——— ТЕПЛОФИЗИЧЕСКИЕ СВОЙСТВА ВЕЩЕСТВ ——

УДК 536.21

ТЕПЛОФИЗИЧЕСКИЕ СВОЙСТВА ПОЛИКРИСТАЛЛИЧЕСКОГО *n*-CdSnAs₂ В ОБЛАСТИ ТЕМПЕРАТУР 300-800 К

© 2021 г. Ш. М. Исмаилов¹, С. М. Оракова^{1, 2, *}, З. А. Исаев², Х. Ш. Яхьяева²

¹ФГБУН "Институт физики им. Х.И. Амирханова" ДФИЦ РАН, г. Махачкала, Россия ²ФГБОУ ВО "Дагестанский государственный аграрный университет им. М.М. Джамбулатова", г. Махачкала, Россия

> **E-mail: orakova.s@mail.ru* Поступила в редакцию 23.12.2019 г. После доработки 03.07.2020 г. Принята к публикации 14.10.2020 г.

В работе представлены результаты исследования температурных зависимостей удельной теплоемкости c_p , температуропроводности α и теплопроводности λ поликристаллического CdSnAs₂ проводимости *n*-типа. Проведен анализ возможных механизмов теплопроводности в исследованном диапазоне температур. Показано, что основными механизмами теплопереноса для поликристаллического *n*-CdSnAs₂ являются электронный, биполярный и фононный. Обнаружено, что фононная составляющая теплопроводности, подсчитанная как разность между общей теплопроводностью и электронной и биполярной составляющими теплопроводности, уменьшается с температурой быстрее, чем по закону $\lambda_p \sim T^{-1}$.

DOI: 10.31857/S0040364421010051

ВВЕДЕНИЕ

Полупроводниковые соединения $A^2B^4C_2^5$, кристаллизирующиеся со структурой халькоперита, относятся к перспективным материалам оптоэлектроники, нелинейной оптики и других областей твердотельной электроники [1, 2]. Широкое применение этих материалов связано со сложной проблемой воспроизводимого синтеза моно- и поликристаллов с заданными свойствами. Поэтому представляется актуальным исследование комплекса теплофизических свойств (ТФС) этих материалов. Такие исследования интересны и с позиции фундаментального материаловедения. Теплофизические свойства являются структурно чувствительными, поскольку демонстрируют аномалии в температурной области изменения структуры. Выяснение природы дефектов структуры и способов контроля их должны привести к максимальной реализации ценных свойств этих соединений.

В настоящей работе с учетом вышесказанного изучена температурная зависимость удельной теплоемкости, температуропроводности и теплопроводности в широком интервале температур — от 300 до 800 К. Других работ, посвященных комплексному исследованию ТФС, в литературе не найдено.

МЕТОДИКА ЭКСПЕРИМЕНТА

Образцы для исследования получены методом непосредственного сплавления стехиометрических элементов особой чистоты (класса не ниже В3) в эвакуированных кварцевых ампулах с вибрационным перемешиванием расплава при максимальных температурах и дальнейшим медленным охлаждением до комнатной температуры.

Качество образцов контролировалось рентгеновским, металлографическим анализами и измерениями некоторых электрофизических параметров в области комнатных температур. По данным анализа, полученные образцы *n*-CdSnAs₂ представляют собой поликристаллы *n*-типа с концентрацией электронов в примесной области $n \approx 8 \times 10^{16}$ см⁻³. Плотность определялась пикнометрически и равна $\rho = 5.44 \times 10^3$ кг м⁻³. Измерения проводились на двух отдельных образцах, вырезанных из одного и того же слитка.

Исследование температуропроводности осуществлялось методом лазерной вспышки на установке LFA-457 Micro Flash (NETZSCH, Германия). Погрешность измерений составляла ±5%. Измерение теплоемкости проводилось на дифференциальном сканирующем калориметре DSC 204 FI Phoenix (NETZSCH). Скорость изменения температуры – 10 К/мин. Погрешность измерения не превышала ±3%. Электропровод-

Теплофизические свойства поликристаллического *n*-CdSnAs₂ в интервале температур 300–800 К при $\rho = 5.44 \times 10^3$, кг м⁻³

Т, К	<i>с_p</i> , Дж/(кг К)	$\alpha \times 10^6$, m ² /c	λ, Вт/(м К)
300	258	3.70	5.20
325	258	3.38	4.71
350	259	3.20	4.51
375	260	3.10	4.38
400	261	2.92	4.14
425	263	2.75	3.93
450	267	2.60	3.80
475	270	2.53	3.71
500	271	2.45	3.61
525	271	2.40	3.53
550	272	2.33	3.44
575	272	2.27	3.36
600	273	2.23	3.31
625	274	2.20	3.27
650	275	2.17	3.24
675	278	2.13	3.22
700	281	2.10	3.21
725	282	2.09	3.20
750	284	2.07	3.19
775	285	2.06	3.19
800	287	2.05	3.20

ность измерялась четырехзондовым компенсационным методом [3]. Ошибка измерений не превышала $\pm 4\%$.

Температурная зависимость общей теплопроводности и ее составляющих в интервале температур 300–800 К: $I - \lambda$, $2 - \lambda_{\mathfrak{II}}$, $3 - \lambda_{\mathfrak{GII}}$, $4 - \lambda_{p}$.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Полученные результаты исследования температурных зависимостей удельной теплоемкости c_p , температуропроводности α и теплопроводности λ в интервале температур 300—800 К представлены в таблице. На рисунке приведены данные по температурной зависимости теплопроводности и ее составляющих в исследованном интервале температур.

Теплофизические свойства CdSnAs₂ в области высоких температур до настоящего времени исследованы недостаточно. Теплопроводность поликристаллов CdSnAs₂, по данным различных авторов, в области комнатных температур равна 4.00-9.21 Вт/(м K) [1, 3, 4]. Результаты не согласуются как между собой, так и с полученными в настоящей работе данными. Наблюдаемое расхождение данных по теплопроводности различных авторов, по-видимому, обусловлено как различием в микроструктуре образцов, вызванным применением разных методов синтеза, так и степенью надежности использованных экспериментальных методик. Для сравнения с экспериментом теплопроводность CdSnAs₂ при 300 К рассчиты-

валась по формуле Кейса: $\lambda T = B_{\text{тв}} \frac{T_{\text{пл}}^{3/2} \rho^{2/3}}{A^{7/6}}$

$$\frac{D^{2/3}}{6}$$
, где $B_{\rm TB}$ -

эмпирическая постоянная (различна для кристаллов с разными типами химической связи), ρ – плотность, A_{cp} – средний атомный вес. Экспериментальные данные по λ хорошо согласуются с рассчитанными по формуле значениями при $B_{TB} = 0.04$. Значение $B_{TB} = 0.04$ отличается от рекомендуемого Кейсом для кристаллов с "чисто" ковалентной связью значения $B_{TB} = 0.13$, что, видимо, связано с ионно-ковалентным характером химической связи в соединении CdSnAs₂.

Как видно из рисунка, общая теплопроводность $CdSnAs_2$ меняется с температурой по гиперболическому закону. Решеточная компонента теплопроводности в исследованном интервале температур вычислялась путем вычитания электронной $\lambda_{3\pi}$ и биполярной $\lambda_{6\pi}$ составляющих из общей теплопроводности.

Авторские экспериментальные данные по электропроводности σ в интервале температур 200—450 К согласуются с данными работы [5], результаты которой использовались для расчета электронной и биполярной составляющих теплопереноса во всем исследованном интервале температур.

По данным об электропроводности и постоянной Холла, в интервале температур 200–300 К *n*-CdSnAs₂ является примесным полупроводником. Выше 300 К наступает область смешанной проводимости с шириной запрещенной зоны $\Delta E = 0.26$ эВ. Электронная составляющая теплопроводности рассчитывалась по формуле Видемана– Франца $\lambda_3 = L\sigma T$ как для случая невырожденного электронного газа в предположении, что рассеяние электронов происходит на акустических колебаниях решетки. В исследуемом образце для случая невырожденного электронного газа рассеяние электронов на акустических колебаниях решетки является упругим. Поэтому постоянная *L* в формуле Видемана–Франца равна числу Лоренца $L_0 = 2.45 \times 10^{-8}$ Вт Ом/K².

В области смешанной проводимости для вычисления биполярной компоненты теплопереноса использовалась формула Давидова—Шмушкевича, преобразованная к виду

$$\lambda_{6\pi} = \frac{b}{\left(b+1\right)^2} L \sigma T \left[\frac{\Delta E}{2KT} + 2\right]^2,$$

где *b* — отношение подвижностей электронов и дырок. Исходя из анализа результатов работ [1, 6—9], отношение подвижностей для расчета λ_{6n} принималось равным *b* = 58. Полученные результаты расчетов λ_{9n} и λ_{6n} приведены на рисунке (кривые 2 и 3 соответственно). Там же представлены значения для решеточной составляющей теплопроводности λ_p (кривая 4), подсчитанной как разность $\lambda_p = \lambda - (\lambda_{9n} + \lambda_{6n})$. Следует отметить, что поскольку отношение подвижностей электронов и дырок велико, то электрические и тепловые свойства кристаллов CdSnAs₂ во всем интервале температур определяются в основном только электронами.

Как видно из рисунка, температурная зависимость решеточной составляющей теплопроводности λ_p качественно соответствует теории. Однако, согласно расчетам в области температур выше дебаевской (234 К из [10]), произведение $\lambda_p T$ не остается постоянным, а падает, т.е. λ_p зависит от температуры сильнее, чем T^{-1} .

Решеточная теплопроводность, согласно настоящим расчетам, в исследованном интервале температур падает по закону $\lambda_p \sim T^{-1.53}$. Отклоне-ние показателя *n* в зависимости $\lambda_p \sim T^{-n}$ от единицы характерно и для других соединений со структурой халькоперита. Авторы [6] связывают отклонение показателя *n* от единицы с возможной зависимостью постоянной Грюнайзена у от температуры. Параметр Грюнайзена определялся путем сопоставления экспериментальной величины λ с рассчитанными по формуле Лейбфрида-Шлемана. Расчеты показали, что для удовлетворительного согласия теории с экспериментом параметр Грюнайзена для CdSnAs₂ необходимо принять равным $\gamma = 0.58$. Эта величина согласуется со средними величинами ү≈ 0.63-0.67, определенными разными способами для полупроводников группы $A^{III}B^V$, а также Ge и Si, сходных по

структуре и типу химической связи с CdSnAs₂. Поскольку точный расчет времени релаксации ангармонического рассеяния не выполнен, то представляется целесообразным сравнить теплопроводность группы веществ с алмазоподобной структурой и попытаться выявить причину расхождения теории с экспериментом.

Авторы [8, 11] на основании анализа ряда теоретических работ, посвященных объяснению отклонения фононной теплопроводности от закона T^{-n} (где n > 1), пришли к выводу, что такое убывание хорошо объясняется ролью оптических фононов в рассеянии акустических, так как частоты продольных акустических фононов, которым отводится решающая роль в рассеянии поперечных [12, 13], близки к частотам оптических фононов. При малых групповых скоростях мал вклад фононов в теплоперенос, но велик вклад в рассеяние. При больших скоростях их роль в рассеянии не так велика, но зато вклад в перенос тепла становится существенным. Таким образом, учет оптических фононов в фонон-фононном рассеянии позволяет качественно объяснить температурный ход $\lambda_{n}(T)$ для соединений со структурой халькоперита. Проведение количественного анализа влияния оптико-акустического рассеяния на теплопроводность не представляется возможным изза отсутствия подробных сведений о фононном спектре, в частности о характере дисперсии оптических ветвей.

ЗАКЛЮЧЕНИЕ

Впервые проведены комплексные исследования теплофизических свойств поликристаллического *n*-CdSnAs₂ в интервале температур 300–800 К. Проведен анализ возможных механизмов переноса тепла в CdSnAs₂. Показано, что решеточная составляющая теплопроводности при T > 300 К убывает с ростом температуры по закону $\lambda_p \sim T^{-n}$, где n > 1, что характерно и для других соединений со структурой халькоперита.

СПИСОК ЛИТЕРАТУРЫ

- Боршевский А.С., Вайполгин А.А., Валов Ю.А. и др. Полупроводники A²B⁴C₂⁵. М.: Советское радио, 1974. 367 с.
- Прочухан В.Д., Рудь Ю.В. Перспективы практического применения полупроводников // ФТП. 1978. Т. 12. № 2. С. 209.
- 3. *Магомедов Я.Б., Гаджиев Г.Г.* Теплопроводность и электропроводность соединения CdSnAs₂ в твердом и жидком состояниях // Изв. РАН. Сер. физическая. 2010. Т. 74. № 5. С. 727.
- 4. Бергер Л.Н., Тарасов В.В., Щукина И.К. Труды ИРЕА. 1967. Т. 30. С. 412.
- Matyas M., Hosch P. The Semiconducting Properties of CdSnAs₂// Czech. I. Phys. 1962. V. B12. № 10. P. 778.

- 6. Полянская Т.А. О подвижности электронов в CdSnAs₂ // ФТП. 1970. Т. 4. № 7. С. 1239.
- Steigmaeir E.F., Kudman I. Acoustical-Optical Phonon Scattering in Ge, Si and III–V Compounds // Phys. Rev. 1966. V. 141. Iss. 2. P. 767.
- Логачев Ю.А., Васильев Л.Н. Температурная зависимость фононной теплопроводности Ge, Si и A^{III}B^V при высоких температурах // ФТТ. 1973. Т. 15. № 5. С. 1612.
- Голованов В.В., Горюнова Н.А., Коршак Н.М. Некоторые свойства n-CdSnAs₂ // ФТТ. 1965. Т. 7. № 2. С. 3655.
- Голованов В.В., Горюнова Н.А., Коршак Н.М. и др. Электрические свойства n-CdSnAs₂ в широком интервале температур и концентраций примесей // Укр. физ. журн. 1968. Т. 13. № 1. С. 100.
- Логачев Ю.А., Юрьев М.С. Фонон-фононное рассеяние и решеточная теплопроводность при высоких температурах // ФТТ. 1972. Т. 14. С. 3336.
- 12. *Holland M.G.* Analysis of Lattice Thermal Conductivity // Phys. Rev. 1963. V. 132. P. 2461.
- Holland M.G. Analysis of Thermal Conductivity-A Reply // Phys. Rev. B. 1971. V. 3. P. 3575.