УДК 66.046:519.63

ИДЕНТИФИКАЦИЯ ТРАЕКТОРИИ ПОДВИЖНОГО ТОЧЕЧНОГО ИСТОЧНИКА ПРИ НАГРЕВЕ ОДНОМЕРНОГО СТЕРЖНЯ

© 2021 г. Х. М. Гамзаев^{1, *}

¹Азербайджанский государственный университет нефти и промышленности, г. Баку, Азербайджан *E-mail: xan.h@rambler.ru

> Поступила в редакцию 29.03.2019 г. После доработки 26.03.2020 г. Принята к публикации 18.08.2020 г.

Рассматривается процесс нагрева неоднородного одномерного стержня подвижным точечным источником тепла, описываемым параболическим уравнением с сингулярной правой частью. Поставлена задача идентификации траектории подвижного источника в заданном температурном режиме в заданной точке стержня. Для решения полученного разностного аналога поставленной задачи предлагается специальное представление, позволяющее разделить задачу на две взаимно независимые разностные задачи второго порядка. В результате получена явная формула для определения положения подвижного источника при каждом значении временной переменной.

DOI: 10.31857/S0040364421040116

введение

Известно, что для осуществления ряда технологических процессов применяется нагрев материалов подвижным источником тепла. В технике широко распространены локальные или точечные подвижные источники тепла. Такие технологические процессы, как нагрев лазерным и электронным лучом, пламенем газовой горелки, электрической дугой и другие, характеризуются наличием подвижных источников теплового воздействия. Подвижные источники тепла применяются в процессах плавки и рафинирования металла в металлургии, термообработки, сварки и микрообработки в машиностроении, приборостроении и др. [1, 2].

Одной из основных задач, возникающих при исследовании технологических процессов с подвижными точечными источниками, является определение параметров модели подвижного источника, т.е. формы, мощности источника и закона его движения (траектория источника). В литературе данная задача в зависимости от поставленной цели представляется как задача оптимального управления и в основном исследуются вопросы существования и единственности решения поставленных задач [2-6]. Следует отметить, что при решении задачи оптимального управления требуется большой объем вычислений, связанный с процедурой вычисления градиента функционала, а также поиска нужного значения параметра регуляризации. Кроме того, части решения задачи определяются одновременно, что приводит к потере оперативности получения решения. В связи с этим в настоящей работе задача об идентификации траектории подвижного точечного источника представляется как обратная задача математической физики. В настоящее время существует обширная литература по теории и методам численного решения обратных задач [7–10]. Однако обратные задачи, связанные с идентификацией траектории подвижных точечных источников, недостаточно исследованы.

ПОСТАНОВКА ЗАДАЧИ И МЕТОД РЕШЕНИЯ

Пусть рассматривается процесс нагрева неоднородного металлического стержня подвижным точечным источником с мощностью q(t). Предполагается, что концы стержня теплоизолированы, а на боковой поверхности происходит теплообмен по закону Ньютона с окружающей средой, имеющей заданную температуру. Для описания формы подвижного точечного источника используется дельта-функция Дирака. Математическая модель данного процесса представляется в следующем виде:

$$c_{p}\rho \frac{\partial u(x,t)}{\partial t} = \frac{\partial}{\partial x} \left(\lambda(x) \frac{\partial u(x,t)}{\partial x} \right) - \beta(u(x,t) - \theta(x,t)) + (1)$$

+ $q(t)\delta(x - r(t)), \quad 0 < x < l, \quad 0 < t \le T,$

$$u(x,0) = \varphi(x), \tag{2}$$

$$\frac{\partial u(0,t)}{\partial x} = 0,\tag{3}$$

$$\frac{\partial u(l,t)}{\partial x} = 0,\tag{4}$$

где u(x,t) — температура в сечении стержня с абсциссой x в момент времени t, $\lambda(x)$ – коэффициент теплопроводности стержня, c_p – теплоемкость стержня, ρ – плотность материала стержня, $\theta(x, t)$ – температура окружающей среды, *l* – длина стержня, β – коэффициент теплообмена с окружающей средой, $\delta(x - r(t))$ – дельта-функция Дирака, r(t) – закон движения точечного источника тепла.

Предполагается, что траектория движения подвижного точечного источника r(t) заранее неизвестна и требуется найти такой закон движения источника, который обеспечивал бы в заданной точке стержня $x = \eta$ заданный температурный режим

$$u(\eta, t) = f(t), \tag{5}$$

где f(t) – заданная функция.

Таким образом, задача заключается в определении функций u(x,t) и r(t), удовлетворяющих уравнению (1) и условиям (2)–(5). Поставленная задача относится к классу обратных задач, связанных с восстановлением правых частей дифференциальных уравнений в частных производных [7, 8].

Для устранения сингулярности в уравнении (1) дельта-функция аппроксимируется непрерывной функцией [11]. Для этого используется следующее соотношение:

$$\delta(x - r(t)) = \frac{\sqrt{\varepsilon}}{\sqrt{\pi}} e^{-\varepsilon(x - r(t))^2},$$
(6)

где є — положительное число. Обезразмеривание пространственной переменной x с использованием масштаба l с учетом аппроксимации дельтафункции и условий (2)-(6) позволяет представить уравнение (1) в следующем виде:

$$c_{p}\rho \frac{\partial u(x,t)}{\partial t} = \frac{1}{l^{2}} \frac{\partial}{\partial x} \left(\lambda(x) \frac{\partial u(x,t)}{\partial x} \right) - \beta(u(x,t) - \theta(x,t)) + \frac{q(t)}{l} \frac{\sqrt{\epsilon}}{\sqrt{\pi}} e^{-\epsilon(x-s(t))^{2}}, \quad 0 < x < 1,$$
(7)

$$< t \le T, \quad 0 < x < 1, \quad 0 < t \le T,$$

$$u(x,0) = \varphi(x), \tag{8}$$

$$\frac{\partial u(0,t)}{\partial x} = 0,\tag{9}$$

$$\frac{\partial u(1,t)}{\partial x} = 0, \tag{10}$$

$$u(\xi,t) = f(t), \tag{11}$$

где $\xi = \eta l^{-1}$, $s(t) = r(t)l^{-1}$.

0

Известно, что одним из распространенных методов решения обратных задач является метод регуляризации Тихонова [7, 8], основная идея которого заключается в сведении обратной задачи к задаче минимизации некоторого функционала с дополнительным стабилизирующим членом. В основном используются две разновидности метода регуляризации Тихонова: глобальная (интегральная) и локальная (последовательная) [7-10, 12, 13]. В методе регуляризации Тихонова одной из наиболее сложных проблем является определение параметра регуляризации. Значение этого параметра необходимо согласовывать с погрешностью вхолных ланных.

Для численного решения задачи (7)–(11) применяется конечно-разностный метод с использованием естественной регуляризации (саморегуляризация) [7, 8]. Сначала необходимо построить дискретный аналог дифференциальной задачи (7)-(11). С этой целью вводится равномерная разностная сетка

$$\overline{\omega} = \{(t_j, x_i): x_i = i\Delta x, \quad t_j = j\Delta t, \quad i = 0, 1, 2, \dots, n, \\ j = 0, 1, 2, \dots, m\}$$

~

в прямоугольной области $\{0 \le x \le 1, 0 \le t \le T\}$ с шагами $\Delta x = 1/n$ по переменной x и $\Delta t = T/m$ по времени *t*. Предполагается, что точка $x_k = \xi = k\Delta x$ совпадает с одним из внутренних узлов разностной сетки б. С использованием неявной аппроксимации по времени для источниковых членов дискретный аналог задачи (7)–(11) на сетке ӣ представляется в виде

$$c_{p}\rho \frac{u_{i}^{j} - u_{i}^{j^{-1}}}{\Delta t} =$$

$$= \frac{1}{l^{2}\Delta x} \left[\lambda_{i+1/2} \frac{u_{i+1}^{j} - u_{i}^{j}}{\Delta x} - \lambda_{i-1/2} \frac{u_{i}^{j} - u_{i-1}^{j}}{\Delta x} \right] -$$

$$- \beta \left(u_{i}^{j} - \theta_{i}^{j} \right) + \frac{q^{j}}{l} \frac{\sqrt{\varepsilon}}{\sqrt{\pi}} e^{-\varepsilon(x_{i} - s^{j})^{2}}, \quad i = 1, 2, ..., n - 1,$$

$$\frac{u_{1}^{j} - u_{0}^{j}}{\Delta x} = 0, \quad \frac{u_{n}^{j} - u_{n-1}^{j}}{\Delta x} = 0,$$

$$u_{k}^{j} = f^{j}, \quad j = 1, 2, ..., m,$$

$$u_{0}^{i} = \varphi(x_{i}), \quad i = 0, 2, ..., n,$$

где $u_i^j \approx u(x_i, t_j), \quad s^j \approx s(t_j), \quad \lambda_{i\pm 1/2} = \lambda(x_i \pm \Delta x/2),$ $q^{j} = q(t_{i}), \ \theta_{i}^{j} = \theta(x_{i}, t_{i}).$

Построенная разностная задача представляет собой систему линейных алгебраических уравнений, в которой в качестве неизвестных выступают приближенные значения искомых функций u(x,t)

и s(t) в узлах сетки $\overline{\omega}$, т.е. $u_i^j, s^j; i = 0, 1, 2, ..., n;$ $j = 1, 2, 3, \dots, m$.

Данная система разностных уравнений представляется в виде

2021

$$a_{i}u_{i-1}^{j} - c_{i}u_{i}^{j} + b_{i}u_{i+1}^{j} = -c_{p}\rho\Delta x^{2}u_{i}^{j-1} - \beta\Delta x^{2}\Delta t\theta_{i}^{j} - \frac{q^{j}}{l}\frac{\sqrt{\varepsilon}}{\sqrt{\pi}}e^{-\varepsilon(x_{i}-s^{j})^{2}}\Delta x^{2}\Delta t,$$
(12)

$$i = 1, 2, ..., n - 1, \quad u_0^{\prime} = u_1^{\prime},$$
 (13)

$$u_n^j = u_{n-1}^j,$$
 (14)

$$u_k^j = f^j, \quad j = 1, 2, \dots, m,$$
 (15)

$$u_i^0 = \varphi(x_i), \quad i = 0, 2, ..., n,$$
 (16)

пде
$$a_i = \frac{\Delta t \lambda_{i-1/2}}{l^2}, \quad b_i = \frac{\Delta t \lambda_{i+1/2}}{l^2}, \quad c_i = a_i + b_i + b_i$$

 $+\Delta x^2 c_p \rho + \beta \Delta x^2 \Delta t.$

С целью разделения задачи (12)–(16) на взаимно независимые подзадачи, каждая из которых может решаться самостоятельно, принимается

$$e^{-\varepsilon(x_{i-1}-s^{j})^{2}} \approx e^{-\varepsilon(x_{i+1}-s^{j})^{2}} \approx e^{-\varepsilon(x_{i}-s^{j})^{2}}$$

и решение данной системы при каждом фиксированном значении j (j = 1, 2, ..., m) представляется в виде [14, 15]

$$u_i^j = w_i^j + v_i^j e^{-\varepsilon(x_i - s')^2}, \quad i = 0, 1, 2, \dots, n,$$
(17)

где w_i^j, v_i^j – неизвестные переменные.

Подставив выражение u_i^j в каждое уравнение системы (12)–(14), получим

$$\begin{bmatrix} a_{i}w_{i-1}^{j} - c_{i}w_{i}^{j} + b_{i}w_{i+1}^{j} + c_{p}\rho\Delta x^{2}u_{i}^{j-1} + \beta\Delta x^{2}\Delta t\theta_{i}^{j} \end{bmatrix} + + e^{-\varepsilon(x_{i}-s^{j})^{2}} \begin{bmatrix} a_{i}v_{i-1}^{j} - c_{i}v_{i}^{j} + b_{i}v_{i+1}^{j} + \frac{q^{j}}{l}\frac{\sqrt{\varepsilon}}{\sqrt{\pi}}\Delta x^{2}\Delta t \end{bmatrix} = 0, w_{0}^{j} + v_{0}^{j}e^{-\varepsilon(x_{i}-s^{j})^{2}} = w_{1}^{j} + v_{1}^{j}e^{-\varepsilon(x_{i}-s^{j})^{2}}, w_{n}^{j} + v_{n}^{j}e^{-\varepsilon(x_{i}-s^{j})^{2}} = w_{n-1}^{j} + v_{n-1}^{j}e^{-\varepsilon(x_{i}-s^{j})^{2}}.$$

Из последних соотношений получаются следующие разностные задачи для определения вспомогательных переменных w_i^j, v_i^j :

$$a_{i}w_{i-1}^{j} - c_{i}w_{i}^{j} + b_{i}w_{i+1}^{j} + c_{p}\rho\Delta x^{2}u_{i}^{j-1} + \beta\Delta x^{2}\Delta t\theta_{i}^{j} = 0, \qquad (18)$$
$$i = 1, 2, ..., n - 1,$$

$$w_0^j = w_1^j, (19)$$

$$w_n^j = w_{n-1}^j,$$
 (20)

$$a_{i}v_{i-1}^{j} - c_{i}v_{i}^{j} + b_{i}v_{i+1}^{j} + \frac{q^{j}}{l}\frac{\sqrt{\varepsilon}}{\sqrt{\pi}}\Delta x^{2}\Delta t = 0, \qquad (21)$$
$$i = 1, 2, \dots, n-1,$$

$$v_0^j = v_1^j,$$
 (22)

$$v_n^j = v_{n-1}^j, \quad j = 1, 2, 3, \dots, m.$$
 (23)

Полученные разностные задачи (18)–(20) и (21)–(23) при каждом фиксированном значении j = 1, 2, ..., m представляют собой систему линейных алгебраических уравнений с трехдиагональ-

ной матрицей, и решения этих систем независимо от s^{j} можно найти методом Томаса [8].

Подставив представление (17) в (15), будем иметь

$$w_k^j + v_k^j \mathrm{e}^{-\varepsilon(x_k - s^j)^2} = f^j.$$

Отсюда можно определить приближенное значение искомой функции s(t) при $t = t_i$, т.е.

$$s^{j} = x_{k} - \sqrt{-\frac{1}{\varepsilon} \ln \left| \frac{f^{j} - w_{k}^{j}}{v_{k}^{j}} \right|}.$$
 (24)

Таким образом, полученный алгоритм решения разностной задачи (12)–(16) по определению u_i^j , $i = \overline{0, n}$ и s^j при каждом фиксированном значении j = 1, 2, ..., m основан на решении двух линейных разностных задач второго порядка (18)–(20) и (21)–(23) относительно вспомогательных переменных w_i^j, v_i^j , $i = \overline{0, n}$, определения s^j из (24) и использовании представления (17) для u_i^j , $i = \overline{0, n}$.

РЕЗУЛЬТАТЫ ЧИСЛЕННЫХ РАСЧЕТОВ

Предложенный вычислительный алгоритм был опробован на модельных задачах. Численные расчеты проводились по следующей схеме:

для заданной функций s(t), $0 \le t \le T$ определяется решение задачи (7)–(10), т.е. функция u(x,t), $0 \le x \le 1, 0 \le t \le T$;

найденная зависимость $f(t) = u(\xi, t)$ принимается в качестве точных данных для решения обратной задачи по восстановлению s(t). Первая серия расчетов выполнялась с использованием невозмущенных данных. Вторая серия расчетов проводилась при наложении на f(t) некоторой функции, моделирующей погрешность экспериментальных данных

$$\tilde{f}(t) = f(t) + \delta \eta(t) f(t),$$

где δ — уровень погрешности; $\eta(t)$ — случайная величина, моделируемая с помощью датчика случайных чисел.

Результаты численного эксперимента, проведенного для случая l = 2 м, $c_p = 450 \text{ Дж/(кг град)}$, $\rho = 7800 \text{ кг/м}^3$, $\lambda(x) = 80 \text{ Вт/(м град)}$, $s(t) = 0.85e^{-\left(1-\frac{2t}{T}\right)^2}$, $q(t) = 2 \times 10^8 \text{ Вт/м}^3$, $\theta(x, t) = 25^{\circ}\text{C}$, $\varphi(x) = 25^{\circ}\text{C}$, $\varepsilon = 12.6$; $\xi = 0.95 \text{ м}$; $\beta = 0.02 \text{ пред$ ставлены в таблице. Здесь <math>t – время, s^t – точные значения функции s(t), \overline{s} – вычисленные значения s(t) при невозмущенных данных, \tilde{s} – вычисленные значения s(t) при возмущенных данных. Для возмущения входных данных в качестве уровня погрешности использовались $\delta = 0.02$, $\delta = 0.05$.

Результаты численных расчетов

<i>t</i> , c	s ^t	\overline{S}	\tilde{s}	
		$\Delta t = 1 c$	$\Delta t = 10 \text{ c}$	
			$\delta = 0.02$	$\delta = 0.05$
10	0.338	0.338	0.339	0.339
20	0.365	0.365	0.366	0.366
30	0.392	0.392	0.398	0.405
40	0.420	0.420	0.418	0.414
50	0.448	0.448	0.450	0.451
60	0.477	0.477	0.481	0.485
70	0.506	0.506	0.506	0.504
80	0.535	0.535	0.535	0.535
90	0.564	0.564	0.567	0.570
100	0.593	0.593	0.595	0.597
110	0.621	0.621	0.619	0.616
120	0.649	0.649	0.654	0.660
130	0.675	0.675	0.672	0.665
140	0.700	0.700	0.713	0.730
150	0.724	0.724	0.713	0.695
160	0.747	0.747	0.752	0.761
170	0.767	0.767	0.786	0.814
180	0.786	0.786	0.773	0.754
190	0.802	0.802	0.821	0.853
200	0.817	0.817	0.801	0.779

Результаты численных расчетов показывают, что при использовании невозмущенных входных данных искомая функция s(t) восстанавливается с высокой точностью (второй и третий столбцы таблицы). При этом относительные погрешности восстановления значений функции не превышают 0.0002%. Однако при использовании возмущенных входных данных, в которых погрешность имеет флуктуационный характер, искомая функция восстанавливается с погрешностью. С целью уменьшения погрешности восстановления решения был использован метод саморегуляризации. Известно, что этот метод основан на вязкостных свойствах вычислительных алгоритмов решения системы разностных уравнений и реализуется соответствующим выбором шагов аппроксимации исходной задачи. В качестве параметра регуляризации был выбран шаг дискретизации по времени Δt . Численные расчеты показали, что с ростом шага дискретизации по времени увеличивается точность восстановления решения. Это совершенно противоположный эффект по сравнению с численным решением прямых задач.

Можно предположить, что этот факт связан со структурой самой формулы вычисления *sⁱ*. Дело в том, что переменные w_k^j, v_k^j определяются в ходе решения системы разностных уравнений (18)– (20) и (21)–(23) абсолютно устойчивым методом Томаса. Численные расчеты показывают, что решения этих систем разностных уравнений, а также значения f^j , почти прямо пропорциональны Δt , т.е. при увеличении Δt одновременно увеличиваются и значения переменных w_k^j, v_k^j, f^j . Несложный анализ показывает, что при использовании возмущенных входных данных погрешность при определении s^j будет зависеть от величины $1/v_k^j$. Следовательно, увеличение Δt приводит к уменьшению погрешности в решении.

Результаты численного эксперимента свидетельствуют, что использование метода саморегуляризации может уменьшить влияние погрешности входных данных на точность восстановления значений функции s(t). При уровне погрешности $\delta = 0.02$ максимальная относительная погрешность восстановления значений искомой функции s(t) не превышает 3.5%, а при $\delta = 0.05$ не превышает 7.2% (таблица).

Анализ результатов численных расчетов показывает, что предложенный вычислительный алгоритм можно применять при исследовании процессов нагрева материалов подвижным точечным источником тепла.

ЗАКЛЮЧЕНИЕ

Рассмотрена обратная задача, связанная с определением траектории подвижного точечного источника, при которой в заданной точке стержня устанавливается требуемый температурный режим. Для численного решения обратной задачи предлагается численный метод, основанный на аппроксимации дельта-функции, дискретизации задачи по времени и по пространству и использовании специального представления для разделения искомых переменных. Предложенный метод позволяет в каждом временном слое последовательно определить положение подвижного точечного источника и распределение температуры по длине стержня.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Ready J.F.* Industrial Applications of Lasers. Elsevier Science, 1997. P. 599.
- 2. Бутковский А.Г., Пустыльников Л.М. Теория подвижного управления системами с распределенными параметрами. М.: Наука, 1980. 384 с.
- Кубышкин В.А., Финягина В.И. Подвижное управление в системах с распределенными параметрами. М.: СИНТЕГ, 2005. 232 с.
- 4. *Кубышкин В.А.* Подвижное управление колебаниями в системах с распределенными параметрами //

2021

Автоматика и телемеханика. 2011. Т. 72. № 10. С. 117.

- 5. *Теймуров Р.А.* Об одной задаче оптимального управления подвижными источниками // Автоматика и телемеханика. 2013. Т. 74. № 7. С. 29.
- 6. Бардыбахин А.И. Оптимальный локальный нагрев полубесконечного стержня подвижным точечным источником тепла // Автоматика и телемеханика. 1997. Т. 58. № 6. С. 27.
- 7. *Alifanov O.M.* Inverse Heat Transfer Problems. N.Y.: Springer, 1994.
- 8. *Samarskii A.A., Vabishchevich P.N.* Numerical Methods for Solving Inverse Problems of Mathematical Physics. Berlin: Walter de Gruyter, 2007. P. 438.
- 9. Alifanov O.M., Artyukhin E., Rumyantsev A. Extreme Methods for Solving Ill-Posed Problems with Applications to Inverse Heat Transfer Problems. N.Y.: Begell House, 1995.
- Beck J.V., Blackwell B., Clair C.R. Inverse Heat Conduction: Ill-Posed Problems. N.Y.: Wiley Interscience, 1985.

- Zahedi S., Tornberg A.-K. Delta Function Approximations in Level Set Methods by Distance Function Extension // J. Computat. Phys. 2010. V. 229. Iss. 6. P. 2199.
- 12. *Woodbury K.A., Beck J.V.* Estimation Metrics and Optimal Regularization in a Tikhonov Digital Filter for the Inverse Heat Conduction Problem // Int. J. Heat Mass Transfer. 2013. V. 62(1). P. 31.
- 13. Alifanov O.M., Artyukhin E.A., Gejadze I.Yu. Iterative Regularized Solution of an Inverse Heat Conduction Problem // Doklady Mathematics (Proc. of the Russian Academy of Science). 1999. V. 59. № 1. P. 145.
- Vabishchevich P.N., Vasil'ev V.I. Computational Algorithms for Solving the Coefficient Inverse Problem for Parabolic Equations // Inverse Probl. Sci. Eng. 2016. N

 № 1. P. 42.
- Gamzaev Kh.M. Numerical Solution of Combined Inverse Problem for Generalized Burgers Equation // J. Math. Sci. 2017. V. 221. № 6. P. 833.