УДК 536.216,536.244

ТЕПЛОМАССОПЕРЕНОС НА БОКОВЫХ ПОВЕРХНОСТЯХ ЗАТУПЛЕННЫХ НОСОВЫХ ЧАСТЕЙ ГИПЕРЗВУКОВЫХ ЛЕТАТЕЛЬНЫХ АППАРАТОВ

© 2021 г. В. Ф. Формалев^{1,} *, С. А. Колесник^{1,} **, Е. Л. Кузнецова^{1,} ***

¹Московский авиационный институт (национальный исследовательский университет), Москва, Россия

*E-mail: formalev38@yandex.ru **E-mail: sergey@oviont.com ***E-mail: lareyna@mail.ru Поступило в редакцию 31.05.2021 г. После доработки 09.08.2021 г. Принято к публикации 13.09.2021 г.

На основе общепринятых допущений получено приближенное аналитическое решение задачи о течении и тепломассопереносе в химически реагирующем газодинамическом пограничном слое на боковых поверхностях затупленных носовых частей при гиперзвуковых скоростях набегающего потока. С помощью полученных решений рассчитаны конвективные и диффузионные тепловые потоки к поверхности затупленного конуса, а на основе баланса подводимых к поверхности и отводимых от нее лучистых и кондуктивных потоков внутрь тела определены тепловое состояние и температура поверхности обтекаемого конуса. Получены и проанализированы результаты численного решения относительно температур поверхности в диапазоне чисел Маха $5 \le M \le 25$ и высот полета $20 \le H \le 80$ км.

DOI: 10.31857/S0040364421050069

ВВЕДЕНИЕ

При полете летательных аппаратов (ЛА) в плотных слоях атмосферы с гиперзвуковыми скоростями (числа Маха $M \ge 5-6$) в наиболее тяжелых условиях находятся носовые части, подвергающиеся интенсивному аэродинамическому нагреву и большим механическим нагрузкам. Возникающие в ударных слоях высокие температуры приводят к диссоциации молекул кислорода и азота с поглощением значительного количества теплоты, так что тело обтекается бинарной смесью газов – легких атомов и тяжелых молекул [1–4]. На более холодной стенке происходит обратный процесс – рекомбинация атомов в молекулы с выделением того же количества теплоты, что и при диссоциации.

Таким образом, для определения тепловых потоков от газа к телу и температуры поверхности тела необходимо определять конвективные и диффузионные тепловые потоки, т.е. проинтегрировать систему для динамического, теплового и диффузионного пограничных слоев.

Баланс подводимых к телу и отводимых от него тепловых потоков излучением и теплопроводностью внутрь тела определяет тепловое состояние обтекаемого тела и, в частности, температуру наружной границы тела, без знания которой невозможно определить тепловые потоки [5–8]. В данной статье на основе стандартных допущений для системы динамического, теплового и диффузионного пограничных слоев на боковых поверхностях затупленных конусов (производная давления по продольной переменной очень мала) получены автомодельные решения для газодинамических функций, производные от которых по переменной в направлении нормали к поверхности стенки определяют суммарные конвективные и диффузионные тепловые потоки и в конечном счете тепловое состояние затупленного тела.

ПОСТАНОВКА ЗАДАЧИ И МЕТОД РЕШЕНИЯ

Рассматривается система уравнений пограничного слоя на затупленном конусе большого удлинения (отношение длины к радиусу затупления R_0 не менее 20) с полууглом конусности θ_0 в области $x > 0, 0 < y < \delta$:

$$\rho u \frac{\partial u}{\partial x} + \rho v \frac{\partial u}{\partial y} = -\frac{\partial p}{\partial x} + \frac{\partial}{\partial y} \left(\mu \frac{\partial u}{\partial y} \right); \tag{1}$$

$$0 = -\frac{\partial p}{\partial y}$$
или $\frac{\partial p_e}{\partial x} = -\rho_e u_e \frac{\partial u_e}{\partial x};$ (2)

$$\frac{\partial \left(\rho u r_0^s\right)}{\partial x} + \frac{\partial \left(\rho v r_0^s\right)}{\partial y} = 0; \tag{3}$$

$$\rho u \frac{\partial C_i}{\partial x} + \rho v \frac{\partial C_i}{\partial y} = \frac{\partial}{\partial y} \left(\rho D_{12} \frac{\partial C_i}{\partial y} \right) + w_i, \qquad (4)$$
$$i = 1, 2;$$

$$\rho u \frac{\partial I}{\partial x} + \rho v \frac{\partial I}{\partial y} = \frac{\partial}{\partial y} \left[\frac{\mu}{\Pr} \frac{\partial I}{\partial y} + \mu \left(1 - \frac{1}{\Pr} \right) \frac{\partial u^2}{2 \partial y} \right] - \frac{\partial}{\partial y} \left[\left(\frac{1}{\operatorname{Le}} - 1 \right) \rho D_{12} \sum_i h_i \frac{\partial C_i}{\partial y} \right].$$
(5)

Здесь (0x, 0y) — ортогональная локальная система координат, в которой переменная *y* отсчитывается от поверхности тела в направлении внешней нормали, а *x* — от критической точки; *u*, *v* — компоненты вектора скорости; D_{12} — коэффициент бинарной диффузии; μ — динамическая вязкость; Pr, Le, Sc — числа Прандтля, Льюиса, Шмидта соответственно; $I = h + u^2/2$ — полная энтальпия газа; $h = \sum_i C_i h_i$; $h_i = \int_0^I c_{pi} dT + h_i^0$; h_i^0 — теплота образования *i*-го компонента; δ — толщина пограничного слоя; r_0^s — радиус от оси тела до наружной границы; *s* = 1 для осесимметричного тела; *s* = 0 для плоского тела; *w_i* — скорость образования *i*-го компонента; C_i — концентрация *i*-го компонента, *i* = 1, 2. Индекс *e* введен для характеристик на наружной границе пограничного слоя.

Граничные условия:

$$y = 0: u(x,0) = 0, v(x,0) = 0;$$

 $I(x,0) = I_w; \rho(x,0) = \rho_w.$

Кроме этого, на границе газ—твердое тело должны выполняться граничные условия сопряжения по температуре и тепловым потокам:

$$T_{g}(x, 0+0) = T_{s}(x, 0+0),$$

$$\lambda_{s} \frac{\partial T_{s}}{\partial y}\Big|_{y_{s}=0+0} =$$

$$= \left(\lambda_{g} \frac{\partial T_{g}}{\partial y} + \rho D_{12}h_{A}^{0} \frac{\partial C_{A}}{\partial y}\right)_{y_{g}=0+0} - \varepsilon \sigma T_{w}^{4},$$
(6)

где индексы *s* и *g* относятся к твердому телу и газу соответственно, *w* – граница газ–твердое тело; *A* – атомарная компонента газа; σ – постоянная Стефана–Больцмана; ε – степень черноты; координаты в теле *y_s* и в газе *y_g* направлены в противоположные стороны от границы тела, где *y_s* = *y_g* = 0.

На внешней границе пограничного слоя задается распределение давления $p_e(x)$, и $u_e(x)$ определяется из уравнения энергии для идеального газа

$$h_{\infty} + \frac{V_{\infty}^2}{2} \approx h_e + \frac{u_e^2}{2}, \quad V_{\infty} = \sqrt{u_{\infty}^2 + v_{\infty}^2}.$$

Остальные характеристики $\rho_e(x)$, $T_e(x)$ находятся из изэнтропических соотношений [1].

Система уравнений (1)–(5) существенно нелинейна и ее можно решать только численно. Однако здесь вводятся такие допущения, при которых система (1)–(5) трансформируется в систему обыкновенных дифференциальных уравнений.

1) Поскольку течение газа на боковой поверхности безградиентное, то все производные газодинамических характеристик по продольной переменной *х* принимаются равными нулю.

2) Критерии Pr =
$$\frac{\mu c_{\rho}}{\lambda}$$
 = 1, Sc = $\frac{\mu}{\rho D_{12}}$ = 1, Le =

 $=\frac{Pr}{Sc}$ = 1, т.е. толщины динамического, теплового и диффузионного пограничных слоев одинаковы и равны δ .

3) При больших числах Маха криволинейная часть ударной волны так близко подходит к поверхности конуса, что газодинамические характеристики за криволинейной частью ударной волны можно принимать в качестве последних на внешней границе пограничного слоя.

4) Пограничный слой считается замороженным, т.е. $w_i = 0$.

С учетом этих допущений система уравнений (1)–(5) приобретает автомодельный вид

$$\rho v \delta \frac{\partial \overline{u}}{\partial \overline{y}} = \frac{\partial}{\partial \overline{y}} \left(\mu \frac{\partial \overline{u}}{\partial \overline{y}} \right), \quad \rho v \delta \frac{\partial \overline{I}}{\partial \overline{y}} = \frac{\partial}{\partial \overline{y}} \left(\mu \frac{\partial \overline{I}}{\partial \overline{y}} \right), \tag{7}$$

$$\rho v \delta \frac{\partial \overline{\alpha}}{\partial \overline{y}} = \frac{\partial}{\partial \overline{y}} \left(\mu \frac{\partial \overline{\alpha}}{\partial \overline{y}} \right). \tag{8}$$

Здесь введены следующие безразмерные переменные: $\overline{y} = y/\delta$, $\overline{u}(x, y) = \frac{u(x, y)}{u_e(x)}$, $\overline{I}(\overline{y}) = \frac{I(\overline{y}) - I_w}{I_e - I_w}$,

 $\overline{\alpha}(\overline{y}) = \frac{\alpha(\overline{y}) - \alpha_w}{\alpha_e - \alpha_w}$ – относительная концентрация атомарной компоненты $\alpha \equiv C_A$, а в правой части (8) вместо ρD_{12} стоит μ , так как

$$\rho D_{12} = \mu/\mathrm{Sc}|_{\mathrm{Sc}=1} = \mu.$$

Граничные условия:

при $\overline{y} = 0$: $\overline{u}(x,0) = 0$, $\overline{\alpha}(0) = 0$, $I(0) = I_w$; при $\overline{y} = \infty$ (или $\overline{y} = \delta$): $\overline{u}(x,\infty) = 1$, $\overline{\alpha}(\infty) = 1$, $\overline{I}(\infty) = 1$.

Интегрирование уравнений (7) и (8) приводит к соотношениям

$$(c_{p})_{cp} T(\overline{y}) = c_{pw}T_{w} \frac{\exp(\operatorname{Re}_{\delta}\overline{y}) - 1}{\exp(\operatorname{Re}_{\delta}) - 1} \times \left[(c_{p})T_{e} + \frac{u_{e}^{2}}{2} + (\alpha h_{A}^{0})_{e} - (\alpha h_{A}^{0})_{w} \right],$$

TV

где h_A^0 – энтальпия образования атомарной компоненты, $(c_p)_{cp} = (c_{pe} + c_{pw})/2$.

Отсюда конвективный тепловой поток к стенке $\left(\frac{\partial}{\partial u} = \frac{\partial}{\partial u} \frac{1}{2}\right)$ будет равен

$$\frac{\partial \overline{y}}{\partial y} = \frac{\partial \overline{y}}{\partial \overline{y}} \delta \int_{y=0}^{y=0} \frac{\partial v}{(c_p)_{cp}} \delta \frac{\operatorname{Re}_{\delta}}{\operatorname{exp}(\operatorname{Re}_{\delta}) - 1} \times \left(c_{pe}T_e + \frac{u_e^2}{2} - c_{pw}T_w \right).$$
(9)

Аналогично интегрированием уравнения диффузии (8) получается диффузионный тепловой поток

$$\rho D_{12} h_A^0 \Big|_{y=0} = \rho D_{12} \frac{\partial \alpha}{\partial \overline{y}} \frac{\partial \overline{y}}{\partial y} = \frac{\rho D_{12}}{\delta} h_A^0 \times \frac{\partial \overline{y}}{\partial \overline{y}} \Big[\alpha_w + \frac{\exp(\operatorname{Re}_{\delta} \overline{y}) - 1}{\exp(\operatorname{Re}_{\delta}) - 1} (\alpha_e - \alpha_w) \Big]_{y=0},$$
(10)

где $\operatorname{Re}_{\delta} = \frac{\rho v \delta}{\mu}$.

2

Поскольку v на четыре порядка ниже продольной скорости, то Re_{δ} имеет порядок единицы, т.е.

$$\frac{\operatorname{Re}_{\delta}}{\exp(\operatorname{Re}_{\delta})-1} \approx \frac{\operatorname{Re}_{\delta}}{1+\operatorname{Re}_{\delta}-1} = 1$$

Складывая тепловые потоки (9) и (10), получим суммарный тепловой поток в стенку

$$q_w = \frac{\mu}{\delta} \left[\left(c_{pe} T_e + \frac{u_e^2}{2} - c_{pw} T_w \right) + h_A^0 \left(\alpha_e - \alpha_w \right) \right]. \quad (11)$$

Поскольку на границе сопряжения координаты у направлены в противоположные стороны от границы y = 0, то на этой границе кондуктивный тепловой поток внутрь тела обозначен как

$$\lambda_s \frac{\partial T_s}{\partial y}\Big|_{y_s = y_g = 0}$$

Аналитическое решение второй начально-краевой задачи теплопроводности дается формулой

$$T_{s}(y_{s},t) = T_{0s} + \frac{q_{w}}{\lambda_{s}}(\delta_{s} - y_{s}) +$$
$$+ \sum_{n=1}^{\infty} \frac{q_{w}}{\lambda_{s}} \frac{\delta_{s}^{2}}{2} \cos(\gamma_{n}, y_{s}) e^{-a_{s}\gamma_{n}^{2}t}, \quad \gamma_{n} = \frac{\pi + 2\pi n}{2\delta_{s}}$$
$$a_{s} = \frac{\lambda_{s}}{c_{s}\rho_{s}}.$$

Стационарное решение при $t \to \infty$ и $y_s = 0$ имеет вид

$$q_w = (T_{ws} - T_{0s})/\delta_s.$$

ТЕПЛОФИЗИКА ВЫСОКИХ ТЕМПЕРАТУР том 59 № 5 2021

$$\begin{array}{c}
1, \mathbf{K} \\
1400 \\
1200 \\
1000 \\
800 \\
600 \\
400 \\
200 \\
5 \\
10 \\
15 \\
20 \\
20 \\
5 \\
10 \\
15 \\
20 \\
25 \\
M
\end{array}$$

Рис. 1. Зависимость температур стенки от чисел Маха и высот полета: 1 - H = 20 км, 2 - 30, 3 - 40, 4 - 50, 5 - 60, 6 - 70, 7 - 80.

Подставляя (11) в (6) и заменяя
$$\lambda_s \frac{\partial T_s}{\partial y}\Big|_{y_s=0+0} \approx$$

 $\approx \lambda_{\text{тела}} \frac{T_w - T_0}{\delta_{\text{тела}}}$, получим нелинейное уравнение для определения температуры поверхности T_w

$$T$$
 T

$$\lambda_{s} \frac{I_{w} - I_{0}}{\delta_{s}} =$$

$$= \frac{\mu_{w}}{\delta} \left[\left(c_{pe} T_{e} + \frac{u_{e}^{2}}{2} - c_{pw} T_{w} \right) h_{A}^{0} \left(\alpha_{e} - \alpha_{w} \right) \right] - \varepsilon \sigma T_{w}^{4}, \qquad (12)$$

где T_0 — начальная температура тела, δ_s — его толщина.

На рис. 1, 2 приведены температуры T_w боковой поверхности затупленного конуса на расстоянии x = 0.4 м от критической точки, рассчитанные по формуле (12) с учетом тепловых потоков (11).

На рис. 1 температура поверхности зависит от чисел Маха набегающего потока и высот полета, когда учитывалось излучение от стенки. В любом случае максимальная температура достигала 1350 К, т.е. теплозащитные материалы функционировали в условиях отсутствия уноса массы. При этом если перепад атомарных концентраций $\Delta \alpha = \alpha_e - \alpha_w = 1$ (или $\alpha_w = 0$, $\alpha_e = 1$), то стенка абсолютно каталитическая и все атомы на стенке рекомбинировали в молекулы, отдав теплоту рекомбинации в стенку.

На рис. 2 приведены аналогичные зависимости без учета излучения от стенки. Здесь максимальная температура достигает 2400 К, что может сопровождаться уносом массы, который нежелателен.

Рис. 2. Зависимости температур наружной границы тела от чисел Маха и высот H полета без учета излучения: 1 - H = 30 км, 2 - 40, 3 - 50, 4 - 60.

ЗАКЛЮЧЕНИЕ

С учетом обоснованных упрощений уравнений пограничного слоя, позволивших их проинтегрировать, получены замкнутые формулы для конвективно-диффузионных тепловых потоков, при использовании которых определены температуры боковых поверхностей затупленных конусов при гиперзвуковом полете летательных аппаратов в широком диапазоне чисел Маха и высот полета. Работа выполнена в рамках государственного заказа Министерства науки и высшего образования Российской Федерации (№ FSFF-2020-0017).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Краснов Н.Ф.* Аэродинамика тел вращения. М.: Машиностроение, 1964.
- 2. *Дорренс У.Х.* Гиперзвуковые течения вязкого газа. М.: Мир, 1961.
- 3. *Авдуевский В.С.* Основы теплопередачи в авиационной и ракетно-космической технике. М.: Машиностроение, 1992.
- 4. Формалев В.Ф., Колесник С.А. Математическое моделирование сопряженного теплопереноса между вязкими газодинамическими течениями и анизотропными телами. М.: Ленанд, 2019.
- 5. Формалев В.Ф., Колесник С.А., Кузнецова Е.Л. Влияние компонентов тензора теплопроводности теплозащитного материала на величину тепловых потоков от газодинамического пограничного слоя // ТВТ. 2019. Т. 57. № 1. С. 66.
- 6. Формалев В.Ф., Колесник С.А., Кузнецова Е.Л. Моделирование сопряженного теплообмена в пакетах малогабаритных плоских газодинамических сопел с охлаждением // ТВТ. 2015. Т. 53. № 5. С. 735.
- 7. *Формалев В.Ф.* Об универсальном законе разложения связующих теплозащитных композиционных материалов при высоких температурах // ТВТ. 2020. Т. 58. № 1. С. 91.
- 8. *Формалев В.Ф.* Моделирование тепломассопереноса в теплозащитных композиционных материалах на основе универсального закона разложения связующих // ТВТ. 2020. Т. 58. № 3. С. 412.