УДК 532.5:536.461:537.5

АКУСТИЧЕСКАЯ И ЭЛЕКТРОФИЗИЧЕСКАЯ ДИАГНОСТИКА ДВУХФАЗНОГО ВЫСОКОЭНТАЛЬПИЙНОГО ПОТОКА. РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТАЛЬНЫХ ИССЛЕДОВАНИЙ

© 2021 г. А. В. Рудинский^{1,} *, Д. А. Ягодников¹, С. А. Гришин², А. Е. Горбунов¹, А. С. Бурков¹, А. Н. Бобров¹, Д. Б. Сафонова¹

¹Московский государственный технический университет им. Н.Э. Баумана, Москва, Россия ²ГНПО "Оптика, оптоэлектроника и лазерная техника", г. Минск, Белоруссия *E-mail: ravman@bmstu.ru

Поступила в редакцию 10.02.2020 г. После доработки 24.08.2020 г. Принята к публикации 14.10.2020 г.

На экспериментальной установке, состоящей из модельного жидкостного ракетного двигателя, работающего на компонентах топлива "газообразный кислород – керосин", выполнены исследования электрофизических и акустических характеристик высокоэнтальпийного двухфазного потока при температурах в камере сгорания 3550–2900 К с твердыми частицами, попадающими в поток в результате эрозии вставки критического сечения сопла из углепластика. Скорость газового потока на срезе соответствовала числу Маха 2.2–1. Зарегистрированы электрофизические и акустические параметры двухфазного высокоэнтальпийного потока, а также вибрационные характеристики конструкции модельного жидкостного ракетного двигателя. С помощью датчика электрического поля установлено, что частицы углерода создают в струе избыточный отрицательный электрический заряд. При анализе амплитудных спектров акустического поля истекающей струи и вибраций конструкции определены частоты, находящиеся в диапазоне 1200–1800 Гц и характеризующие рабочий процесс в камере сгорания модельного жидкостного ракетного двигателя.

DOI: 10.31857/S0040364421040189

введение

Одним из перспективных направлений, связанных с разработкой высоконадежных энергосиловых установок для летательных аппаратов сверхзвуковых скоростей, является применение бесконтактных методов диагностики на основе регистрации электрического заряда в истекающей струе [1-3] и ее акустического поля [4-6]. Избыточный электрический заряд в высокоэнтальпийных потоках является следствием присутствия в них твердых частиц металла или сажи, причем, согласно работам [7, 8], частицы сажи приобретают отрицательный заряд, в то время как частицы металла (или оксиды), образованные, например, в начале эрозии огневой стенки ракетного двигателя, имеют положительный заряд [9].

Регистрация акустического воздействия (шума) истекающей сверхзвуковой струи в частотном диапазоне 10—15000 Гц также может быть использована при отработке, например, серийных жидкостных ракетных двигателей, турбогенераторов, гидрореактивных и турбоводометных двигателей, в конструкции которых не предусмотрена установка датчиков оборотов вала турбины. Только на основе регистрации акустических колебаний при вторичной обработке амплитудного спектра сигнала можно определить угловую скорость вращения ротора и построить расходные характеристики как на установившемся, так и на переходных режимах работы. Характеры изменения описанных диагностических параметров (электрический заряд, акустический шум, вибрации) при регистрации в комплексе могут дать необходимую информацию о протекании рабочего процесса в камере сгорания (КС) энергосиловой установки: полноту сгорания топлива и режимы вибрационного горения (для воздушно-реактивных двигателей) или коэффициент расходного комплекса в КС ракетного двигателя или газогенераторов высокоэнтальпийных потоков.

Цель настоящего исследования определялась с учетом ранее проведенных работ [10, 11] и состояла в комплексном экспериментальном исследовании акустического воздействия и физики высокоэнтальпийного ионизированного потока при наличии частиц конденсированной фазы (к-фазы) в виде твердых продуктов сгорания частиц углепластика и подтверждении возможности комплексной акустической и электрофизической диагностики ракетных и реактивных двигателей.

ОПИСАНИЕ ЭКСПЕРИМЕНТАЛЬНОЙ УСТАНОВКИ

На рис. 1 представлена схема экспериментальной установки на базе модельного жидкостного ракетного двигателя (МЖРД) – объекта акустической и электрофизической диагностики рабочего процесса. Основными элементами экспериментальной установки и системы измерения являются: КС МЖРД *1*, смесительная головка *2*, сопловая секция *3*, электроискровая система воспламенения со свечой *4*, датчик виброускорений *5*, датчик давления в КС (не показан на рис. 1), микрофон *6*, первичный измерительный преобразователь электрического поля *7* (далее – датчик электрического поля). Высокоэнтальпийный поток с полной температурой $T_{\kappa}^* = 2900-3550$ К (в зависимости от коэффициента избытка кислоро-

Рис. 1. Схема экспериментальной установки для акустической, вибрационной и электрофизической диагностики высокоэнтальпийного двухфазного потока.

да α) и полным давлением $p_{\kappa}^{*} = 2 - 4 \text{ M} \Pi a$ генери-
руется в охлаждаемой КС и истекает через сверх-
звуковое сопло.

Для измерения электрофизических параметров ионизированных пролуктов сгорания топлива использовался датчик электрического поля, разработанный и изготовленный в ГНПО "Оптика, оптоэлектроника и лазерная техника". г. Минск [12, 13]. Для регистрации сигналов виброускорений использовался вибродатчик модели АР2098-100-5 с рабочим диапазоном частот до 12000 Гц, предназначенный также для работы в условиях электромагнитных полей высокой напряженности. Акустическое воздействие сверхзвуковой струи, истекающей из сопла, регистрировалось конденсаторным микрофоном ВМК-205. В процессе эксперимента микрофон был установлен на расстоянии ~2 м от среза сопла под углом 45° относительно оси по направлению движения потока. Основные метрологические характеристики системы комплексной диагностики на основе электрического датчика, датчика виброускорений и микрофона приведены в табл. 1.

Регистрация сигналов акустического воздействия сверхзвуковой струи, виброускорений и электрического поля проводилась системой измерения с цифровым регистратором-анализатором динамических сигналов MIC-026 разработки НПП "Мера". Вторичная обработка всех сигналов, зарегистрированных в процессе экспериментов, осуществлялась пакетом "WinПOC Expert".

Таблица 1. Технические характеристики измерительных преобразовате	елей
Наименование и характеристики измерительног	го преобразователя
Датчик вибраций	
Модель	AP2098-100-5
Коэффициент преобразования	10 мB/(м/c ²)
Рабочий диапазон частот	0.5—12000 Гц
Максимальная амплитуда измеряемого ускорения	50 м/с ²
Предельная погрешность	не более 1%
Микрофон	I
Модель	BMK-205
Коэффициент преобразования	47.3 мВ/Па
Максимальный уровень звукового давления	146 дБ
Рабочий диапазон частот	2-20000 Гц
Предельная погрешность	не более 3%
Датчик электрического поля	
Модель	-
Коэффициент преобразования	_
Максимальный уровень напряженности электрического поля	250 мВ/м
Рабочий диапазон частот	10—50000 Гц
Предельная погрешность	не более 3.5%

Ввод к-фазы в высокоэнтальпийный поток происходил вследствие уноса твердых частиц углепластика с поверхности вставки критического сечения сопла. Ввиду высоких температур ~3300 К и длительного теплового воздействия потоком (в отдельных экспериментах до ~10 с) вставка сопла из термореактивного углепластика П-5-13 [14] начинала разгораться и диаметр критического сечения увеличивался. На режиме эрозии полная температура в КС не изменялась, так как отношение массовых расходов горючего и окислителя оставалось постоянным. Это обеспечивалось кавитационным соплом, установленным в магистрали горючего (керосина), и дроссельной шайбой со сверхкритическим перепадом давления в магистрали окислителя (газообразного кислорода). Газодинамический профиль сверхзвукового сопла МЖРД определяет плавный вход в трансзвуковую часть (рис. 2), а степень расширения (2.47) обеспечивает режим истечения без отрыва в сопле.

ХОД И ЦИКЛОГРАММА ИСПЫТАНИЙ

Циклограмма проведения огневого испытания (ОИ) с регистрацией виброускорений конструкции МЖРД, акустического воздействия истекающей струи и параметров собственного электрического поля приведена на рис. 3. Как отмечалось ранее, эрозия соплового блока влечет за собой увеличение площади критического сечения, что влияет на стационарные параметры, такие как давление в КС (p_{κ}), скорость потока в КС и на срезе сопла. Кроме того, твердые частицы, образовавшиеся в процессе эрозии углепластика, могут приобретать в высокоэнтальпийном ионизированном потоке электрический заряд за счет осаждения электронов или термоэлектронной эмиссии. При таком процессе в КС извлечение "полезного" сигнала от электрического датчика является сложной задачей, требующей разделения сигналов, генерируемых твердыми заряженными частицами и ионизацией потока вследствие изменения его химического состава, вызванного изменением давления и соотношения компонентов топлива. Поэтому особенностью циклограммы работы и пневмогидравлической схемы экспериментальной установки являлось обеспечение постоянства отношения массовых расходов

Рис. 2. Геометрия проточного тракта камеры МЖРД.

ТЕПЛОФИЗИКА ВЫСОКИХ ТЕМПЕРАТУР том 59 № 5 2021

Рис. 3. Циклограмма работы экспериментальной установки: *1* – начало регистрации режимных, вибрационных, акустических и электромагнитных параметров; *2* – открытие клапана подачи кислорода в КС; *3* – подача напряжения на агрегат зажигания; *4* – открытие клапана подачи керосина в КС; *5* – эрозия проточного тракта; *6* – продувка азотом магистралей кислорода и керосина.

горючего и окислителя в КС МЖРД при изменении площади критического сечения, вызванного эрозией соплового блока с уносом частиц углепластика.

Эксперимент включал в себя несколько ОИ. Огневое испытание № 1 проводилось без эрозии проточного тракта сопла, т.е. без наличия твердых частиц в струе, истекающей из сопла. Целью данного испытания являлось определение зависимостей параметров вибраций конструкции, акустического воздействия и электромагнитного поля струи от параметров рабочего процесса МЖРД, в том числе от коэффициента расходного комплекса КС ϕ_{β} . При первом испытании проводилось контрольное измерение диаметра критического сечения сопла, который не изменился. Результаты оценки предельной погрешности измеряемых и определяемых параметров приведены в табл. 2.

Проанализируем осциллограмму режимных параметров ОИ № 1. Как видно из рис. 4, воспламенение компонентов топлива произошло при $\tau_1 \approx 4.2$ с, давление в КС составило $p_{\kappa 1} \approx 3$ МПа при соотношении компонентов топлива $\alpha_1 \approx 0.7$, что соответствует равновесной температуре продуктов сгорания в КС $T_{\kappa 1} = 3540$ К. Начиная с $\tau_2 \approx$

Рис. 4. Осциллограмма параметров ОИ № 1 (площадь критического сечения постоянна): I – работа агрегата зажигания, II – работа МЖРД, III – останов МЖРД.

Параметр	Обозначение	Предельная погрешность є, %		
Давление в КС	p_{κ}	±1.40		
Расход окислителя (кислород, газ)	G_{o}	± 1.40		
Расход горючего (керосин)	$G_{ m r}$	± 1.90		
Соотношение компонентов	α	± 2.36		
Расходный комплекс	$\beta_{\mathfrak{B}}$	±2.74		
Коэффициент расходного комплекса	ϕ_{eta}	±2.74		

Таблица 2. Предельная погрешность измеряемых и определяемых параметров экспериментальной установки

≈ 6.4 с массовый расход керосина был уменьшен до $G_{r2} = 0.08$ кг/с, что в свою очередь вызвало уменьшение давления в КС до $p_{\kappa 2} \approx 2.8$ МПа. Поскольку массовый расход кислорода в двигателе оставался постоянным на период времени 4.2–10.6 с, соответствующий горению топлива, то в момент выхода на второй режим и до останова, коэффициент избытка окислителя соответствовал значению $\alpha_2 \approx 1.4$ ($T_{\kappa 2} = 3470$ K).

В ОИ № 2 более длительное воздействие высокотемпературных продуктов сгорания вызвало эрозию проточного тракта сопла с увеличением площади критического сечения, что сопровождалось уменьшением давления в КС (рис. 5). Характер изменения параметров на осциллограмме свидетельствует, что на данном испытании была задержка по времени воспламенения компонентов топлива продолжительностью $\Delta \tau \approx 0.15$ с, которая вызвала кратковременный пик давления в КС до $p_{k1} \approx 5.6$ МПа.

После выхода на режим по давлению $p_{\kappa 2} \approx 2.9$ МПа при соотношении компонентов топлива $\alpha_1 \approx 0.75$ ($T_{\kappa} = 3576$ K) началась эрозия проточного тракта соплового блока (рис. 6), сопровождающаяся увеличением площади критического сечения с уносом частиц углепластика и, как следствие, уменьшением давления в КС. В интервале времени $\tau = 5.4-7.8$ с давление в КС уменьшилось от 2.9 до 1.6 МПа. При уменьшении давления в интервале 2.9–2.3 МПа коэффициент избытка

Рис. 5. Осциллограмма параметров ОИ № 2 (с эрозией соплового блока): І – работа агрегата зажигания, ІІ – основной режим, ІІІ – эрозия соплового блока, ІV – останов.

окислителя продолжал оставаться на уровне $\alpha \approx 0.75$ (рис. 5), что подтверждает работу кавитационного сопла горючего и дроссельной шайбы окислителя, установленных в магистралях систем подачи экспериментальной установки.

Степень совершенства рабочего процесса в КС (горения) в ОИ № 1 и ОИ № 2 оценивалась коэффициентом расходного комплекса

$$\phi_{\beta} = \frac{\beta_{\vartheta}}{\beta_{M}}.$$

Здесь β_3 — экспериментальное значение расходного комплекса; $\beta_M = \frac{\sqrt{R_{\kappa}T_{\kappa}^*}}{A_{\kappa}}$ — его теоретическое значение; R_{κ} — газовая постоянная продуктов сгорания; T_{κ}^* — полная температура в КС МЖРД; $A_{\kappa} = \sqrt{k(\frac{2}{k+1})^{\frac{k+1}{k-1}}}$, где k — показатель адиабаты, определяемый в результате термодинамического расчета для продуктов сгорания кислород + керосин.

Экспериментальный расходный комплекс определялся выражением

$$\beta_{\mathfrak{I}} = \frac{p_{\kappa}^* F_{\kappa \mathfrak{p}}}{G_{\Gamma} + G_{\mathfrak{o}}},$$

где p_{κ}^* — полное давление в КС, $F_{\kappa p}$ — площадь критического сечения сопла, G_{Γ} — массовый расход горючего, G_{0} — массовый расход окислителя.

Рис. 6. Фотографии соплового блока из углепластика П-5-13 до (а) и после (б) ОИ № 2.

Рис. 7. Зависимость коэффициента расходного комплекса КС от коэффициента избытка окислителя.

Коэффициент расходного комплекса использовался для оценок "истинных" значений температуры в КС и скорости истечения из сопла с учетом потерь на физико-химическое недогорание топлива и теплоотвод в стенки (рис. 7).

АНАЛИЗ ВИБРАЦИЙ КОНСТРУКЦИИ

Рассмотрим сигналы с датчика виброускорений, зарегистрированные в процессе ОИ № 1 и ОИ № 2. На рис. 8 представлена осциллограмма виброускорений конструкций (далее — вибраций), полученных за все время ОИ № 1. Одними из основных параметров, по которым можно сделать выводы о показателях процесса горения в КС и его устойчивости, помимо временных реализаций являются амплитудные спектры. Для характерных интервалов времени работы МЖРД, соответствующих осциллограммам ОИ № 1 (рис. 8) и ОИ № 2 (рис. 9), приведем соответствующие амплитудные спектры вибраций (рис. 10, 11) и проанализируем изменение максимума амплитуды вибраций на характерных частотах.

Данные на рис. 8 показывают, что в спектрах сигналов вибраций на фоне широкополосного шума при подаче в КС только кислорода регистрируется дискретная составляющая с максимальной амплитудой на частоте $f_{\text{max}} = 1547$ Гц. Амплитуда вибрации, зарегистрированная на этой частоте, равна $a_{0\text{max}} = 9.01 \text{ м/c}^2 (0.92g)$. После инициирования процесса горения в КС амплитуда составила $a_{0\text{max}} = 24 \text{ м/c}^2 (2.45g)$, а при переходе на второй режим по давлению в КС она повысилась до $a_{0\text{max}} = 27 \text{ м/c}^2 (2.75g)$. При этом частота, соответствующая максимумам дискретных составляющих спектра вибраций, оставалась постоянной $f_{\text{max}} = 1547$ Гц.

Анализ амплитудного спектра виброускорений, зарегистрированных при ОИ № 2 с эрозией соплового блока (рис. 9), показал, что при интенсивной эрозии критического сечения максимум

Рис. 8. Давление и виброускорения конструкции в КС МЖРД в зависимости от времени при ОИ № 1 (без эрозии соплового блока): І – работа агрегата зажигания, ІІ – работа МЖРД, ІІІ – останов МЖРД.

спектра вибрации составил $a_{0\text{max}} = 21.5 \text{ м/c}^2 (2.19g)$ (рис. 11). Это больше величины амплитуды, соответствующей времени до эрозии $a_{0\text{max}} = 20.9 \text{ м/c}^2$ (2.1g). Зарегистрированное таким образом относительно небольшое увеличение амплитуды вибраций конструкции МЖРД при ОИ № 2 (~3%) на первый взгляд противоречит тому, что амплитуда вибраций при уменьшении давления в КС в результате разгара сопла должна падать. Однако рост амплитуды вибраций при эрозии в ОИ № 2 может быть вызван интенсификацией теплоподвода к продуктам сгорания, например, за счет горения частиц углепластика, что увеличивает пульсации давления в КС и приводит к небольшому увеличению амплитуды вибраций всей конструкции. При этом, как видно из рис. 11, частоты, соответствующие максимумам дискретных составляющих спектра, отличаются незначительно (до эрозии — 1547 Гц, при эрозии — 1519 Гц), что может также объясняться уносом массы углепластика. Следует отметить, что частота пульсаций давления, возникающих во внутрикамерном пространстве при горении топлива, может быть определена в результате анализа амплитудных спектров акустического поля струи.

Рис. 9. Давление и виброускорения конструкции в КС в зависимости от времени при ОИ № 2: I – работа агрегата зажигания, II – основной режим, III – эрозия соплового блока, IV – останов.

Рис. 10. Амплитудные спектры вибраций при ОИ № 1 (без эрозии соплового блока), $f_{\text{max}} = 1547$ Гц: 1 - подача кислорода в КС без горения, $\Delta \tau = 3-4$ с, $a_{\text{max}} = 9.01 \text{ м/c}^2$; 2 - горение, $p_{\text{K}} = 2.9 \text{ МПа}, \Delta \tau = 5-6$ с, $a_{\text{max}} = 24 \text{ м/c}^2$; 3 - горение, $p_{\text{K}} = 2.7 \text{ МПа}, \Delta \tau = 8-9$ с, $a_{\text{max}} = 27 \text{ м/c}^2$; 4 - сетевой "шум", $\Delta \tau = 0-1$ с, $a_{\text{max}} = 2.2 \text{ м/c}^2$.

АНАЛИЗ АКУСТИЧЕСКОГО ВОЗДЕЙСТВИЯ СВЕРХЗВУКОВОЙ СТРУИ

На рис. 12, 13 приведены результаты измерений акустического давления в шуме струи, полученные с помощью конденсаторного микрофона. Определим звуковое давление истекающей струи в ОИ № 1 и ОИ № 2. Звуковое давление струи определяется выражением

$$L_A = 20 \lg \left(\frac{A_{p_{3B}}}{2.8}\right) + 100,$$

где $A_{p_{3B}}$ — амплитуда акустического давления струи.

Максимальный уровень звукового давления $L_{A1max} = 128 \ Дб$ (рис. 12), зарегистрированный в ОИ № 1, где размеры проточного тракта сопла оставались постоянными, соответствует моменту запуска двигателя и далее постепенно падает, достигая значения L_{A1} = 126 Дб при горении топлива в КС. В ОИ № 2 (рис. 13) после запуска МЖРД $(L_{A2\max} = 130 \text{ Дб})$ уровень звукового давления на основном режиме составил $L_{A2} = 127 \, \text{Дб}$, после чего падал до значения $L_{A2\min} = 125$ Дб при эрозии сопла. Полученный результат объясняется следуюшим. Так как в ОИ № 2 происходит эрозия проточного тракта и диаметр критического сечения увеличивается, уменьшая при этом степень расширения сопла, то скорость истечения струи падает, что приводит к уменьшению излучаемой акустической мощности струи.

В соответствии с известной теорией Лайтхилла, адаптированной для случая сверхзвукового истечения, скорость струи может быть оценена по "закону третьей степени" [15]:

$$W_a \approx \rho_a v_a^3 a_{{}_{3\mathrm{B},\infty}}^{-5} D_a^2, \qquad (1)$$

где W_a — мощность акустического поля струи, ρ_a — плотность потока, v_a — скорость истечения,

) 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 *f*, Гц

Рис. 11. Амплитудный спектр вибраций при ОИ № 2 (эрозия соплового блока): *1* – подача кислорода в КС без горения, $\Delta \tau = 2-3$ с, $f_{max} = 1547$ Гц, $a_{max} = 7.65$ м/с²; *2* – горение, $p_{\rm K} = 2.6$ МПа, начало эрозии, $\Delta \tau = 6-6.5$ с, $f_{max} = 1547$ Гц, $a_{max} = 20.9$ м/с²; *3* – горение, $p_{\rm K} = 2.0$ МПа, $\Delta \tau = 7-7.75$ с, $f_{max} = 1519$ Гц, $a_{max} = 21.5$ м/с²; *4* – сетевой "шум", $\Delta \tau = 0-1$ с, без горения, $f_{max} = 1547$ Гц, $a_{max} = 2.6$ м/с².

 $a_{_{3B,\infty}}$ — скорость звука в окружающей среде, D_a — диаметр выходного сечения сопла.

В результате оценок, проведенных по (1), скорость истечения с учетом экспериментальных данных рис. 12, 13 составила $v_{a1} = 2030$ м/с в ОИ № 1, а в ОИ № 2 при интенсивной эрозии – v_{a2} = = 1830 м/с. Полученные оценки близки к результату газодинамического расчета в одномерной постановке: $v_{a1} = 2309$ м/с (при $\alpha = 0.7, \phi_{\beta} = 0.78,$ постоянном критическом сечении и геометрических параметрах сопла в соответствии с рис. 2). Отметим, что для более точной оценки скорости струи ОИ № 2 необходимо знать не только эквивалентный диаметр критического сечения, увеличившегося в результате эрозии, который может быть оценен по уменьшению давления в КС, но и площадь среза сопла, измерение которой после ОИ № 2 не проводилось.

Далее проанализируем частотные характеристики акустического шума струи, истекающей из сопла со сверхзвуковой скоростью. Интервалы времени циклограммы для построения амплитудного спектра выбирались следующие: подача только кислорода в КС, воспламенение компонентов и выход на режим по давлению, работа на режиме, эрозия сопла, сетевой шум. Ранее было отмечено, что колебания, распространяющиеся в КС, могут интенсифицировать механическое и тепловое воздействие на ее внутренние стенки. Следует заметить, что развитие повреждений зависит не только от величины действующих на конструкцию нагрузок, но и от их спектрального состава [16]. Поэтому определение спектрального состава сигнала пульсаций давления представляется целесообразным, так как позволяет получить дополнительное представление о параметрах нагрузок, которые могут приводить к усталостным повреждениям при достаточно длительном воз-

Рис. 12. Звуковое давление струи при ОИ № 1 (без эрозии) в зависимости от времени: I – работа агрегата зажигания, II – работа МЖРД, III – останов МЖРД; (а) – давление в КС $p_{\rm K}$ и звуковое давление струи $p_{\rm 3B}$; (б) – давление в КС $p_{\rm K}$ и амплитуда звукового давления L_A .

действии, например, во время ресурсного испытания ракетных двигателей.

В спектре акустического воздействия струи, приведенном на рис. 14а, максимум амплитуды соответствует частоте $f_1 = 1238$ Гц, что объясняется следующим образом. Если рассматривать КС МЖРД как условную модель простейшего акустического резонатора Гельмгольца [17] с объемом резонансной полости, образованным объемом КС, то площадь горла резонатора равна площади критического сечения сопла, а эффективная длина горла равна длине сужающейся части сопла, увеличенной на длину присоединенной колеблющейся массы. Источниками пульсаций давления в КС при внутрикамерном механизме могут являться как вихревые турбулентные течения, реализующиеся непосредственно у дниша смесительной головки при взаимодействии вытекающих через форсунки струй керосина, так и генерируемый этими струями акустический шум [18] и дополнительное акустическое воздействие потока при турбулентном горении топлива в КС [19]. Под воздействием этих пульсаций может происходить возбуждение колебаний в таком резонаторе на его резонансной частоте, определяемой соотношением

$$f_m = \frac{a_{_{3B}}}{2\pi} \sqrt{\frac{F_{_{\rm KP}}}{L_{_{\rm P}}V_{_{\rm K}}}},\tag{2}$$

где $a_{_{3B}}$ — скорость звука в продуктах сгорания в КС, $V_{_{\rm K}}$ — объем КС МЖРД, $L_{_{\rm P}}$ — эффективная длина горла резонатора.

Рис. 13. Звуковое давление струи при ОИ № 2 (с эрозией сопла) в зависимости от времени: І – работа агрегата зажигания, ІІ – основной режим, ІІІ – эрозия соплового блока, IV – останов; (а) – давление в КС $p_{\rm K}$ и звуковое давление струи $p_{\rm 3B}$; (б) – давление в КС $p_{\rm K}$ и амплитуда звукового давления L_4 .

Значения резонансной частоты для геометрических параметров КС МЖРД ($V_{\rm kc} = 0.2 \times 10^{-3} \, {\rm m}^3$, $L_{\rm p} = 0.012 \, {\rm m}$, $F_{\rm kp} = 2.27 \times 10^{-4} \, {\rm m}^2$) с учетом полученных газодинамических параметров в эксперименте и результатов оценочных расчетов приведены в табл. 3.

Необходимо отметить, что при оценке по (2) не учитывались потери акустической энергии на смесительной головке КС, которые приводят к снижению резонансной частоты колебаний. Поэтому можно сделать вывод о том, что предложенная модель возбуждения резонансных колебаний в КС дает оценку резонансной частоты с погрешностью не более 10.5%, что удовлетворительно совпадает с экспериментальным спектром акустических колебаний, зарегистрированным в ОИ № 1 (табл. 3).

При проведении ОИ № 2 действительная площадь критического сечения и, следовательно, параметры истечения не известны и могут быть оценены по (2) с большой погрешностью. В данном случае с учетом увеличения критического сечения в процессе испытания наиболее показательным является трехмерный спектр акустического шума в координатах время—частота (рис. 14б). Такое преобразование спектров позволяет анализировать свойства процесса одновременно во временной и частотной областях: появляется возможность проследить последовательную трансформацию спектров сигналов.

Рис. 14. 3D амплитудные спектры акустического воздействия потока при ОИ № 1 (а) и ОИ № 2 (б).

Максимум дискретной составляющей спектра при эрозии сопла соответствует частоте $f_2 = 1688$ Гц (рис. 14). Возможный механизм генерации колебаний давления на этой частоте заключается в следующем. При сгорании частиц к-фазы продуктов эрозии термореактивного углепластика П-5-13 в высокоэнтальпийном потоке происходят колебания теплоподвода в зоне горения в КС вверх по потоку. При переменном теплоподводе вдоль КС от зоны теплоподвода распространяются волны энтропии (температуры) со скоростью стационарного потока [20]. Таким образом, при протекании через критическую вставку сопла газа с переменной температурой, вызванной волнами энтропии, возникают колебания скорости и массового расхода, что вызывает колебания давления (акустические колебания). Расчетная оценка частоты температурных колебаний является отдельной задачей и в работе не проводится.

ЭЛЕКТРОФИЗИЧЕСКИЕ ХАРАКТЕРИСТИКИ ДВУХФАЗНОГО ПОТОКА

Основной целью измерений, проводимых с помощью электрического датчика, являлось определение зависимости сигнала, регистрируемого с его помощью, и изменение данного сигнала в зависимости от присутствия в потоке частиц к-фазы. В ОИ № 2 при постепенной эрозии вставки сопла частицы углепластика уносились в высокоэнтальпийный поток и частично сгорали, внося свой вклад в изменение электрического заряда в струе. На рис. 15а приведен сигнал, полученный при помощи электрического датчика с одновременным представлением изменения давления в КС МЖРД в ОИ № 2. Осциллограмма сигнала электрического датчика позволяет заключить, что при начале интенсивной эрозии сопла, сопровождающейся уносом частиц к-фазы, амплитуда колебаний постепенно увеличивается и датчик регистрирует частицы углепластика. При этом сигнал отрицательного знака свидетельствует об отрицательном заряде частиц. Следует обратить внимание на резкое увеличение амплитуды сигнала электрического датчика в интервале времени 3-5 с (рис. 15б), что дает представление о работе системы воспламенения, а также срабатывании электропневмоклапана подачи горючего (закрытие) и окислителя (открытие и закрытие) в соответствии с циклограммой проведения эксперимента. Это также может быть использовано в системе диагностики двигателя для регистрации дискретных сигналов.

Электрический заряд частиц углепластика может быть определен в соответствии с теорией [21]:

$$q_s = e \frac{d_s}{2} R_{\rm D}^2 N_s \ln\left(1 + \frac{d_s}{2} v_s \tau \frac{1}{R_{\rm D}^2}\right)$$

где е – заряд электрона, d_s – диаметр частицы к-фа-

зы,
$$R_{\rm D} = \sqrt{\frac{\varepsilon_0 k T_{\kappa}^*}{e^2 n_{e^{\infty}}}}$$
 – радиус Дебая, $n_{e^{\infty}}$ – концентра-

ция электронов в потоке, ε_0 — электрическая постоянная, k — постоянная Больцмана, N_s — концентрация частиц к-фазы, τ — время эрозии стенок сопла, v_s — средняя скорость частиц. Заряд частицы q_s свя-

№ ОИ	τ, c	$p_{\rm K}$, МПа	$G_{ m r}$, кг/с	<i>G</i> ₀ , кг/с	α	β _Э , м/с	β _{<i>T</i>} , м/с	<i>а</i> _{зв} , м/с	<i>f_m</i> , Гц
1	5.00	2.941	0.139	0.332	0.710	1389	1795	870	1347
	4.25	2.063	0.223	0.449	0.597	683	1894	910	1409
	7.50	2.795	0.076	0.338	1.320	1502	1629	830	1285
	9.99	2.774	0.073	0.345	1.408	1476	1610	1079	1670
	6.49	2.987	0.109	0.324	0.882	1535	1747	1104	1709
2	5.00	2.918	0.142	0.360	0.749	1293	1786	1035	1696

Таблица 3. Характеристики рабочего процесса в КС МЖРД

Рис. 15. Электрическое поле струи при ОИ № 2; (а) – давление в КС и потенциал электрического поля: I – работа агрегата зажигания, II – основной режим, III – эрозии соплового блока, IV – останов; (б) – потенциал электрического поля, сравнение с "чистым" потоком: I - OU № 1, 2 - OU № 2, EIS – работа электроискровой системы воспламенения.

зан с потенциалом электрического поля Φ_s , создаваемого частицей, соотношением [22]

$$\Phi_s = \frac{q_s}{\varepsilon_0 \sqrt{x^2 + y^2}},$$

где x, y — координаты твердой частицы, движущейся относительно установленного датчика.

Проведем оценку суммарного электрического заряда, генерируемого частицами к-фазы в потоке при эрозии сопла в ОИ № 2. Используя данные уровня сигнала, регистрируемого датчиком электрического поля, из рис. 15а при допущении, что частицы к-фазы и поток находятся в термодинамическом и скоростном равновесии, получим заряд струи с частицами углепластика, который для режима III в ОИ № 2 составил $q_p \approx -1.8 \times 10^{-14}$ Кл. Отметим, что высокие значения потенциала (0.28 В), зарегистрированные на режиме I (рис. 15), обусловлены работой электроискровой системы зажигания. Результат, полученный при ОИ № 2, по знаку заряда совпадает с экспериментальными данными [22] по определению параметров электризации частиц сажи при работе авиационного двигателя. Однако данное расчетно-экспериментальное значение заряда носит оценочный характер, так как частицы, находясь в потоке, взаимодействуют с газовой фазой, что приводит к изменению диаметра частиц, температуры и скорости, а следовательно, к изменению электрического

потенциала, регистрируемого датчиками, и заряда. Для более точной оценки необходимо учитывать изменение газодинамических, геометрических и теплофизических параметров частиц.

ЗАКЛЮЧЕНИЕ

1. В результате проведенных экспериментальных исследований с эрозией проточной части МЖРД, сопровождавшимся уменьшением давления в КС в интервале 2.9–1.6 МПа, зарегистрировано увеличение максимальной амплитулы спектра виброускорений на 3%, соответствующей частоте 1547 Гц. Полученный результат обусловлен интенсификацией теплоподвода к продуктам сгорания за счет горения частиц к-фазы при горении термореактивного углепластика П-5-13, что в свою очередь увеличивало пульсации давления в КС и повышало амплитуду вибраций всей конструкции МЖРД. Амплитуды дискретных составляющих вибраций МЖРД, зарегистрированные при протекании через тракт только газообразного кислорода (без горения), составили 7-9 м/с² при частоте 1575 Гц. Вибрации за период воспламенения компонентов топлива составляли до 32 м/с².

2. По экспериментальным значениям акустического поля сверхзвуковой струи проведена оценка скорости истечения с учетом коэффициента расходного комплекса (неполноты сгорания топлива), которая в случае сопла постоянной геометрии соответствовала числу Маха $M_{a1} = 2.2$, а при эрозии вкладыша сопла $M_{a2} = 1.5$.

3. Проведены измерения потенциала электрического поля, создаваемого высокоэнтальпийным ионизированным потоком с частицами к-фазы. Установлено, что частицы неметалла (углепластика) в таком потоке приобретают отрицательный заряд. Значения заряда частиц углепластика, оцененные по экспериментальным данным амплитуды потенциала, подтверждаются фундаментальными исследованиями, полученными применительно к частицам сажи.

4. Комплексная диагностика рабочего процесса модельного ракетного двигателя показала принципиальную возможность использования параметров акустического воздействия струи для оценки скорости истечения. На потенциал электрического поля, генерируемого струей, влияет наличие к-фазы, что может быть использовано в алгоритмах системы аварийной защиты двигателя, например, при ранней диагностике прогаров стенки сопла. Исследуемые перспективные бесконтактные методы диагностики в дополнение к вибрационному методу дают необходимую информацию по определению критических режимов, например, виброгорения и внутрикамерной неустойчивости, которые являются причинами большинства отказов при испытаниях и эксплуатации ракетных и реактивных двигателей.

В заключение отметим, что для применения бесконтактных методов необходимо проведение взаимного корреляционного анализа между газо-, тепло-, термодинамическими характеристиками потока и его электрофизическими параметрами.

Работа выполнена при поддержке госпрограммы № 0705-2020-0044 фундаментальных исследований лаборатории "Внутрикамерные процессы ракетных и реактивных двигателей".

СПИСОК ЛИТЕРАТУРЫ

- 1. *Jianzhong S., Hongfu Z., Pengpeng L., Youfeng Y., Zhixiong C.* Analysis and Application of Baseline Model of Aero-engine Exhaust Gas Electrostatic Monitoring Signals // J. Aerosp. Power. 2013. V. 28. № 3. P. 531.
- Wen Z., Zuo H., Pecht M.G. Electrostatic Monitoring of Gas Path Debris for Aero-engines // IEEE Trans. Reliab. 2011. V. 60. № 1. P. 33.
- 3. Ватажин А.Б., Голенцов Д.А., Лихтер В.А., Шульгин В.И. Электрические аспекты проблемы разрушения тел в газодинамическом потоке // Изв. РАН. МЖГ. 1999. № 4. С. 74.
- Кузнецов В.М. Идентификация источников шума турбулентной струи // Акуст. журн. 2012. Т. 58. № 4. С. 498.
- 5. Бикарт Э.М. Результаты экспериментального исследования шума сверхзвуковой струи // Уч. зап. ЛГУ. 1973. Т. 49. № 369. С. 125.
- 6. Alestra S., Terrasse I., Troclet B. Inverse Method for Identification of Acoustic Sources at Launch Vehicle Liftoff // AIAA J. 2003. V. 41. № 10. P. 1980.
- Sorokin A., Arnold F. Electrically Charged Small Soot Particles in the Exhaust of an Aircraft Gas-turbine Engine Combustor: Comparison of Model and Experiment // Atmos. Environ. 2004. V. 38. P. 2611.
- Vatazhin A.V., Golentsov D.A., Likhter V.A. Noncontact Electrostatic Engine Diagnostics: Theoretical and Laboratory Simulation // Fluid Dynamics. 1997. V. 32. № 2. P. 223.
- 9. Лялин Я.А., Семенов К.И., Копыт Н.Х. Формирование нанодисперсной к-фазы вокруг нагретой металлической частицы и кинетика электрообмена в такой системе // Физика аэродисперсных систем. Межвед. науч. сб. 2012. № 49. С. 112.
- 10. Рудинский А.В., Ягодников Д.А. Математическое моделирование электризации частиц конденсиро-

ванной фазы в высокотемпературном потоке продуктов сгорания ракетного двигателя // ТВТ. 2019. Т. 57. № 5. С. 777.

- Рудинский А.В., Лапицкий В.И., Ягодников Д.А. Влияние частиц конденсированной фазы на характеристики электромагнитного поля продуктов сгорания в проточном тракте ЖРД. Результаты экспериментальных исследований // ФГВ. 2019. Т. 55. № 5. С. 59.
- Гришин С.А., Пашкевич Г.А., Селянтьев В.А. и др. Автоматизированный комплекс "Мониторинг-М" для изучения процессов разгара теплонапряженных элементов конструкции ракетных двигателей // Сб. науч. тр. V конгресса физиков Беларуси. 2015. С. 241.
- 13. Назаров Г.И., Сушкин В.В. Теплостойкие пластмассы. Спр. М.: Машиностроение, 1980. С. 208.
- 14. Ягодников Д.А., Сухов А.В., Ирьянов Н.Я., Лапицкий В.И., Гришин С.А., Бунчук А.А. Корреляционный и спектральный анализы электрофизических характеристик продуктов сгорания углеводородного топлива модельного жидкостного ракетного двигателя // Инж. журн.: наука и инновации. 2017. № 1. С. 1.
- 15. *Ribner H.S.* Quadrupole Correlations Governing the Pattern of Jet Noise // J. Fluid Mech. 1969. V. 38. № 1. P. 1.
- 16. *Болотин В.В.* Случайные колебания упругих систем. М.: Наука, 1979. 336 с.
- 17. *Блохинцев Д.И*. Акустика неоднородной движущейся среды. М.: Наука, 1981. 993 с.
- 18. Антонов А.Н., Купцов В.М., Комаров В.В. Пульсации давления при струйных и отрывных течениях. М.: Машиностроение, 1990. 227 с.
- 19. Кузнецов В.Р., Сабельников В.А. Турбулентность и горение. М.: Наука, 1986. 290 с.
- 20. Дорошенко В.Е., Сильверстов В.М. Экспериментальное исследование волн энтропии при неустойчивом горении в камере газотурбинного двигателя // ФГВ. № 1. 1982. С. 27.
- Liu W., Huang M., Liu D., Wang Y., Zhang M. Design and Test of Sensor for Aircraft Engine Gas Path Debris Electrostatic Monitoring // MATEC Web of Conf. ICMITE. 2017. V. 139. 00145. https://doi.org/10.1051/matecconf/201713900145
- 22. Ватажин А.Б., Лихтер В.А., Шульгин В.И. Обтекание тел электрически заряженным аэрозольным потоком // Изв. АН СССР. МЖГ. 1982. № 4. С. 71.