УДК 532.7:783:539.213

ОБРАЗОВАНИЕ ЗАРОДЫШЕЙ С ВАКАНСИЯМИ ПРИ КРИСТАЛЛИЗАЦИИ ПЕРЕОХЛАЖДЕННЫХ РАСПЛАВОВ

© 2021 г. В. Д. Александров¹, С. А. Фролова^{1, *}

1 ГОУ ВПО "Донбасская национальная академия строительства и архитектуры", г. Макеевка, Украина

**E-mail: primew65@mail.ru* Поступило в редакцию 10.04.2020 г. После доработки 10.04.2020 г. Принято к публикации 14.10.2020 г.

В работе проанализировано изменение свободной энергии Гиббса при образовании зародышей с вакансиями из расплава. Получены формулы для нахождения размеров l_k критических зародышей и работы A_k их образования в зависимости от концентрации вакансий и от переохлаждений. Показано отличие l_k и A_k для реальных зародышей от $l_K^{\mu\mu}$ и $A_K^{\mu\mu}$ для идеальных.

DOI: 10.31857/S0040364421010014

введение

Этап зародышеобразования является одним из важнейших при кристаллизации расплавов. Теоретические модели зарождения новой фазы очень разнообразны [1—3]. В этой связи разработки новых методологий и методов расчета размеров зародышей при кристаллизации металла из переохлажденного расплава весьма актуальны. В данной работе рассмотрен вариант анализа энергии Гиббса при образовании зародышей кристаллов с вакансиями.

АНАЛИЗ СТАНДАРТНОЙ МЕТОДИКИ

Как известно [4], изменение свободной энергии Гиббса ΔG при гомогенном образовании идеальных зародышей кристаллов имеет следующий вид:

$$\Delta G = -\Delta G_V + \Delta G_F,\tag{1}$$

где $\Delta G_V = V \rho L \Delta T^- / T_L$, $\Delta G_F = \sigma F$ — объемная и поверхностная составляющие соответственно; *V*, *F* — объем и площадь поверхности зародыша; ρ плотность твердой фазы; *L* — удельная теплота кристаллизации; T_L — температура плавления; ΔT^- — переохлаждение жидкой фазы; σ — межфазная поверхностная энергия.

При условии $\partial(\Delta G)/\partial l_{l=l_{\rm K}} = 0$ определяется [5] критический размер зародыша $l_{\rm K}^{\rm ил}$. Например, для зародыша кубической формы ($V = l^3, F = 6l^2$) получаются следующие выражения для $l_{\rm K}^{\rm ил}$ и работы его образования $A_{\rm K}^{\rm ил}$:

$$l_{\rm K}^{\rm\scriptscriptstyle MR} = 4\sigma T_L / (\rho L \Delta T^{-}), \qquad (2)$$

$$A_{\rm K}^{\rm \tiny MR} = 32 (\sigma T_L)^3 / (\rho L \Delta T^{-})^2 \,. \tag{3}$$

Элементарный анализ показывает несостоятельность данных формул. Так, при приближении температуры T к температуре плавления T_L

(т.е. $\Delta T^- \to 0$) значения $l_{\rm K}^{_{\rm HI}}$ и $A_{\rm K}^{_{\rm HI}}$ стремятся к бесконечно большим величинам, чего на самом деле не наблюдается.

АНАЛИЗ АЛЬТЕРНАТИВНОЙ МОДЕЛИ РАСЧЕТОВ

В данной работе сделана попытка учесть вклад вакансий в ΔG . Вакансии влияют на энтропию ΔS кристалла, а следовательно, должны внести вклад в объемную составляющую ΔG_V . При условии $\Delta G_V = \tilde{L}m$, $\Delta H = Lm$ (*m* – масса тела) и $\Delta G_V = \Delta H - T\Delta S$ получим выражение для удельной теплоты плавления реального кристалла

$$\tilde{L} = L - T\Delta S / Nm_0, \tag{4}$$

где ΔH — энтальпия фазового перехода, N — число молекул в зародыше, m_0 — молекулярная масса вещества.

Тогда выражение (1) записывается в виде

$$\Delta G = -\rho \tilde{L}l^3 + 6\sigma l^2. \tag{5}$$

Откуда критический размер *l*_k реального зародыша можно рассчитать как

$$l_{\rm K} = 4\sigma/\rho \tilde{L}, \qquad (6)$$

а работу $A_{\rm K}$ его образования — $A_{\rm K} = 32\sigma^3 / \rho^2 \tilde{L}^2$.

Характер влияния вакансий на величины l и ΔG можно проследить по изменению энтропии

 ΔS зародыша от идеального к вакансионному. Это изменение при частичном заполнении молекулами узлов решетки по сравнению с идеальной решеткой состоит из конфигурационной ΔS_C и колебательной ΔS_V составляющих [6, 7].

Конфигурационная энтропия равна

$$\Delta S_{C} = k_{\rm B} \ln \left[N_{i} ! / (N_{i} - N_{0})! N_{0} ! \right], \tag{7}$$

где N_i — число узлов в решетке зародыша, N_0 — число вакантных узлов, $k_{\rm B}$ — постоянная Больцмана.

С помощью формулы Стирлинга $(\ln x! \approx x \ln x)$ получим выражение (7) через атомную концентрацию вакансий $c_V = N_0/N_i$:

$$\Delta S_{C} = -k_{\rm B} N_{i} \left[(1 - c_{V}) \ln(1 - c_{V}) + c_{V} \ln c_{V} \right],$$

а в первом приближении

$$\Delta S_C \approx 2k_{\rm B}N_i c_V. \tag{8}$$

Сложнее оценить колебательную составляющую энтропии ΔS_{V} . Для такого малого объекта, как зародыш, по-видимому, возможна качественная оценка величины ΔS_V . Если в идеальном зародыше все N_i узлов заняты молекулами, то в приближении несвязанных осцилляторов все частоты $v' = (\beta'/m_0)^{1/2}$ колебания *N* молекул одинаковы. Наличие вакантных узлов ослабляет жесткость связей β смежных молекул, и частота их колебаний в реальном зародыше изменяется $v'' = (\beta''/m_0)^{1/2}$. При $v'' \neq v'$ имеем отношение $v''/v' = (\beta''/\beta')^{1/2}$. В этих условиях ΔS_v есть разность энтропий собственных колебаний молекул реальной и идеальной решеток. При высоких температурах ($k_{\rm B}T \gg h$ v, h – постоянная Планка) она принимает вид

$$\Delta S_{\rm v} = -\sum_{i=0}^{N} \left[\ln(h {\rm v}''/k_{\rm B}T) - \ln(h {\rm v}'/k_{\rm B}T) \right].$$

В результате суммирования имеем

$$\Delta S_{\rm v} = -N_i k_{\rm B} \ln({\rm v''}/{\rm v'}).$$

Допуская, что $\beta''/\beta' = [(N_i - N_0)/N_i]^{\alpha}$, получаем

$$\Delta S_{\rm v} = 0.5 \alpha k_{\rm B} N_i c_V, \tag{9}$$

где α — поправочный коэффициент. Из (8) и (9) получаем $\alpha = 4\Delta S_v / \Delta S_c$. Сравнивая колебательную и конфигурационную энтропии для ряда веществ [8], можно оценить коэффициент α . Например, для висмута $\alpha = 10.58$, а для сурьмы — 10.43.

Суммируя (8) и (9), получим

$$\Delta S = \Delta S_C + \Delta S_v = Zk_{\rm B}N_i c_V, \tag{10}$$

где Z = 2 + 0.5α. Эта величина близка к значениям координационных чисел (КЧ) веществ в расплав-

ленном состоянии (для тех же висмута Z = 7.29, KY = 7-8 и сурьмы Z = 7.22, KY = 6.8-9.4 [9]).

С учетом (10) выражение (4) для удельной теплоты \tilde{L} можно записать в виде

$$\tilde{L} = L - Zk_{\rm B}Tc_V/m_0.$$
⁽¹¹⁾

Очевидно, что с уменьшением концентрации вакансий $\tilde{L} \to L$, т.е. \tilde{L} стремится к теплоте плавления бездефектного кристалла.

Проанализируем критические размеры реальных зародышей l_k из (6) с учетом (11)

$$l_{\rm K} = 4\sigma/\rho \tilde{L} = 4\sigma/\rho (L - Zk_{\rm B}Tc_V/m_0).$$
(12)

При $T \rightarrow 0$

$$c_V \to 0, \ l_{\rm K} \to l_{\rm K}^0 = 4\sigma/\rho L$$
 (13)

и зародыш $l_{\rm K}^0$ может иметь место лишь при температуре абсолютного нуля. Результаты расчетов величины $l_{\rm K}^0$ по формуле (13) для некоторых металлов приведены в табл. 1, из которой следует, что $l_{\rm K}^{\rm ид}$ примерно совпадает с параметрами кристаллических решеток (например, с параметром *a*). Полагая $l_{\rm K}^0 = a$, из (13) получим выражение

$$\sigma = a\rho L/4, \qquad (14)$$

с помощью которого можно оценивать удельную поверхностную энергию на границе кристалл— расплав.

Из табл. 1 следует, что значения σ для ряда веществ, вычисленные по формуле (14), достаточно близки к экспериментальным [5].

Особый интерес представляет анализ величин $l_{\rm K}$ и $A_{\rm K}$ в зависимости от переохлаждений ΔT^{-} . Для этого выражение (12) нужно записать в виде

$$l_{\rm K} = 4\sigma / \rho \tilde{L} = 4\sigma / \rho \left(L - \left(Z k_{\rm B} c_V / m_0 \right) \left(T_L - \Delta T^- \right) \right).$$
(15)

Как показывают расчеты, произведение $Zc_V \approx 1$. Например, для висмута при Z = 7.29 и $c_V = 0.14$ получаем $Zc_V \approx 1$, поскольку относительная концентрация вакансий, равная 0.14, означает отсутствие всего одного атома в элементарной ячейке (т.е. одна вакансия на ячейку). Аналогичные результаты получаются и для других металлов. Это позволяет упростить формулу (15) и представить ее в виде

$$l_{\rm K} = 4\sigma/\rho \left(L - (k_{\rm B}/m_0)(T_L - \Delta T^{-})\right)$$

либо $l_{\rm K} = 4\sigma/\rho (L - (R/M)(T_L - \Delta T^-))$, где $R = 8.31 \, \text{Дж}/(\text{моль K}), M - \text{молярная масса.}$

Найдя величину $l_{\rm K}$ и подставив в выражение (5), находим работу образования зародыша $A_{\rm K} = \Delta G_V$.

ТЕПЛОФИЗИКА ВЫСОКИХ ТЕМПЕРАТУР том 59 № 1 2021

АЛЕКСАНДРОВ, ФРОЛОВА

Элемент	а, нм	$l_{ m K}^0$, нм	$l_{\mathrm{K}}^{\mathrm{ид}}$, нм	$A_{\rm K}^{_{\rm HZ}},10^8{ m sB}$	о Лж/м ²	$\sigma_{_{ m эксп}},$ Дж/м 2
	[10]	при 0 К	при <i>T</i> _L	при <i>T</i> _L	о, <u>д</u> м/ м	[5]
Al	0.4050	0.3758	813.34	653.02	0.1005	0.0930
Cu	0.3615	0.3300	1004.95	37.91	0.1806	0.1770
Ga	0.4526	0.4731	277.45	0.02	0.0535	0.0559
Ag	0.4086	0.4607	1279.73	3.98	0.1054	0.1260
Sn	0.5830	0.3952	573.82	0.15	0.0624	0.0545
Sb	0.4500	0.3720	697.93	6.95	0.1950	0.1010
Pb	0.4950	0.5180	640.22	0.13	0.0320	0.0333
Bi	0.4750	0.3956	431.53	0.09	0.0653	0.0544

Таблица 1. Значения параметров решетки *a*, размеров $I_{\rm K}^0$ при 0 K, критических размеров $I_{\rm K}^{\rm HZ}$, рассчитанных по (2), работ $A_{\rm K}^{\rm HZ}$ их образования, полученных по (3), и межфазной поверхностной энергии σ

Таблица 2. Расчетные значения $l_{\rm K}$ и $A_{\rm K}$ для зародышей с вакансиями

	$\Delta T^{-}, \mathrm{K}$									
Элемент 0)	20) 40		60			
	l_{K} , нм	<i>А</i> _К , эВ	$l_{\rm K}$, нм	<i>А</i> _К , эВ	l_{K} , нм	<i>А</i> _К , эВ	l_{K} , нм	<i>А</i> _К , эВ		
Al	0.43592	0.23872	0.43591	0.23871	0.43591	0.23870	0.43589	0.23869		
Cu	0.37057	0.03798	0.37056	0.03798	0.37056	0.03798	0.37056	0.03798		
Ga	0.45819	0.01837	0.45818	0.01837	0.45817	0.01837	0.45815	0.01837		
Ag	0.79061	0.12306	0.79060	0.12306	0.79059	0.12305	0.79058	0.12305		
Sn	0.56845	0.02979	0.56844	0.02979	0.56842	0.02979	0.56841	0.02978		
Sb	0.38634	0.23321	0.38634	0.23321	0.38633	0.23321	0.38633	0.23320		
Pb	0.53354	0.44478	0.53352	0.44475	0.53350	0.44472	0.53348	0.44469		
Bi	0.39606	0.24509	0.39605	0.24509	0.39605	0.24508	0.39604	0.24507		

Расчеты по формулам показывают, что величины *l*_к и *A*_к являются слабозависящими функци-

ями от ΔT^{-} (табл. 2) в отличие от $l_{\rm K}^{\rm ид}$ и $A_{\rm K}^{\rm ид}$, полученных из уравнений (2) и (3).

ЗАКЛЮЧЕНИЕ

1. С учетом конфигурационной и колебательной составляющих энтропии фазового превращения первого рода, связанных с наличием вакансий в кристаллах, получены формулы для расчета удельной теплоты плавления реального зародыша с вакансиями. Отмечается уменьшение удельной теплоты плавления в зависимости от роста концентрации вакансий.

2. На основании анализа энергии Гиббса выведены соответствующие выражения для расчета критических размеров зародышей кристаллов с вакансиями и работы образования подобных зародышей. Показана слабая зависимость данных параметров от переохлаждения жидкой фазы. Установлено, что критические размеры зародышей соизмеримы с параметрами решеток кристаллов.

СПИСОК ЛИТЕРАТУРЫ

- Валов П.М., Лейман В.И. Стадия формирования и роста зародышей фазы CuCl в стекле // Физика твердого тела. 2005. Т. 47. Вып. 11. С. 2060.
- 2. Сычева Г.А. Определение размеров критического зародыша кристаллов в литиево и натриевосиликатных стеклах // Физика и химия стекла. 2015. Т. 41. № 3. С. 405.
- 3. Львов П.Е., Крестина Н.С. Моделирование роста кристаллов в сплавах на основе системы железомедь на основе термического отжига // Изв. Самарск. науч. центра РАН. 2012. Т. 14. № 4(4). С. 1136.
- 4. Фольмер М. Кинетика образования новой фазы. М.: Наука, 1986. 206 с.
- 5. *Чалмерс Б.* Теория затвердевания. М.: Металлургия, 1968. 288 с.
- 6. Штремель М.А. Прочность сплавов. Дефекты решетки. М.: Металлургия, 1982. 278 с.
- Новиков И.И., Розин К.М. Кристаллография и дефекты кристаллической решетки. М.: Металлургия, 1990. 336 с.
- 8. *Регель А.Р., Глазов В.М.* Периодический закон и физические свойства электронных расплавов. М.: Наука, 1978. 306 с.
- 9. *Татаринова Л.И.* Структура твердых аморфных и жидких веществ. М.: Наука, 1983. 150 с.
- Свойства элементов. Спр. / Под ред. Дрица М.Е. М.: Металлургия, 1985. 672 с.