ТЕПЛОМАССООБМЕН И ФИЗИЧЕСКАЯ ГАЗОДИНАМИКА

УДК 532.526.3

ПЛАСТИНЧАТЫЙ ТЕПЛООБМЕННИК С ДИФФУЗОРНЫМИ КАНАЛАМИ

© 2020 г. В. Г. Лущик^{1, *}, М. С. Макарова^{1, **}, А. И. Решмин^{1, ***}

¹Институт механики МГУ им. М.В. Ломоносова, Москва, Россия *E-mail: vgl_41@mail.ru **E-mail: april27_86@mail.ru ***E-mail: alexreshmin@rambler.ru Поступила в редакцию 23.11.2019 г. После доработки 31.12.2019 г. Принята к публикации 10.03.2020 г.

Выполнено численное моделирование теплообмена в пластинчатых теплообменниках с диффузорными каналами с малыми углами раскрытия при использовании трехпараметрической дифференциальной модели турбулентности, дополненной уравнением переноса для турбулентного потока тепла. Показано, что за счет интенсификации теплообмена в теплообменниках с диффузорными каналами количество переданного тепла от "горячего" теплоносителя к "холодному" возрастает по сравнению с теплообменниками с каналами постоянного сечения.

DOI: 10.31857/S0040364420030138

введение

Повышение эффективности теплообменных аппаратов за счет интенсификации процессов теплообмена является актуальной задачей энергосбережения. К настоящему времени предложено большое количество разнообразных способов интенсификации теплообмена, обзору и анализу которых посвящена обширная литература (см., например, монографии [1–3] и обзоры [4, 5]).

Наиболее распространенным методом интенсификации теплообмена в каналах с однофазным теплоносителем является искусственная турбулизация потока, осуществляемая с помощью гофрированных поверхностей, кольцевых или спиральных канавок, оребрения поверхности, спиральных или витых труб, шнеков, закрученных лент, лунок и т.п. [2]. Как отмечено в [2], наиболее доступным и эффективным методом управляемого воздействия на структуру турбулентного потока с целью интенсификации теплообмена считается создание в нем отрывных зон или других организованных вихревых структур. При этом практически все известные способы интенсификации теплообмена связаны с увеличением мощности, требуемой для прокачки теплоносителя, что является недостатком этих способов.

Следует отметить предложенный в работах А.А. Гухмана и В.К. Мигая (см. в [1]) способ интенсификации теплообмена с использованием поверхностей, образующих систему диффузор– конфузор и создающих в потоке неоднородности давления. Углы расширения диффузоров при этом выбираются из условия получения потока с нестационарными отрывными вихревыми зонами, которые интенсифицируют теплообмен.

В пластинчатых теплообменниках используются пластины с различного типа гофрировкой поверхности, которые "увеличивают поверхность и интенсифицируют теплообмен в пределах 15–25%" [6]. При этом коэффициенты трения в пластинчатых теплообменниках с гофрированными пластинами намного выше, чем в гладких каналах при одинаковых числах Рейнольдса.

В [7–9] показано, что интенсификация теплообмена может быть реализована в диффузоре практически без роста коэффициента трения. В работе [10] экспериментально подтверждено сильное влияние расширения в безотрывном диффузоре с малым углом раскрытия на режим течения, а измеренные профили скорости и напряжений Рейнольдса хорошо согласуются с расчетами, выполненными с использованием трехпараметрической дифференциальной модели турбулентности [11].

Следует отметить, что модель турбулентности [11] прошла всестороннюю проверку в широком классе задач пограничного слоя, результаты которой представлены в обзорах [12, 13]. Проведенные расчеты для течений в кольцевых, плоских и круглых каналах при различных числах Рейнольдса, для перехода к турбулентности в пограничном слое при большом уровне внешних возмущений, пограничных слоев с вдувом и отсосом, а также при положительном и отрицатель-

Рис. 1. Расчетная схема элемента пластинчатого противоточного теплообменника с двумя плоскими диффузорами (а) и с двумя каналами постоянного сечения (б).

ном градиентах давления во всех случаях показали удовлетворительное согласие результатов расчетов и экспериментов. Таким образом, проведенное в [12, 13] тестирование модели турбулентности [11] и подтвержденные экспериментом результаты расчета характеристик течения в диффузоре [10] дают основание для использования ее в настоящей работе.

В [8, 9] с использованием трехпараметрической дифференциальной модели турбулентности [11], обобщенной на течение с теплообменом [14] и дополненной уравнением переноса для турбулентного потока тепла [15], численно исследовано течение и теплообмен в плоских безотрывных диффузорах с различной степенью расширения для ряда чисел Рейнольдса и Прандтля. Характеристики течения и теплообмена сравнивались с соответствующими характеристиками для течения в канале постоянного сечения при одинаковых числах Рейнольдса.

Показано, что для течения в диффузоре при всех рассмотренных изменениях угла раскрытия диффузора и чисел Рейнольдса и Прандтля основные характеристики теплообмена — число Нуссельта и фактор аналогии Рейнольдса — оказываются значительно выше, чем в канале постоянного сечения при том же числе Рейнольдса. Это превышение слабо зависит от числа Рейнольдса, но возрастает с увеличением угла раскрытия диффузора и при использовании газового теплоносителя с малым числом Прандтля. При этом средний по длине диффузора коэффициент трения во всех рассмотренных случаях практически не изменяется. Установлено, что перестройка течения и появляющийся в диффузоре положительный градиент давления приводят к усилению турбулизации течения. Подтверждением этого служит изменение энергии турбулентности, которая существенно возрастает в диффузоре, что приводит к интенсификации теплообмена.

Целью работы является рассмотрение возможности интенсификации теплообмена в пластинчатых теплообменниках, которые, согласно [6], нашли широкое применение, в частности, в химической, нефтяной, пищевой, молочной и пивоваренной промышленности. Предлагаемое использование в пластинчатых теплообменниках диффузорных каналов с гладкой поверхностью, дающей минимальные гидравлические потери, позволит обеспечить интенсификацию теплообмена в диффузоре практически без роста коэффициента трения. Это является принципиальным отличием рассмотренного способа интенсификации теплообмена от других известных способов, где увеличение теплоотдачи достигается ценой значительного роста гидравлических потерь.

ПОСТАНОВКА ЗАДАЧИ

Задача решалась в следующей постановке (рис. 1). Рассмотрен элемент пластинчатого противоточного теплообменника с двумя смежными плоскими диффузорами длиной l и высотой h(x) (рис. 1а) с линейным профилем общей теплопередающей стенки по длине. Две другие стенки диффузоров полагались теплоизолированными. Входу в диффузоры предшествовали участки по-

стоянного сечения высотой h_1 и длиной l_1 с теплоизолированными стенками. За диффузорами следовали участки постоянного сечения высотой h_2 и длиной *l*₂ также с теплоизолированными стенками. Высота выходного сечения зависела от угла наклона образующей диффузоров α и определялась как $h_2 = h_1 + ltg\alpha$. Отметим, что число Рейнольдса Re = $\rho U d_h / \eta$ ($d_h = 2h - \Gamma \mu$ дравлический диаметр, U – среднерасходная скорость) в плоском диффузоре при любом угле раскрытия для несжимаемой жидкости с постоянными теплофизическими свойствами остается постоянным по длине. Для теплоносителей с переменными свойствами при не очень существенном нагреве (охлаждении) число Рейнольдса будет меняться по длине диффузора тоже незначительно.

Для сравнения рассмотрен также элемент пластинчатого противоточного теплообменника с двумя плоскими каналами постоянного сечения (рис. 16). Длины каналов соответствуют приведенным на рис. 1а, а высота каналов определялась из условий равенства средних по длине площадей сечений и составляла $h_0 = (h_1 + h_2)/2$.

При графическом отображении результатов расчетов считается, что направление течения горячего теплоносителя совпадает с направлением оси *x*, а направление течения холодного теплоносителя противоположно.

Для решения задачи использовались уравнения неразрывности, движения и энергии, описывающие существенно дозвуковое (число Маха $M \ll 1$) течение в плоском диффузоре в приближении узкого канала. Данное приближение базируется на тех же уравнениях, что и приближение пограничного слоя, но отличается от него возможностью сквозного счета между стенками канала и определением продольного градиента давления из условия сохранения расхода в отличие от задаваемого градиента давления при расчете пограничного слоя.

Система уравнений для задачи записывается следующим образом:

$$\frac{\partial}{\partial x}(\rho u) + \frac{\partial}{\partial y}(\rho v) = 0,$$

$$\rho u \frac{\partial u}{\partial x} + \rho v \frac{\partial u}{\partial y} = -\frac{dp}{dx} + \frac{\partial}{\partial y} \left[\left(\eta \frac{\partial u}{\partial y} + \rho \tau \right) \right], \quad (1)$$

$$c_p \left(\rho u \frac{\partial T}{\partial x} + \rho v \frac{\partial T}{\partial y} \right) = u \frac{dp}{dx} + \frac{\partial}{\partial y} \left[\left(\lambda \frac{\partial T}{\partial y} + \rho q_T \right) \right].$$

Здесь *х* – направление вдоль потока; *у* – координата, отсчитываемая от теплоизолированной стенки; *и* и *v* – компоненты скорости вдоль осей *x* и *y* соответственно; *p* – давление; $\rho \tau = -\rho \langle u' v' \rangle$ – турбулентное трение; $\rho q_T = -\rho c_p \langle v' T' \rangle$ – турбулентный поток тепла; ρ – плотность; η – динамическая вязкость; c_p — изобарная теплоемкость; λ — теплопроводность.

Для вычисления τ и q_T использована трехпараметрическая модель турбулентности [11], обобщенная на течение с теплообменом [14], в которой уравнения переноса записываются для энергии турбулентности $E = 0.5 \sum \langle u_i'^2 \rangle$, напряжения сдвига $\tau = -\langle u'v' \rangle$ и предложенного А.Н. Колмогоровым параметра $\omega = E/L^2$ (L – поперечный интегральный масштаб турбулентности), а также уравнение переноса для величины $q_T = -c_p \langle v'T' \rangle$ [15].

Отметим, что основанием для использования трехпараметрической модели турбулентности явилось и то обстоятельство, что результаты расчетов как для внешних, так и для внутренних течений при наличии в потоке продольного градиента давления (см., например, [8, 9, 16]) показали хорошее согласие с известными экспериментальными данными. В то время как лучшие из одно- и двухпараметрических моделей турбулентности в их стандартных формах (см., например, [17]) могут неадекватно учитывать ускорение или замедление потока.

Уравнения, составляющие трехпараметрическую модель, записываются как

$$\rho u \frac{\partial E}{\partial x} + \rho v \frac{\partial E}{\partial y} = -(c\rho\sqrt{E}L + c_{1}\eta)\frac{E}{L^{2}} + \rho\tau\frac{\partial u}{\partial y} + + \frac{\partial}{\partial y}\left(D_{E}\frac{\partial E}{\partial y}\right), \quad \rho u \frac{\partial\tau}{\partial x} + \rho v \frac{\partial\tau}{\partial y} = = -(3c\rho\sqrt{E}L + 9c_{1}\eta)\frac{\tau}{L^{2}} + c_{2}\rho E\frac{\partial u}{\partial y} + \frac{\partial}{\partial y}\left(D_{\tau}\frac{\partial\tau}{\partial y}\right), \rho u \frac{\partial\omega}{\partial x} + \rho v \frac{\partial\omega}{\partial y} = -(2c\rho\sqrt{E}L + 1.4c_{1}\eta f_{\omega})\frac{\omega}{L^{2}} + + \left[\frac{\tau}{E} - 2c_{3}\operatorname{sign}\left(\frac{\partial u}{\partial y}\right)\right]\rho\omega\frac{\partial u}{\partial y} + \frac{\partial}{\partial y}\left(D_{\omega}\frac{\partial\omega}{\partial y}\right), (2) \rho u \frac{\partial q_{T}}{\partial x} + \rho v \frac{\partial q_{T}}{\partial y} = -[3c\rho\sqrt{E}L + 9c_{1}\eta f(\mathrm{Pr})]\frac{q_{T}}{L^{2}} + + c_{4}c_{p}\rho E\frac{\partial T}{\partial y} + \frac{\partial}{\partial y}\left(D_{q}\frac{\partial q_{T}}{\partial y}\right), D_{\varphi} = a_{\varphi}\sqrt{E}L + \alpha_{\varphi}\eta(\varphi = E, \tau, \omega, q_{T}), L = \sqrt{E/\omega}, \quad f_{\omega} = 1 - \frac{1}{2c_{1}}\left(\frac{L}{E}\frac{\partial E}{\partial y}\right)^{2}, f(\mathrm{Pr}) = \frac{1 + c_{5}}{2}\frac{\sqrt{\mathrm{Pr}} + 1/\sqrt{\mathrm{Pr}}}{1 + c_{5}\sqrt{\mathrm{Pr}}}.$$

Значения констант [11, 14, 15]: c = 0.3, $c_1 = 5\pi/4$, $c_2 = 0.2$, $c_3 = 0.04$, $c_4 = 0.235$, $c_5 = 0.25$, $a_E = a_{\omega} = 0.06$, $a_{\tau} = a_q = 3a_E = 0.18$, $\alpha_E = \alpha_{\omega} = 1$, $\alpha_{\omega} = 1.4$, $\alpha_{q_T} = f(\Pr)$. Граничные условия на входе ($x = -L_1$):

$$p = p_1, \quad u = U_1, \quad T = T_1, \quad E = E_1, \tau = 0, \quad \omega = \omega_1, \quad q_T = 0.$$
(3)

Граничные условия на теплопередающей стенке, разделяющей потоки в каналах:

$$u = v = 0, \quad E = \frac{\partial \omega}{\partial y} = \tau = q_T = 0,$$

$$T_{wh} = T_{wc} = T_w, \quad \left(-\lambda \frac{\partial T}{\partial y}\right)_{wh} = \left(-\lambda \frac{\partial T}{\partial y}\right)_{wc} = q_w,$$
 (4)

на теплоизолированных стенках каналов:

$$u = v = 0, \quad \frac{\partial T}{\partial y} = 0, \quad E = \frac{\partial \omega}{\partial y} = \tau = q_T = 0.$$
 (5)

Отметим, что температура и тепловой поток в (4) должны быть непрерывны.

Индексы w, c и h в граничных условиях и далее относятся соответственно к условиям на стенке, в "холодном" и "горячем" потоках, a 1 и 2 – к входным и выходным каналам.

В качестве граничных условий на входе (3) использовались постоянные по сечению профили скорости, температуры и характеристик турбулентности. Интенсивность турбулентности в обоих потоках на входе была равной $e_1 = \sqrt{E_1/U} = 0.04$. Масштаб турбулентности L_1 в потоке принимался достаточно большим, чтобы вырождение турбулентности на расчетной длине входного участка было незначительным.

Таким образом, система уравнений (1), (2) с граничными условиями (3)-(5) позволяет решить задачу и найти распределения как средних, так и турбулентных характеристик течения и теплообмена.

Теплообменник – противоточный, поэтому одновременное совместное решение уравнений в приближении узкого канала невозможно. Решение находилось итерационным методом. Последовательно решались приведенные выше уравнения гидродинамики и теплообмена для горячего и холодного каналов. При этом в горячем канале для уравнения теплопроводности в качестве граничного условия на теплообменной стенке задавалось значение температуры, полученное из расчета для холодного канала. При решении уравнений в холодном канале на теплообменной стенке задавался тепловой поток, полученный из расчета очередной итерации в горячем канале. Теплообменная стенка принята бесконечно тонкой, что позволяет не учитывать термическое сопротивление стенки, зависящее от материала и толщины стенки, и температура и тепловой поток на обеих сторонах стенки считаются одинаковыми. По этой же причине тепловой поток вдоль стенки внутри нее считаем нулевым.

Для обеспечения сходимости метода при переходе к каждой последующей итерации новые значения на границах для температуры и теплового потока рассчитывались по предыдущей и последующей итерациям с использованием коэффициентов релаксации. Начальное распределение температуры теплообменной стенки задавалось в виде линейной функции. Окончание итерационного процесса определялось заданием достигаемой точности средних температур на выходах горячего и холодного каналов.

Отметим, что использование приближения узкого канала дает возможность достаточно адекватно эксперименту описать течение на начальном участке трубы, в частности немонотонное изменение скорости и характеристик турбулентности по длине [12]. Это позволяет надеяться, что приближение узкого канала окажется столь же продуктивным и при расчете течения и теплообмена в диффузоре.

РЕЗУЛЬТАТЫ РАСЧЕТОВ

Пластинчатые теплообменники, согласно [6], наиболее широко применяются с теплоносителями жидкость-жидкость при рабочем давлении 2 МПа и температуре ниже 150°С. Принятые в расчетах теплообменников с диффузорными каналами и каналами постоянного сечения параметры каналов представлены в таблице.

Для обоих теплообменников были приняты следующие исходные данные:

 теплоноситель — вода при давлении на входе 1 MПа;

— входная температура холодного потока $T_c =$ = 300 K;

— входная температура горячего потока $T_h =$ = 400 K:

 – число Рейнольдса холодного потока принято постоянным $\text{Re}_c = 10^4$;

- число Рейнольдса горячего потока варьировалось в диапазоне $\text{Re}_h = 3 - 6 \times 10^3$.

Представленные на рис. 2-4 результаты расчетов получены для холодного потока с $\text{Re}_c = 10^4$, а для горячего – с $\text{Re}_h = 3 \times 10^3$, что обеспечивает (см. ниже) максимальное охлаждение горячего потока.

Приведенное на рис. 2а изменение по длине температуры теплопередающей стенки $T_w(x)$ свидетельствует о том, что в теплообменнике с диффузорными каналами $T_w(x)$ более круто меняется по длине (линия 1) по сравнению с температурой в теплообменнике с каналами постоянного сечения, где $T_w(x)$ изменяется слабо (2). При этом тепловой поток в стенку $q_w(x) = (-\lambda \partial T/\partial y)_w$ (рис. 26) ведет себя аналогичным образом, и в теплообменнике с диффузорными каналами (линия 1) су-

ТЕПЛОФИЗИКА ВЫСОКИХ ТЕМПЕРАТУР Nº 3 2020 том 58

Параметр	Диффузорные каналы	Каналы постоянного сечения
Длина <i>I</i> , мм	500	500
Угол наклона α, град	1	_
Длина входного сечения l_1 , мм	50	50
Длина выходного сечения l_2 , мм	50	50
Высота входного сечения, мм	$h_1 = 4$	8.4
Высота выходного сечения, мм	$h_2 = 12.7$	$h_0 = 8.4$

Параметры каналов, принятые для расчетов

380

щественно превосходит тепловой поток в теплообменнике с каналами постоянного сечения (2).

На рис. За приведено изменение по длине безразмерного коэффициента теплоотдачи (числа Стантона) St = $\alpha_w/(\rho c_p U)$, на рис. 36 – коэффициента теплоотдачи к стенке $\alpha_w = q_w / (T_w - \overline{T})$. Здесь U- среднерасходная скорость, \overline{T} – среднемассовая температура потока. Число Стантона для теплообменника с диффузорными каналами как со стороны горячего (линия 1), так и со стороны холодного потока (1') существенно больше соответствующих величин (линии 2 и 2') для теплообменника с каналами постоянного сечения. Величина коэффициента теплоотдачи α_w (рис. 3б) в теплообменнике с диффузорными каналами убывает по длине, что обусловлено существенным уменьшением теплового потока в стенку q_w (рис. 2б) и менее значительным уменьшением температуры стенки Т_w (рис. 2а) при слабом изменении среднемассовой температуры потока \bar{T} . В итоге число Стантона на всей длине, а коэффициент теплоотдачи на большей части длины в теплообменнике с диффузорными каналами превосходят соответствующие величины для теплообменника с каналами постоянного сечения.

Рис. 2. Изменение по длине температуры теплопередающей стенки T_w (а) и теплового потока в стенку q_w (б): 1- в диффузорах с $\alpha = 1^\circ$, 2- в каналах постоянного сечения ($\alpha = 0^{\circ}$).

Рис. 4. Профили интенсивности турбулентности (а) и напряжения сдвига (б) в середине каналов (x = 250 мм) с горячими потоками: $1 - для диффузора с \alpha = 1^{\circ}, 2 - для канала постоянного сечения.$

Рис. 5. Зависимость количества переданного тепла от горячего потока к холодному от числа Рейнольдса горячего потока: *1*, *2* – см. рис. 4.

Следует отметить также, что St, прямо пропорциональное α_w , в диффузоре, в отличие от канала постоянного сечения, еще и обратно пропорцио-

Рис. 6. Зависимость подогрева холодного потока (а) и охлаждения горячего (б) от числа Рейнольдса горячего потока: *1*, *2* – см. рис. 4.

нально скорости потока *U*, уменьшающейся по длине диффузора. Поэтому число Стантона и коэффициент теплоотдачи (рис. 3) по-разному изменяются по длине.

Как установлено в работах авторов [7–10], перестройка течения и появляющийся в диффузоре положительный градиент давления приводят к турбулизации течения. Подтверждением этого является изменение интенсивности турбулентности $e = \sqrt{E}/U$ и напряжения сдвига τ/U^2 , которые существенно возрастают в диффузоре (рис. 4).

В результате проведенного численного исследования установлена (рис. 5) зависимость количества переданного тепла (мощности) от горячего потока к холодному от Re_h (при постоянном значении $\text{Re}_c = 10^4$). Для теплообменника с диффузорными каналами (линия *I*) количество переданного тепла *Q* примерно на 21–26% (в зависимости от Re_h) больше, чем в теплообменнике с каналами постоянного сечения.

Полученная в расчетах зависимость подогрева холодного потока (рис. 6а) и охлаждения горячего потока (рис. 6б) от числа Рейнольдса горячего потока (при постоянном значении $\text{Re}_c = 10^4$) продемонстрировала эффективность теплообменников с диффузорными каналами. Для них получена бо́льшая разность температур в холодном и горя-

2020

чем потоках по сравнению с теплообменником с каналами постоянного сечения.

ЭФФЕКТИВНОСТЬ ТЕПЛООБМЕННИКА

Эффективность повышения тепловых характеристик теплообменника определяется разными факторами. Одним из важных факторов является то, к каким гидравлическим потерям приведет это повышение при одинаковых расходах и входных температурах теплоносителей. Далее сравниваются гидравлические потери в противоточных пластинчатых теплообменниках с разными углами раскрытия каналов от нуля (каналы постоянной высоты) до 0.8°.

Параметры течения на входе в расширяющиеся каналы при одинаковой средней высоте зависят от угла раскрытия, так как входная высота каналов и входная средняя скорость потока различны. При сравнении гидравлических потерь надо принимать во внимание, что разгон потока до более высокой скорости в начальной части расширяющегося канала уже будет приводить к потере давления. Поэтому при расчете гидравлических потерь рассматривается следующая схема течения. Каналы теплообменников независимо от угла раскрытия имеют одинаковую начальную высоту. Затем на длине входного участка l_1 высота канала плавно меняется до высоты, определяемой длиной участка теплообмена и углом раскрытия при сохранении среднего значения высоты. В таком случае потери давления до входа в теплообменник не будут зависеть от угла раскрытия и сравнение гидравлических характеристик каналов будет проводиться при одинаковых условиях на входе.

Условия на выходе каналов не влияют на расчет потерь, так как при поступлении потока в выходной коллектор скоростной напор будет практически полностью потерян. Учитывая, что при указанной схеме течения при всех возможных углах раскрытия входные скоростные напоры одинаковы, а выходные теряются, гидравлические потери в каналах можно сравнивать по изменению статического давления на участке от входа в канал до выхода из него.

На рис. 7 показаны зависимости изменения температуры горячего потока и потеря статического давления в нем от угла раскрытия канала для чисел Рейнольдса 10⁴ как в холодном, так и в горячем каналах.

Видно, что охлаждение горячего потока почти линейно растет с увеличением угла раскрытия. При этом потери статического давления сначала уменьшаются, а после угла 0.4° начинают возрастать и при угле 0.75° сравниваются с потерями статического давления в канале постоянного сечения. В этом диапазоне углов и тепловые, и гид-

Рис. 7. Зависимость охлаждения горячего потока (1) и потери статического давления в нем (2) от угла раскрытия канала α .

равлические характеристики теплообменника с расширяющимися каналами превышают такие же характеристики теплообменника с каналами постоянного сечения.

При значении угла раскрытия больше 0.8° потери статического давления в расширяющемся канале теплообменника превышают соответствующие потери в теплообменнике с каналами постоянного сечения, но изменение температуры теплоносителя продолжает расти. Чтобы оценить эффективность теплообменника с расширяющимися каналами в этом случае, можно применить следующий метод. Задать угол раскрытия каналов, рассчитать изменение температуры теплоносителя и потери статического давления в них. После этого найти длину теплообменника с каналами постоянного сечения, в котором изменение температуры теплоносителя будет таким же. Если потери статического давления в таком теплообменнике превысят потери в теплообменнике с коническими каналами, то последний можно считать более эффективным.

Выполненный расчет показал, что в теплообменнике с коническими каналами с углом раскрытия 0.8° охлаждение горячего потока составляет 6.2 К. Такое же охлаждение достигается в прямом теплообменнике с каналами, длина которых на 12% больше. При этом потери статического давления в нем немного превышают потери давления в диффузорном теплообменнике, поэтому последний можно считать более эффективным.

Отметим, что эффективность теплообменника в части гидравлических потерь в большей степени зависит от конструктивных особенностей входа и выхода из проточных частей конкретного теплообменника, в основном определяющих суммарные потери давления. Эта задача требует специального рассмотрения.

ЗАКЛЮЧЕНИЕ

С использованием трехпараметрической дифференциальной модели турбулентности, дополненной уравнением переноса для турбулентного потока тепла, выполнено численное моделирование теплообмена в пластинчатых противоточных теплообменниках с диффузорными каналами с малыми углами раскрытия.

Показано, что число Стантона на всей длине, а коэффициент теплоотдачи на большей части длины в теплообменнике с диффузорными каналами превосходят соответствующие величины для теплообменника с каналами постоянного сечения.

Полученные в расчетах величины интенсивности турбулентности и напряжения сдвига существенно возрастают в диффузоре, что приводит к интенсификации теплообмена.

Показано, что в теплообменниках с диффузорными каналами за счет интенсификации теплообмена количество переданного тепла от горячего теплоносителя к холодному возрастает по сравнению с теплообменниками с каналами постоянного сечения. Следствием этого является большая разность температур в холодном и горячем потоках в теплообменнике с диффузорными каналами по сравнению с теплообменником с каналами постоянного сечения.

Потери статического давления в диффузорных каналах при малых (до 0.8°) углах раскрытия меньше потерь статического давления в каналах постоянного сечения при одинаковых числах Рейнольдса. При бо́льших углах раскрытия потери статического давления в расширяющихся каналах начинают превышать соответствующие потери в каналах постоянного сечения.

Исследование выполнено за счет средств гранта Российского научного фонда (проект № 19-79-10213).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Мигай В.К.* Повышение эффективности современных теплообменников. Л.: Энергия, 1980. 144 с.
- Калинин Э.К., Дрейцер Г.А., Копп И.З., Мякочин А.С. Эффективные поверхности теплообмена. М.: Энергоатомиздат, 1998. 408 с.

- Дзюбенко Б.В., Кузма-Кичта Ю.А., Леонтьев А.И. и др. Интенсификация тепло- и массообмена в макро-, микро- и наномасштабах. М.: ФГУП "Цнииатоминформ", 2008. 532 с.
- 4. *Bergles A.E.* Recent Developments in Enhanced Heat Transfer // Heat Mass Transfer. 2011. V. 47. № 8. P. 1001.
- Leontiev A.I., Kiselev N.A., Burtsev S.A., Strongin M.M., Vinogradov Yu.A. Experimental Investigation of Heat Transfer and Drag on Surfaces with Spherical Dimples // Exp. Therm. Fluid Sci. 2016. V. 79. P. 74.
- 6. Справочник по теплообменникам в 2-х томах. Пер. с англ. М.: Энергоатомиздат, 1987.
- 7. Леонтьев А.И., Лущик В.Г., Решмин А.И. Теплообмен в конических расширяющихся каналах // ТВТ. 2016. Т. 54. № 2. С. 287.
- Лущик В.Г., Решмин А.И. Интенсификация теплообмена в плоском безотрывном диффузоре // ТВТ. 2018. Т. 56. № 4. С. 589.
- 9. Лущик В.Г., Макарова М.С., Медвецкая Н.В., Решмин А.И. Численное исследование течения и теплообмена в плоских каналах переменного сечения // Тепловые процессы в технике. 2019. Т. 11. № 9. С. 386.
- Решмин А.И., Тепловодский С.Х., Трифонов В.В. Турбулентное течение в круглом безотрывном диффузоре при числах Рейнольдса, меньших 2000 // Изв. РАН. МЖГ. 2011. № 2. С. 121.
- Лущик В.Г., Павельев А.А., Якубенко А.Е. Трехпараметрическая модель сдвиговой турбулентности // Изв. АН СССР. МЖГ. 1978. № 3. С. 13.
- Лущик В.Г., Павельев А.А., Якубенко А.Е. Турбулентные течения. Модели и численные исследования (обзор) // Изв. РАН. МЖГ. 1994. № 4. С. 4.
- Лущик В.Г., Павельев А.А., Якубенко А.Е. Уравнения переноса для характеристик турбулентности: модели и результаты расчетов // Итоги науки и техники. Сер. МЖГ. М.: ВИНИТИ, 1988. Т. 22. С. 3.
- Лущик В.Г., Павельев А.А., Якубенко А.Е. Трехпараметрическая модель турбулентности: расчет теплообмена // Изв. АН СССР. МЖГ. 1986. № 2. С. 40.
- 15. Лущик В.Г., Павельев А.А., Якубенко А.Е. Уравнение переноса для турбулентного потока тепла. Расчет теплообмена в трубе // Изв. АН СССР. МЖГ. 1988. № 6. С. 42.
- 16. Лущик В.Г., Макарова М.С., Решмин А.И. Ламинаризация потока при течении с теплообменом в плоском канале с конфузором // Изв. РАН. МЖГ. 2019. № 1. С. 68.
- 17. Oriji U.R., Karimisani S., Tucker P.G. RANS Modeling of Accelerating Boundary Layers // J. Fluids Eng. Trans. ASME. 2015. V. 137. № 1. Paper A12.