УЛК 536.245.022

СНИЖЕНИЕ МАКСИМАЛЬНЫХ ТЕМПЕРАТУР ПОВЕРХНОСТИ ПРИ СВЕРХЗВУКОВОМ ОБТЕКАНИИ ЗАТУПЛЕННОГО ПО СФЕРЕ КОНУСА

© 2021 г. В. И. Зинченко^{1, *}, В. Д. Гольдин^{1, **}

¹Томский государственный университет, Томск, Россия *E-mail: vladislav.zinchenko@bk.ru **E-mail: vdg@math.tsu.ru
Поступила в редакцию 28.11.2019 г.
После доработки 28.11.2019 г.
Принята к публикации 10.03.2020 г.

Рассмотрена сопряженная задача нестационарного теплообмена при сверхзвуковом обтекании затупленного по сфере конуса при большом числе ${\rm Maxa}~({\rm M}_{\infty}=9.9).$ В этом случае максимальные температуры обтекаемой оболочки могут достигать температуры разрушения материала и важно оценить возможные способы их снижения. Обобщенные критериальные зависимости, полученные на основе численных расчетов нестационарной задачи в сопряженной постановке, позволяют оценить необходимое снижение максимальной температуры поверхности тела за счет выбора геометрических характеристик тела и теплофизических характеристик материалов для сферической и конической областей тела.

DOI: 10.31857/S0040364421010178

ВВЕДЕНИЕ

Требование сохранения геометрии летательного аппарата при больших временах движения вызывает необходимость использования различных материалов, в том числе высокотеплопроводных, обеспечивающих наряду с переизлучением поверхности тела снижение максимальных температур лобовой части [1—5].

Используя отработанную технологию решения задач в сопряженной постановке [6, 7], важно оценить возможности управления температурными режимами обтекаемых тел и получить критериальные зависимости для инженерных оценок максимальных температур T_w .

ПОСТАНОВКА ЗАДАЧИ

Рассматривается сверхзвуковое обтекание затупленных по сфере конических тел с углом полураствора 5° , радиусом сферического затупления R_N и различными длинами $z_c = 5$, 10, 20 при нулевом угле атаки. Лобовая часть тела выполнена из сплошного материала, а на боковой части (при $z > z_0$) имеется коническая оболочка постоянной толщины L, причем материалы в этих областях могут быть различными (рис. 1). Внутренняя часть тела представляет собой конус с торцевым затуплением. Все линейные размеры отнесены к R_N . Расчет течения в ламинарном пограничном слое проводился как в [1, 6], а тепловое поле в обтекаемой

оболочке описывалось уравнениями теплопроводности, которые в предположении постоянства теплофизических характеристик материала имеют вид

$$\frac{1}{S_1} \frac{\partial \theta_1}{\partial \tau} = \frac{1}{r} \frac{\partial}{\partial \tau} \left(r \frac{\partial \theta_1}{\partial r} \right) + \frac{\partial^2 \theta_1}{\partial z^2},\tag{1}$$

$$\frac{\lambda_{s1}}{\rho_{s1}c_{s1}} \frac{\rho_{s2}c_{s2}}{\lambda_{s2}} \frac{1}{S_1} \frac{\partial \theta_2}{\partial \tau} = \frac{1}{r} \frac{\partial}{\partial \tau} \left(r \frac{\partial \theta_2}{\partial r} \right) + \frac{\partial^2 \theta_2}{\partial z^2}.$$
 (2)

Здесь
$$\theta_i = \frac{T_i}{T_{e0}};$$
 $S_i = \frac{\lambda_{si}}{\sqrt{\rho_{e0}\mu_{e0}V_mR_N}} \frac{T_{e0}}{h_{e0}};$ $\tau =$

$$= \frac{\lambda_{s1}t}{\rho_{s1}c_{s1}R_N^2} \frac{1}{S_1}; T-\text{температура}; t-\text{время}; z, r-\text{гео-метрические координаты (рис. 1), отнесенные к R_N ; λ_s, ρ_s, c_s- коэффициент теплопроводности, плотность и удельная теплоемкость твердого тела; h_{e0} , $T_{e0}-$ энтальпия и температура набегающего пото-ка в точке торможения: $V_{e0}=\sqrt{2h_0}$; ρ_{e0} , $\rho_{e0}$$$

ка в точке торможения; $V_m = \sqrt{2h_{e0}}$; ρ_{e0} , μ_{e0} — плотность и вязкость на внешней границе пограничного слоя в точке торможения; индексы i=1,2 отвечают расчетным областям тела (рис. 1).

В начальный момент времени задается температура тела

$$\theta_i(0,r,z) = \theta_{\text{ini}} = \frac{T_{\text{ini}}}{T_{e0}},$$

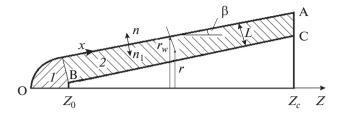


Рис. 1. Схема расчетной области.

где $T_{\rm ini}$ — начальное значение температуры. В качестве граничных условий для уравнений (1), (2) на оси симметрии, внутренней поверхности оболочки и ее тыльной части (линия AC на рис. 1) задаются условия тепловой изоляции:

$$\frac{\partial \theta_i}{\partial n} = 0,$$

где дифференцирование ведется по нормали к соответствующей поверхности. На границе областей I, 2 используются условия сопряжения, а на границе раздела газовой и твердой сред выставляются граничные условия четвертого рода, т.е. равенство температур и тепловых потоков в пограничном слое и твердом теле:

$$\tilde{q}_{w} - \pi_{\sigma} \theta_{wi}^{4} = -S_{i} \frac{\partial \theta_{i}}{\partial n_{i}}.$$
 (3)

Здесь $\tilde{q}_{_{\scriptscriptstyle W}}=rac{q_{_{\scriptscriptstyle W}}}{q_{_{\scriptscriptstyle W}}^*}$ — безразмерный тепловой поток

от пограничного слоя,
$$q_w^* = \sqrt{rac{
ho_{e0}\mu_{e0}V_m}{R_N}}h_{e0},$$

$$\pi_{\sigma} = \frac{\varepsilon \sigma T_{e0}^4 \sqrt{R_N}}{h_{e0} \sqrt{\rho_{e0} \mu_{e0} V_m}}, \ \varepsilon$$
 — степень черноты поверхно-

сти тела, σ — постоянная Стефана—Больцмана, n_1 — координата, отсчитываемая в глубь тела от его поверхности (рис. 1).

В переменных Дородницына-Лиза

$$\xi = \frac{x}{R_N}, \quad \zeta = \frac{u_e r_w}{\sqrt{2 \int_0^x \rho_e \mu_e u_e r_w^2 dx}} \int_0^n \rho dn$$

для безразмерного теплового потока имеем

$$\tilde{q}_{w} = \sqrt{\frac{u_{e}}{V_{m}}} \frac{\rho_{e}}{\rho_{e0}} \frac{\mu_{e}}{\mu_{e0}} \frac{1}{\alpha_{1}} \left(\frac{l}{\Pr} \frac{\partial \theta}{\partial \zeta} \right)_{w},$$

где
$$\alpha_1 = \frac{2\int_0^\xi \rho_e \mu_e u_e r_w^2 d\xi}{\rho_e \mu_e u_e r_w^2};$$
 $l = \frac{\rho \mu}{\rho_e \mu_e};$ \Pr — число Прандтля, равное 0.72 для воздуха; x — длина дуги

Прандтля, равное 0.72 для воздуха; x — длина дуги образующей поверхности тела; n — геометрическая координата, отсчитываемая внутрь погра-

ничного слоя от обтекаемой поверхности; ρ – плотность газа в пограничном слое; u_e , ρ_e , μ_e – скорость, плотность и вязкость газа на внешней границе пограничного слоя.

Для случая единого материала в областях 1, 2 наряду с решением двумерного уравнения теплопроводности температура тела рассчитывалась по одномерной модели в естественной системе координат [1]:

$$\frac{1}{S}\frac{\partial \theta}{\partial \tau} = \frac{1}{g}\frac{\partial}{\partial n_{l}} \left(g\frac{\partial \theta}{\partial n_{l}}\right), \quad g = \left(1 - \frac{n_{l}}{R}\right) \left(1 - \frac{n_{l}\cos\alpha}{r_{w}}\right).$$

При этом остаются прежними начальные и граничные условия. Здесь R — радиус кривизны образующей поверхности тела, α — угол между касательной к телу и осью симметрии, r_w — расстояние от поверхности тела до оси симметрии.

Решение уравнений теплопроводности определяется в основном параметрами сопряженности S_i и параметром π_{σ} , характеризующим излучение поверхности тела. В предельном случае ($S_i = 0$) решение системы уравнений пограничного слоя с граничным условием (3) дает распределение радиационно-равновесной температуры поверхности $\theta_{wr}(\xi)$. Случай $S_i \to \infty$ соответствует материалу с бесконечной теплопроводностью, при этом температура тела зависит только от времени, и уравнение для ее определения приведено в [1, 4].

МЕТОДИКА РЕШЕНИЯ И ИСХОДНЫЕ ДАННЫЕ

Методика решения и алгоритм численного расчета краевой задачи в сопряженной постановке подробно представлены в [1]. Здесь отличительным моментом явилось сквозное определение поля температур в теле при различных коэффициентах λ_{si} в областях l, 2.

При проведении серийных численных расчетов использовались следующие входные данные: $\mathrm{M}_{\infty}=9.9,\,p_{e0}=1.6$ бар, $T_{\mathrm{ini}}=293$ K, $\epsilon=0.8,\,z_0=0.96,\,L=0.5$. Радиус затупления R_N принимался равным 0.005, 0.01, 0.04 м, базовая температура торможения $T_{e0}=3250$ K. Также проводились расчеты при $T_{e0}=1000,\,1500,\,2000$ K. Теплофизические характеристики материалов приведены в табл. 1 [8]. В случае различных материалов для сферической части использовалась сталь, а для конической — медь с характеристиками из табл. 1.

АНАЛИЗ РЕЗУЛЬТАТОВ ЧИСЛЕННОГО РЕШЕНИЯ

Рассмотрим вначале случай обтекания тела, выполненного из единого материала. В работе [1] при ${\rm M}_{\infty}=6.1,\,T_{e0}=562~{\rm K},\,p_{e0}=2.2$ бар проведено сравнение расчетных и экспериментальных зна-

чений [9] коэффициента
$$C_h = \frac{q_w}{\rho_{\infty} V_{\infty} c_p \left(T_{e0} - T_{w, \mathrm{ini}}\right)}$$

в зависимости от z в начальный момент времени, а затем рассмотрена эволюция температурного поля обтекаемых тел, выполненных из различных материалов, вплоть до выхода на стационарный режим. При этом значения определяющего параметра π_{σ} не превышали 0.38. При возрастании чисел Маха до 10 и высоте полета H=30 км [2] значения π_{σ} могут возрастать в несколько раз, поэтому необходимо дать оценку возможности управления температурными режимами тела для данных практически важных условий.

Для $z_c = 5$, $R_N = 0.01$ м при указанных выше параметрах торможения на рис. 2 приведены значения температур поверхности тела, выполненного из представленных в табл. 1 материалов. Здесь же показано распределение температуры стенки $T_{wr}(\xi)$ при S=0 (кривая 9) и в предельном случае материала с бесконечной теплопроводностью — $S \to \infty$ (кривые 4, 8). Серия кривых 5-8 отвечает стационарным значениям $T_w(\xi)$ в момент времени t=250 с, а кривые l-4 соответствуют значениям $T_w(\xi)$ при t=10 с.

Представленные результаты иллюстрируют возможности снижения максимальной температуры поверхности при выборе высокотеплопроводных материалов и носят модельный характер для уровня высоких температур, превышающих температуры разрушения материалов. Отметим, что максимальная температура достигается в критической точке.

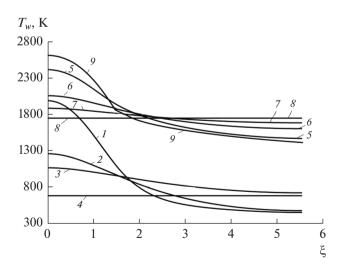


Рис. 2. Температура поверхности тела из сталей Ст1 (1, 5) и Ст2 (2, 6), меди (3, 7) и материала с бесконечной теплопроводностью (4, 8) в моменты времени t=10 (1—4) и 250 с (5—8); 9— радиационно-равновесная температура.

Таблица 1. Теплофизические параметры материалов

	λ_s , Bt/(m K)	ρ_s , кг/м ³	c_s , Дж/(кг K)
Сталь-1	20	7800	600
Сталь-2	125	7800	600
Медь	386	8950	370

Для оценки максимальной температуры при $t \to \infty$ в критериальном виде на рис. 3, 4 представлены зависимости безразмерной температуры в критической точке

$$\varphi_{st} = \frac{\theta_{w0r} - \theta_{w0}}{\theta_{w0r} - \theta_{w0} \left(\lambda_s \to \infty\right)} \tag{4}$$

от основных определяющих параметров задачи S и π_{σ} . На рис. З $\phi_{\rm st}$ приведена для различных удлинений конической части тела, и здесь же показано влияние параметра π_{σ} . При $\pi_{\sigma} > 0.4$ кривые $\phi_{\rm st}$ ведут себя линейным образом с близкими углами наклона для различных S и z_c (рис. 4).

Для предельных условий по S ($\lambda_s = 0$ и $\lambda_s \to \infty$) на рис. 5 приведены максимальные температуры в зависимости от параметра π_{σ} для различных удлинений конической части. При $\pi_{\sigma} \ge 0.4~\theta_{w0}$ в случае $\lambda_s \to \infty$ оказывается ниже радиационноравновесной температуры θ_{w0r} на 30-50% в зависимости от z_c . При $\pi_{\sigma} < 0.4$ результаты расчета согласуются с данными [1]. Здесь же для примера приведены данные расчетов для S = 6 (кривые 2), из которых следует, что при данных и меньших значениях параметра сопряженности S максимальная температура в критической точке слабо

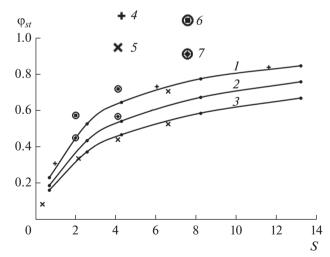


Рис. 3. Зависимость безразмерной температуры $\phi_{\rm st}$ от параметра сопряженности S: при $\pi_{\sigma}=0.53$ и $z_c=5$ (I), 10 (2), 20 (3); $4-\pi_{\sigma}=0.38$, 5-1.06; и для составного материала при $\pi_{\sigma}=0.53$, $S_1=2$, 4, $S_2=13$ и $z_c=5$ (6), 20 (7).

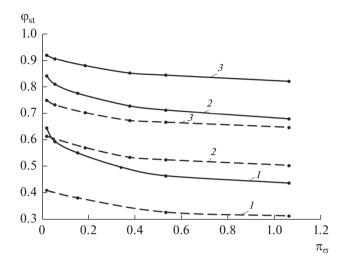


Рис. 4. Зависимость безразмерной температуры $\varphi_{\rm st}$ от параметра π_{σ} при S=2 (1), 6 (2), 13 (3); сплошные кривые $-z_c=5$, штриховые -20.

зависит от удлинения конической части, а ее снижение по отношению к θ_{w0r} при $\pi_{\sigma} \ge 0.4$ составляет около 25%.

Отметим, что, используя критериальные зависимости, приведенные на рис. 3, 4, а также значения температуры, найденные для предельных условий по $S(\theta_{w0}, \theta_{w0}(\lambda_s \to \infty))$, из выражения (4) можно определить значение θ_{w0} в расчетном диапазоне S, π_{σ} . Погрешность нахождения θ_{w0} с учетом возможной линейной интерполяции по определяющим критериям не превышает 2%. Такой подход позволяет избежать массовых точных расчетов двумерной задачи теплопроводности в теле, в том числе при усложнении внутренней геометрии обтекаемой оболочки.

Влияние относительной толщины оболочки L на максимальную температуру θ_{w0} представлено в табл. 2 для различных значений π_{σ} и S. Как и для базовой толщины L=0.5, при двух других значениях имеет место слабое влияние длины тела на θ_{w0} при $S \leq 6$ практически во всем расчетном диапазоне π_{σ} . При возрастании L (≥ 0.5) наблюдается слабое уменьшение температуры θ_{w0} для фиксированных значений S. В то же время в диапазоне $0.1 \leq L \leq 0.5$ при возрастании L происходит суще-

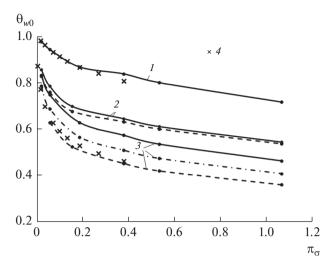


Рис. 5. Стационарная температура в критической точке при S = 0 (I), 6 (2), ∞ (3); сплошные линии $-z_c = 5$, штриховые -20, штрихпунктирные -10; 4 – результаты [1].

ственное снижение θ_{w0} , что приводит в данных условиях к уменьшению максимальной температуры тела. Снижение температур θ_{w0} может достигать 25—30% (табл. 2) от максимальных значений в зависимости от выбора определяющих параметров задачи.

Рассмотрим далее температурный режим в окрестности лобовой критической точки для нестационарных условий и однородного материала обтекаемой оболочки. На рис. ба показана зависимость от времени безразмерной температуры $\theta_{w0}(\tau)$ для различных материалов (кривые I-4), а также приведены данные одномерных расчетов (кривые 5, 5'). Здесь и ниже кривые со штрихами отвечают $\pi_{\sigma}=1.06$. В принятых переменных результаты одномерных расчетов для различных материалов ложатся практически на одну кривую при S>2. На нестационарном участке эффективность использования высокотеплопроводных материалов может значимо возрастать.

Как и в [1], введем нестационарный аналог функции ϕ_{ct}

$$\varphi_{\text{nst}} = \frac{\theta_{w01}(\tau, \lambda_s) - \theta_{w02}(\tau, \lambda_s)}{\theta_{w01}(\tau, \lambda_s) - \theta_{w02}(\tau, \lambda_s \to \infty)},$$
 (5)

Таблица 2. Максимальная температура поверхности θ_{w0}

π_{σ}	0.53					1.06						
S	4.3		13		4.1		13					
\overline{L}	0.1	0.5	0.8	0.1	0.5	0.8	0.1	0.5	0.8	0.1	0.5	0.8
$\theta_{w0}, z_c = 5$	0.67	0.63	0.62	0.62	0.58	0.57	0.60	0.57	0.56	0.55	0.51	0.51
$\theta_{w0},z_c=20$	0.67	0.63	0.61	0.61	0.55	0.53	0.60	0.56	0.55	0.54	0.49	0.48

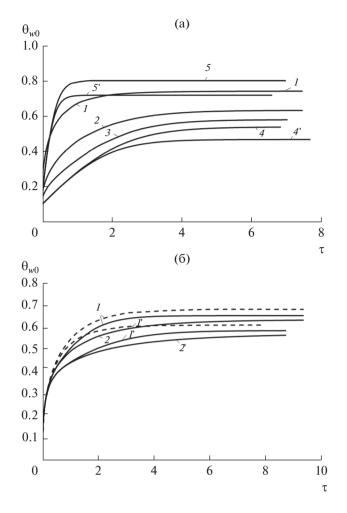


Рис. 6. Временная зависимость безразмерной температуры в критической точке тела с однородным (а) и составным покрытием (б) при $\pi_{\sigma}=0.53$ (I,2) и 1.06 (I',2'): (а) $z_c=5,\,I-S=0.69,\,2-4.3,\,3-13,\,4-\infty,\,5-$ одномерный расчет; (б) $1-z_c=5,\,S_1=2,\,S_2=13;\,2-20,\,2,\,13;$ штриховые линии — однородный материал при S=2.

где индексы 1, 2 отвечают одномерному и двумерному случаям. На рис. 7 представлена временная зависимость $\phi_{\rm nst}$. Здесь для двух значений S=2, 13 при двух значениях удлинения $z_c=5$, 20 приведены кривые для $\pi_{\sigma}=0.53$ и 1.06. Штриховыми линиями показана зависимость

$$\tilde{\phi}_{nst} = \frac{\theta_{w0r} - \theta_{w02} \left(\tau, \lambda_s\right)}{\theta_{w0r} - \theta_{w02} \left(\tau, \lambda_s \to \infty\right)}.$$

При этом $\tilde{\phi}_{nst}$ значительно отличается от ϕ_{nst} в моменты времени, близкие к начальному, но при $\tau \geq 2$ они практически совпадают, так как одномерный расчет быстро выходит на значение θ_{w0r}

Учитывая поведение функции ϕ_{nst} , можно заметить, что для $\tau \ge 1$ ее максимальное отличие от своего стационарного значения ϕ_{st} не превышает 10%, что позволяет приравнять эти величины в расчетном диапазоне τ . Тогда из (5) вытекает

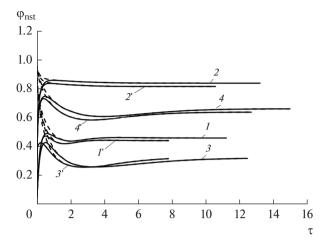


Рис. 7. Временная зависимость $\phi_{\rm nst}$ в критической точке при $\pi_{\sigma}=0.53$ (I-4) и 1.06 (I'-4'): I-S=2, $z_c=5$; 2-13, 5; 3-2, 20; 4-13, 20.

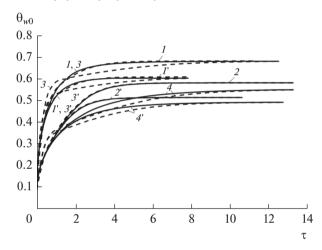


Рис. 8. Температура в критической точке в зависимости от времени при $\pi_{\sigma}=0.53~(\emph{1-4})$ и 1.06 ($\emph{I'-4'}$): $\emph{1-4}$ — то же, что на рис. 7; штриховые линии — приближенное решение.

$$\theta_{w02}(\tau, \lambda_s) = \theta_{w01}(\tau, \lambda_s) - - \phi_{st} \left[\theta_{w01}(\tau, \lambda_s) - \theta_{w02}(\tau, \lambda_s \to \infty)\right].$$
 (6)

На рис. 8 для условий рис. 7 дано сравнение нестационарного численного решения (сплошные кривые) и приближенного, найденного из (6), (штриховые кривые). Видно, что приближенное решение дает высокую точность при $z_c = 5$, которая снижается при $\tau < 8$ и $z_c = 20$.

Таким образом, для нестационарных условий обтекания тела может быть использован приближенный способ определения его максимальных температур, включающий определение ϕ_{st} в стационарном случае и температуры поверхности тела в предельных случаях нетеплопроводного материала θ_{w0r} и абсолютно теплопроводного тела $\theta_{w02}(\tau, \lambda_s \to \infty)$, а также результаты одномерного расчета температуры поверхности при отсутствии

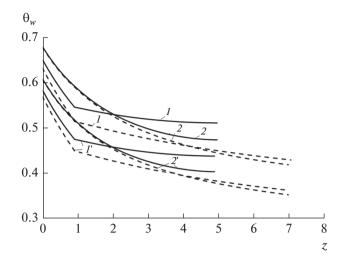


Рис. 9. Распределение стационарной температуры вдоль поверхности тела из составного (*I*) и однородного (*2*) материалов при $\pi_{\sigma} = 0.53$ (*1*, *2*) и 1.06 (*I*', *2*'): сплошные линии $-z_c = 5$, штриховые -20.

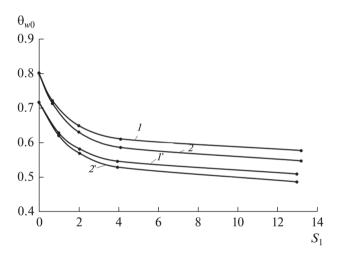


Рис. 10. Зависимость максимальной стационарной температуры от параметра сопряженности S_I при $\pi_{\sigma}=0.53~(I,2)$ и 1.06 (I',2'): $I,I'-z_c=5;2,2'-20$.

продольного перетекания тепла по ней $\theta_{w01}(\tau, \lambda_s)$. Как указывалось выше, при $\tau \ge 1$ значения $\theta_{w01}(\tau, \lambda_s)$ могут быть заменены значением θ_{w0r} .

Рассмотрим далее случай различных материалов сферической и конической частей. На рис. 66 представлена зависимость $\theta_{w0}(\tau)$ для двух значений z_c (5, 20), двух значений π_{σ} (0.53, 1.06) при $S_1=2$, $S_2=13$. Здесь же для сравнения приведены соответствующие зависимости θ_{w0} для однородного материала $S_1=S_2=2$ при $z_c=5$ (штриховые линии). Таким образом, получается комбинация высокотемпературного (область 1) и высокотеплопроводного (область 2) материалов; такая комбинация обеспечивает снижение максимальной

температуры по отношению к однородному материалу на 4-7% в зависимости от z_c .

Распределение стационарной температуры поверхности $\theta_{w}(z)$ для различных длин тела показано на рис. 9. Кривые 1, 1', имеющие разрыв производной, соответствуют различным материалам $(S_1 = 2, S_2 = 13)$, а кривые 2, 2' отвечают однородному материалу при $S_1 = S_2 = 2$. Как и выше, кривые без штрихов и со штрихами построены для $\pi_{\sigma} = 0.53$ и 1.06 соответственно. Как и следовало ожидать, для однородного материала при S=2максимальная температура в окрестности критической точки при различных π_{σ} не зависит от длины тела z_c . В то же время использование различных материалов позволяет управлять снижением температуры поверхности θ_{w0} . На периферийной конической части тела рост S_2 вследствие повышения коэффициента теплопроводности материала обеспечивает рост температуры поверхности и выполаживание зависимости $\theta_w(z)$. Качественно такое поведение температуры в этой области отвечает зависимостям $\theta_w(\xi)$ для различных λ_s , которые рассматривались при анализе рис. 2.

Интересно оценить влияние коэффициента теплопроводности в области 1 высокотемпературного материала и параметра S_1 на максимальное значение θ_{w0} при заданном значении S_2 в области высокотеплопроводного материала. На рис. 3 для двух длин z_c (5, 20) показано значение $\phi_{\rm st}$ при $S_1=2$, 4 (значки внутри кружков). Такая обработка отражает факт заметного снижения температуры θ_{w0} по отношению к однородному материалу обтекаемого тела. Так, для $z_c=5$ значения θ_{w0} составляют 0.95 и 0.9 от максимальной температуры однородного материала при $S_1=2$ и $S_1=4$. Если $z_c=20$, то это отношение равно 0.93 и 0.87 соответственно.

На рис. 10 показана зависимость θ_{w0} от параметра S_1 при заданном значении $S_2=13$ для различных величин π_σ и z_c . При $S_1 \ge 6$ максимальная температура меняется слабо в пределах 5%. Отсюда вытекает близкий к оптимальному уровню диапазон значений S_1 (2—5), при котором заметно снижается уровень максимальных температур при соответствующем выборе высокотемпературного материала сферического затупления.

Таким образом, меняя соотношение коэффициентов теплопроводности материалов сферической и конической частей, можно влиять на снижение максимальной температуры в окрестности критической точки. При этом, как вытекает из рис. 6б, для нестационарного участка процесса это снижение может быть заметно большим.

ЗАКЛЮЧЕНИЕ

Для нулевого угла атаки в области больших значений чисел Маха (до 10.0) и высоких температур торможения (до 3250 К) на высотах порядка 30 км рассмотрена залача снижения максимальной температуры поверхности затупленного по сфере конуса ниже температуры разрушения материала тела. На основе нестационарной задачи в сопряженной постановке изучены возможные способы управления температурными режимами за счет выбора теплофизических характеристик материала и геометрических характеристик модели: радиуса R_N , длины z_c и толщины оболочки L. Показано, что использование высокотеплопроводных материалов тела в целом либо комбинашии высокотемпературных материалов на затуплении и высокотеплопроводных на конической части дает возможность существенно снизить максимальную температуру лобовой критической точки. Построенные критериальные зависимости позволяют оценивать максимальные значения T_{w0} во всем диапазоне времен движения.

Оценено применение часто используемой одномерной модели распространения тепла в теле и показана возможность кратной ошибки в определении максимальных температур для перспективных высокотеплопроводных материалов.

СПИСОК ЛИТЕРАТУРЫ

1. Зинченко В.И., Гольдин В.Д. Решение сопряженной задачи нестационарного теплообмена при сверхзву-

- ковом обтекании затупленного по сфере конуса // ИФЖ. 2019. Т. 92. № 1. С. 137.
- 2. Гешеле В.Д., Полежаев Ю.В., Раскатов И.П., Стоник О.Г., Габбасова Г.В. Возможности повышения скорости полета гиперзвуковых летательных аппаратов // ТВТ. 2013. Т. 51. № 5. С. 798.
- 3. *Башкин В.А., Решетько С.М.* Температурный режим затупленных клиньев и конусов в сверхзвуковом потоке с учетом теплопроводности материала // Уч. зап. ЦАГИ. 1990. Т. XXI. № 4. С. 11.
- 4. Зинченко В.И., Лаева В.И., Сандрыкина Т.С. Расчет температурных режимов обтекаемых тел с различными теплофизическими характеристиками // ПМТФ. 1996. Т. 37. № 5. С. 105.
- Зинченко В.И., Гольдин В.Д., Зверев В.Г. Численное моделирование влияния материалов тепловой защиты на характеристики сопряженного тепломассообмена при пространственном обтекании затупленных тел // ТВТ. 2018. Т. 56. № 5. С. 747.
- 6. Зинченко В.И. Математическое моделирование сопряженных задач тепломассообмена. Томск: Издво Томск. ун-та, 1985. 222 с.
- 7. Гришин А.М., Голованов А.Н., Зинченко В.И., Ефимов К.Н., Якимов А.С. Математическое и физическое моделирование тепловой защиты. Томск: Изд-во Томск. ун-та, 2011. 358 с.
- 8. Физические величины. Спр. / Под. ред. Григорьева И.С., Мейлихова Е.З. М.: Энергоатомиздат, 1991. 1232 с.
- Бражко В.Н., Ваганов А.В., Ковалева Н.А., Колина Н.П., Липатов И.И. Экспериментальные и расчетные исследования перехода в пограничном слое на затупленных конусах при сверхзвуковом обтекании // Уч. зап. ЦАГИ. 2009. Т. XL. № 3. С. 21.