. Weeks J.R. Lead, Bismuth, Tin, and Their Alloys as Nuclear Coolants // Nucl. Eng. Des. 1971. V. 15. P. 363.

- 8. Fütterer M.A., Aiello G., Barbier F., Giancarli L., Poitevin Y., Sardain P., Szczepanski J., Puma A.L., Ruvutuso G., Vella G. On the Use of Tin-Lithium Allovs as Breeder Material for Blankets of Fusion Power Plants // J. Nucl. Mater. 2000. V. 283–287. P. 1375.
- 9. Vertkov A., Lyublinski I., Zharkov M., Mazzitelli G., Apicella M.L., Iafrati M. Liquid Tin Limiter for FTU Tokamak // Fusion Eng. Des. 2017. V. 117. P. 130.
- 10. Binary Alloy Phase Diagrams. 2nd ed. / Ed. Massalski T.B. In 3 vols. Materials Park, Ohio, USA: ASM International, 1990. 3589 p.
- 11. Levchuk D., Levchuk S., Maier H., Bolt H., Suzuki A. Erbium Oxide as a New Promising Tritium Permeation Barrier // J. Nucl. Mater. 2007. V. 367-370. P. 1033.
- 12. SGTE Unary Database. Version 4.4. 20 July 2001. http://www.sgte.org
- 13. Redlich E., Kister A.K. Algebraic Representation of Thermodynamic Properties and the Classification of Solutions // Industr. Eng. Chem. 1948. V. 40. P. 345.
- 14. Lukas H., Fries S.G., Sundman B. Computational Thermodynamics: The Calphad Method. Cambridge. UK: Cambridge University Press., 2007. 324 p.
- 15. Kaufman L., Bernstein H. Computer Calculation of Phase Diagrams. N.Y.: Acad. Press Inc., 1970. 334 p.
- 16. Алпатов А.В., Падерин С.Н. Модели и расчеты жидких металлических растворов. Металлы. 2009. № 5. C. 21.
- 17. Morachevskii A.G. Thermodynamic Properties and Electrochemical Studies of Lithium–Tin Alloys // Rus. J. Appl. Chem. 2015. V. 88. P. 1087.
- 18. Leavenworth H., Cleary R.E., Bratton W.D. Solubility of Structural Metals in Lithium. Tech. Rep. PWAC-356. Middletown. CT. USA: Pratt and Whitney Aircraft, 1961.
- 19. Heuzey M.C., Pelton A. Critical Evaluation and Optimization of the Thermodynamic Properties of Liquid Tin Solutions // Metall. Trans. B. 1996. V. 27B. P. 810.
- 20. Lvublinski I.E., Evtikhin V.A., Pankratov V.Yu., Krasin V.P. Numerical and Experimental Determination of Metallic Solubilities in Liquid Lithium, Lithium Containing Nonmetallic Impurities, Lead and Lead-Lithium Eutectic // J. Nucl. Mater. 1995. V. 224. № 3. P. 288.
- 21. Niessen A.K., de Boer F.R., Miedema A.R. Model Predictions for the Enthalpy of Formation of Transition Metal Alloys II // CALPHAD. 1983. V. 7. № 1. P. 51.
- 22. Kawabata R., Myochin M., Iwase M. Solubilities of Molybdenum in Liquid Tin // Metall. Trans. B. 1995. V. 26B. P. 654.
- 23. Bale C.W., Pelton A.D. Optimization of Binary Thermodynamic and Phase Diagram Data // Metall. Trans. B. 1983. V. 14B. P. 77.
- 24. Brewer L., Lamoreaux R.H. The Mo-Sn (Molvbdenum-Tin) System // Bull. Alloy Phase Diagrams. 1980. V. 1. № 2. P. 96.
- 25. Williams M.E., Moon K.W., Boettinger W.J., Josell D., Deal A.D. Hillock and Whisker Growth on Sn and Sn-Cu Electrodeposits on a Substrate Not Forming Interfacial Intermetallic Compounds // J. Electr. Mater. 2007. V. 36. P. 214.
- 26. Kubaschewski O. Iron Binary Phase Diagrams. Berlin-Heidelberg: Springer, GmbH, 1982. 185 p.
- Venkatraman M., Neumann J.P. The Cr-Sn (Chromium-27. Tin) System // Bull. Alloy Phase Diagrams. 1988. V. 9. P. 161.

- Pashechko M.I., Vasyliv Kh.B. Solubility of Metals in Fusible Melts // Mater. Sci. 1996 V. 31. P. 485.
- 29. O'Connell J.P., Prausnitz J.M. Thermodynamics of Gas Solubility in Mixed Solvents // Industr. Eng. Chem. Fundamentals. 1964. V. 3 .P. 347.
- Saboungi M.-L., Caveny D., Bloom I., Blander M. The Coordination Cluster Theory: Extension to Multicomponent Systems // Metallurgical Trans. A. 1987. V. 18. P. 1779.
- Krasin V.P., Soyustova S.I., Lyublinskii I.E. Coordination Cluster Model for Calculating Sievert's Constant of Hydrogen Solutions in Melts of the Pb-Bi-Li System // Inorganic Mater.: Appl. Res. 2010. V. 1. P. 324.
- Островский О.И., Григорян В.А., Вишкарев А.Ф. Свойства металлических расплавов. М.: Металлургия, 1988. 304 с.
- Kondo M., Ishii M., Muroga T. Corrosion of Steels in Molten Gallium (Ga), Tin (Sn) and Tin Lithium Alloy (Sn-20Li) // Fusion Eng. Des. 2015. V. 98–99. P. 2003.
- Shukla N.K., Prasad R., Roy K.N., Sood D.D. Thermochemistry of Lithium Chromate Li₂CrO₄(cr) and Lithium Molybdate Li₂MoO₄(cr) // J. Chem. Thermodyn. 1992. V. 24. P. 897.
- Sharma S., Choudhary R.P.N. Phase Transition in Li₂WO₄ // Ferroelectrics. 1999. V. 234. P. 129.
- Borgstedt H.U., Guminski C. Solubilities and Solution Chemistry in Liquid Alkali Metals // Monatshefte für Chemie. 2000. Bd. 131. S. 917.

- Sample T., Coen V., Kolbe H., Orecchia L. Selective Surface Preoxidation to Inhibit the Corrosion of AISI Type 316L Stainless Steel by Liquid Pb–17Li // J. Nucl. Mater. 1992. V. 191–194. P. 979.
- Schumacher R., Weiss A. Hydrogen Solubility in the Liquid Alloys Lithium–Indium, Lithium–Lead, and Lithium–Tin // Ber. Bunsenges. Phys. Chem. 1990. V. 94. P. 684.
- Hubberstey P. Pb–17Li and Lithium: A Thermodynamic Rationalisation of Their Radically Different Chemistry // J. Nucl. Mater. 1997. V. 247. P. 208.
- Krasin V.P., Soyustova S.I. Thermodynamic Analysis of Chromium Solubility Data in Liquid Lithium Containing Nitrogen: Comparison between Experimental Data and Computer Simulation // J. Nucl. Mater. 2015. V. 465. P. 674.
- 41. *Fromm E., Gebhardt E.* Gase und Kohlenstoff in Metallen. Berlin: Springer. 1976. 747 p.
- 42. *Chase M.W. Jr.* NIST-JANAF Thermochemical Tables. Fourth Edition // J. Phys. Chem. Ref. Data. Monograph № 9. 1998. 1951 p.
- Sharafat S., Ghoniem N., Zinkle S. Thermodynamic Stability of Qxide, Nitride, and Carbide Coating Materials in Liquid Sn-25Li // J. Nucl. Mater. 2004. V. 329-333. P. 1429.
- 44. *Du Z., Jiang Z., Guo C.* Thermodynamic Optimizing of the Li–Sn System // Z. Metallkd. 2006. V. 97. P. 10.