УДК 533.16

# К ВОПРОСУ О ФИЗИЧЕСКОЙ ТРАКТОВКЕ ПРОЦЕССА РЕКОМБИНАЦИИ АТОМАРНЫХ КОМПОНЕНТ ГАЗОВОЙ СМЕСИ НА ПОВЕРХНОСТИ КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ

© 2021 г. В. В. Горский<sup>1, 2, \*</sup>

<sup>1</sup>АО "ВПК "НПО машиностроения", г. Реутов, Россия <sup>2</sup>Московский государственный технический университет им. Н.Э. Баумана, Москва, Россия

\*E-mail: v.a.sysenko@vpk.npomash.ru Поступила в редакцию 07.09.2020 г. После доработки 17.05.2021 г. Принята к публикации 19.05.2021 г.

В данной работе для описания скорости протекания гетерогенных каталитических реакций применяется физико-химическая трактовка данного явления, повсеместно используемая в литературе для самых различных гетерогенных химических реакций и основанная на записи этой скорости в аррениусовской форме. Приводятся результаты исследований, посвященных анализу влияния, оказываемого применением различных подходов к описанию гетерогенных реакций рассматриваемого типа на качество описания литературных экспериментальных данных по каталитическим свойствам карбида кремния.

DOI: 10.31857/S0040364421050082

#### введение

Вопросам, связанным с каталитичностью стенки, обтекаемой диссоциированной газовой смесью, посвящена обширная библиография, в том числе монографии [1-4]. При этом для математического описания физико-химических превращений, протекающих на стенке, повсеместно используются полуэмпирические модели Или-Райдила (I–R) и Ленгмюра–Хиншельвуда (L–H), в рамках которых тем или иным образом скорость прохождения гетерогенной рекомбинации атомарных компонент газовой смеси пропорциональна скорости соударения этих частиц со стенкой. Однако в данных "газодинамических" моделях не учитываются физико-химические аспекты протекания данного гетерогенного процесса. Поэтому возникают серьезные сомнения в обоснованности использования на практике кинетических коэффициентов, входящих в эти модели.

В частности, необходимо отметить, что результаты подробного изучения каталитических свойств карбида кремния, опубликованные в работе [5], свидетельствуют о том, что кинетические коэффициенты зависят от условий проведения эксперимента. Поэтому, естественно, и использование результатов таких расчетно-экспериментальных исследований допустимо только в условиях, близких к тем, при которых получены эти кинетические данные.

Необходимо отметить также, что определение каталитической активности карбида кремния

осложняется протеканием на его поверхности гетерогенных химических реакций, которые в определенных условиях сопровождаются образованием конденсированного диоксида кремния (это подтверждается большим числом экспериментальных данных).

Поэтому в литературе используются термины "пассивный" и "активный" для режимов гетерогенного окисления данного материала [6], и первый из них относится к образованию диоксида кремния.

Целью расчетно-экспериментальных исследований, результаты которых приводятся ниже, является не определение кинетических коэффициентов каталитичности для конкретной рецептуры изготовления карбида кремния, а установление той полуэмпирической модели протекания изучаемого процесса, в которой эти коэффициенты в первом приближении не зависят от условий проведения эксперимента. По-видимому, только при выполнении этого требования можно утверждать, что данная полуэмпирическая модель в первом приближении действительно пригодна для описания физики протекания рассматриваемых процессов [7].

В то же время определение кинетических коэффициентов, входящих в любую полуэмпирическую модель описания гетерогенных химических реакций, необходимо проводить на базе анализа стационарных экспериментов. Для карбида кремния это означает, что процесс окисления ма-

#### ГОРСКИЙ

| pobulitor o boskjim |       |       |                |                |           |                     |           |                      |     |                        |                        |
|---------------------|-------|-------|----------------|----------------|-----------|---------------------|-----------|----------------------|-----|------------------------|------------------------|
| i                   | $p_w$ | $T_w$ | T <sub>e</sub> | H <sub>e</sub> | $u_{e,s}$ | $A_{h,\mathrm{Fr}}$ | $A_{h,R}$ | $A_{h,\mathrm{Cal}}$ | δ   | $J_{d,\mathrm{O,Rel}}$ | $J_{d,\mathrm{N,Rel}}$ |
| 1                   | 17.5  | 1573  | 5095           | 14.9           | 19500     | 0.056               | 0.055     | 0.054                | 1.9 | 1.38                   | 0.366                  |
| 2                   | 17.9  | 1773  | 5660           | 24.0           | 24000     | 0.058               | 0.057     | 0.057                | 0.0 | 1.87                   | 0.457                  |
| 3                   | 25.5  | 1573  | 5317           | 16.7           | 11 140    | 0.050               | 0.049     | 0.048                | 2.0 | 1.70                   | 0.177                  |
| 4                   | 25.9  | 1673  | 5634           | 21.8           | 13900     | 0.054               | 0.052     | 0.052                | 0.0 | 2.06                   | 0.280                  |
| 5                   | 24.8  | 1773  | 5834           | 25.7           | 17 2 50   | 0.057               | 0.056     | 0.056                | 0.0 | 2.23                   | 0.364                  |
| 6                   | 74.1  | 1573  | 5670           | 18.2           | 2641      | 0.041               | 0.040     | 0.039                | 2.5 | 2.01                   | 0.000                  |
| 7                   | 74.4  | 1773  | 6081           | 24.7           | 4545      | 0.051               | 0.050     | 0.049                | 2.0 | 2.81                   | 0.020                  |
| 8                   | 75.0  | 1873  | 6485           | 31.1           | 5456      | 0.054               | 0.052     | 0.052                | 0.0 | 3.48                   | 0.044                  |
| 9                   | 124.0 | 1773  | 5954           | 20.4           | 1923      | 0.045               | 0.043     | 0.043                | 0.0 | 2.83                   | 0.000                  |
| 10                  | 124.6 | 1873  | 5914           | 19.8           | 2468      | 0.051               | 0.049     | 0.047                | 4.1 | 2.26                   | 0.000                  |
|                     |       |       |                |                |           |                     |           |                      |     |                        |                        |

Таблица 1. Значения коэффициентов теплообмена и диффузионных потоков атомарных компонент диссоциированного воздуха

Здесь *i* – номер эксперимента;  $p_w$  – давление газа на стенке, равное давлению в пограничном слое, гПа;  $T_w$ ,  $T_e$  – температура газа на стенке и на внешней границе пограничного слоя, K;  $H_e$  – энтальпия газа на внешней границе пограничного слоя, MДж/кг;  $u_{e,s}$  – градиент скорости на внешней границе пограничного слоя, 1/с;  $A_{h,Fr}$ ,  $A_{h,R}$ ,  $A_{h,Cal}$  – коэффициенты теплообмена в замороженном пограничном слое, в пограничном слое с химическими реакциями и замеренный в калориметрическом эксперименте, кг/( $M^2$  с);  $\delta$  – рассогласование между коэффициентами теплообмена  $A_{h,R}$  и  $A_{h,Cal}$ , %;  $J_{d,O,Rel}$ ,  $J_{d,N,Rel}$  – отношение диффузионных потоков массы атомарных компонент на стенке, рассчитанных в неравновесном и замороженном пограничных слоях.

териала протекает в активном режиме, свободном от образования диоксида кремния.

К числу экспериментальных данных, удовлетворяющих указанному требованию, необходимому для их использования в задачах, связанных с исследованием каталитических свойств карбида кремния, относятся результаты большей части экспериментов, опубликованных в работе [8].

## ФИЗИКО-МАТЕМАТИЧЕСКАЯ ПОСТАНОВКА ЗАДАЧИ

Режим течения воздушной смеси в пограничном слое, который был реализован в экспериментах, описанных в [8], являлся неравновесным. Это подтверждается результатами расчетов тепловых потоков, подводимых к абсолютно каталитичной стенке, выполненных в приближении равновесного и неравновесного течений воздушной смеси в пограничном слое (табл. 1).

Приведенные в табл. 1 значения коэффициентов теплообмена представляют собой отношения теплового потока на стенке, определенного из решений уравнений пограничного слоя, к перепаду энтальпий торможения поперек пограничного слоя.

Известно, что в условиях существования термохимического равновесия на обеих границах пограничного слоя тепловые потоки, подводимые к стенке, крайне незначительно зависят от скоростей химических реакций, протекающих во внутренних слоях этого слоя. И в этом плане приведенные в табл. 1 значения коэффициентов теплообмена не противоречат указанному утверждению.

Однако определение скоростей протекания каталитических реакций на стенке неразрывно связано с расчетом диффузионного массообмена в пограничном слое, а, как следует из данных табл. 1, картина диффузионного массопереноса в рассматриваемой серии экспериментов существенно зависит от подхода к расчету скоростей гомогенных химических реакций.

Как следует из анализа представленной информации, учет протекания гомогенных химических реакций приводит к существенному изменению в пристеночной области пограничного слоя диффузионных потоков атомарных веществ: для кислорода они увеличиваются, а для азота уменьшаются.

Вследствие этого для исследований использовалась модель неравновесного пограничного слоя.

Рамки данной методики ограничены рассмотрением осесимметричного воздушного шестикомпонентного пограничного слоя в окрестности критической точки тела, химический состав газовой смеси в котором представлен следующими веществами:

$$O, O_2, N, N_2, NO, Ar.$$
 (1)

Система дифференциальных уравнений, описывающая течение газа в пограничном слое на непроницаемой стенке, в рассматриваемом случае записывается в виде [7, 9]

$$\left(\operatorname{Ru}f_{\eta\eta}\right)_{\eta} + ff_{\eta\eta} - \Omega\left(f_{\eta}^{2} - \frac{\rho_{e}}{\rho}\right) = 0; \qquad (2)$$

$$\left(\frac{\mathrm{Ru}}{\mathrm{Pr}}h_{\eta}\right)_{\eta} + fh_{\eta} - \Psi\left(\sum_{i=1}^{n}h_{i}J_{\mathrm{d},i}\right)_{\eta} - \left(\frac{\mathrm{Ru}}{\mathrm{Pr}}\sum_{i=1}^{n}h_{i}J_{\mathrm{d},i}\right)_{\eta} = 0; (3)$$

$$-\Psi J_{\mathrm{d},i,\eta} + fC_{i,\eta} + \mathrm{K}\omega_{i} = 0, \quad i = \overline{1,6};$$

$$f = \frac{\Phi}{\sqrt{2\xi}}; \quad f_{\eta} = u/u_{e}; \quad \mathrm{Pr} = \frac{c_{p,\mathrm{fr}}\mu}{\lambda};$$

$$\mathrm{Ru} = \frac{\rho\mu}{\rho_{e,0}\mu_{e,0}}; \quad \Omega = \frac{2\xi}{\xi_{s}}\frac{u_{e,s}}{u_{e}} = 0.5; \quad \Psi = r\frac{\sqrt{2\xi}}{\xi_{s}} =$$

$$= \frac{1}{\sqrt{2\rho_{e,0}\mu_{e,0}u_{e,s,0}}}; \quad \mathrm{K} = 2\frac{\xi}{\rho u_{e}\xi_{s}} = \frac{1}{2\rho u_{e,s,0}}.$$

Здесь *s* – координата, отсчитываемая вдоль образующей тела;  $\xi$ ,  $\eta$  – переменные Лиза–Дородницына;  $\Phi$  – размерная функция тока, тождественно удовлетворяющая уравнению неразрывности; *f* – безразмерная функция тока; *h*, *u*,  $\rho$ ,  $\mu$ ,  $c_{p,fr}$ , Pr, Ru – энтальпия, тангенциальная проекция вектора скорости, плотность, коэффициент динамической вязкости, изобарная удельная теплоемкость, число Прандтля и параметр Рубезина в газовой смеси;  $C_i$ ,  $J_i$ ,  $\omega_i$  – массовая концентрация, проекция вектора диффузионного потока массы на внешнюю нормаль к стенке и скорость образования в единице объема *i*-го вещества из списка (1).

Индексы *e*, 0, η, ξ относятся к внешней границе пограничного слоя, критической точке тела и к производным по соответствующим координатам.

Для уравнения (2) форма записи граничных условий имеет стандартный вид:

$$f(0) = f_{\eta}(0) = 0, \quad f_{\eta}(\eta_e) = 1,$$
$$h(0) = \sum_{i=1}^{6} C_i h_i, \quad h = h_{00}.$$

Для уравнения (3) стандартная форма записи граничных условий сохраняется только на внешней границе пограничного слоя, где

$$C_i(\eta_e) = C_{i.e.0}, \quad i = 1, 6.$$

В свою очередь, если исключить из рассмотрения скорость гетерогенных химических реакций, приводящих к изменению концентрации оксида азота, концентрация которого в пограничном слое не превышает нескольких процентов, то система граничных условий на стенке для массовых концентраций химических веществ может быть записана в виде

$$-J_{d,O,w} = \zeta_{O}, \quad C_{O,w} + C_{O_{2,w}} + C_{NO,w} M_{O} / M_{NO} = \Theta_{O}, -J_{d,N,w} = \zeta_{N}, \quad C_{N,w} + C_{N_{2,w}} + (4) + C_{NO,w} M_{N} / M_{NO} = \Theta_{N}, \quad C_{NO,w} (0) = C_{NO,w,g}.$$

ТЕПЛОФИЗИКА ВЫСОКИХ ТЕМПЕРАТУР том 60 № 1

Здесь  $h_{00}$  – энтальпия торможения набегающего газового потока;  $h_i$ ,  $M_i$ ,  $\zeta_i$  – энтальпия, молекулярная масса и скорость убыли вещества за счет гетерогенных химических реакций *i*-го вещества;  $C_{\text{NO,w,g}}$  – заданное фиксированное значение массовой концентрации оксида азота на стенке. Использование заданного значения существенно упрощает поиск решения задачи, не сказываясь существенно на полученных результатах ввиду малого содержания этого вещества в пограничном слое. Ниже, в частности, для этого параметра используется значение  $C_{\text{NO,w,eq}}$  на абсолютно каталитичной стенке.

В рамках газодинамических моделей скорость протекания рассматриваемых реакций представляется пропорциональной произведению скорости свободно молекулярного соударения частиц со стенкой, рассчитываемой по формуле Герца– Кнудтсена, на вероятность γ их участия в реакциях [3–5]:

$$\zeta_{\rm O} = \gamma_{\rm O} \frac{p_{\rm O,w}}{\sqrt{2\pi R_{\rm O} T_w}}, \quad \zeta_{\rm N} = \gamma_{\rm N} \frac{p_{\rm N,w}}{\sqrt{2\pi R_{\rm N} T_w}}; \tag{5}$$

$$\zeta_{\rm O} = \gamma_{\rm O} p_{{\rm O},w} \frac{p_{{\rm O},w}}{\sqrt{2\pi R_{\rm O} T_w}}, \quad \zeta_{\rm N} = \gamma_{\rm N} p_{{\rm N},w} \frac{p_{{\rm N},w}}{\sqrt{2\pi R_{\rm N} T_w}}.$$
 (6)

Здесь  $R_i$  — газовая постоянная *i*-го вещества, а формулы (5) и (6) соответствуют моделям I–R и L–H. При этом формулы (6) записаны так же, как и работе [5], в которой газодинамические модели каталитичности изучены наиболее полно.

В рамках физико-химической модели А протекания каталитических реакций формулы для расчета скоростей рекомбинации атомарных веществ записываются в стандартной аррениусовской форме

$$\zeta_{\rm O} = K_{w,\rm O} p_{\rm N,w}^2 \exp\left(-\frac{T_{\rm Act,O}}{T_w}\right),$$
  
$$\zeta_{\rm N} = K_{w,\rm N} p_{\rm N,w}^2 \exp\left(-\frac{T_{\rm Act,N}}{T_w}\right).$$

Здесь  $K_{w,i}$  – кинетическая константа, характеризующая поверхностную концентрацию аккомодируемых стенкой атомов сорта *i*, кг/(м<sup>2</sup> с Па<sup>2</sup>);  $T_{Act,i}$  – температура активации атомов сорта *i*, равная отношению соответствующей энергии активации к универсальной газовой постоянной, которая характеризует вероятность участия аккомодированных атомов в гетерогенной реакции рекомбинации, К.

Помимо высказанных выше критических замечаний в адрес газодинамической модели необходимо отметить также некорректность использования формулы Герца–Кнудтсена в условиях, когда в области течения сплошной среды, прилегающей к стенке, существенно различаются хи-

2022

| i | T <sub>e</sub> | $p_w$ | $T_w$ | $u_{e,s}$ | $q_{w,\mathrm{Rad}}$ |
|---|----------------|-------|-------|-----------|----------------------|
| 1 | 5095           | 17.5  | 1573  | 19500     | 0.30                 |
| 2 | 5660           | 17.9  | 1773  | 24000     | 0.48                 |
| 3 | 5317           | 25.5  | 1573  | 11 140    | 0.30                 |
| 4 | 5634           | 25.9  | 1673  | 13900     | 0.38                 |
| 5 | 5834           | 24.8  | 1773  | 17 2 50   | 0.48                 |
| 6 | 5670           | 74.1  | 1573  | 2641      | 0.30                 |
| 7 | 6081           | 74.4  | 1773  | 4545      | 0.48                 |
| 8 | 6485           | 75.0  | 1873  | 5456      | 0.59                 |

Таблица 2. Исходные данные для решения задачи

128

мический состав газовой смеси и ее температура на длине свободно молекулярного пробега частиц.

При этом независимо от подхода к описанию скоростей протекания гетерогенных каталитических реакций входящие в него кинетические константы определяются на базе обеспечения удовлетворительного согласования между расчетными и экспериментальными данными по подводимому к стенке тепловому потоку. В этой связи необходимо отметить, что полученные при этом результаты проведенных исследований будут жестко привязаны к используемой форме записи граничных условий (4).

Возможность получения качественной информации о процессах тепломассопереноса и трения, протекающих в газовом ламинарном пограничном слое, путем решения тех или иных гидродинамических уравнений основана на применении методов теории статистической физики [10] для расчета переносных свойств многокомпонентных газовых смесей. В свою очередь, для расчета скоростей гомогенных химических реакций ниже используется апробированная на эксперимен-



**Рис. 1.** Сопоставление расчетных и экспериментальных данных при  $T_{\text{Act, O}} = 3000$ ,  $T_{\text{Act, N}} = 3000$  К:  $1 - \delta$ ,  $2 - q_w$ ; светлые маркеры – модель I–R, закрашенные – модель А.

тальных данных методика [11], а подробное изложение используемой методики решения задачи в целом приведено в работе [12].

#### РЕЗУЛЬТАТЫ РАСЧЕТНЫХ ИССЛЕДОВАНИЙ

Ниже приводятся результаты исследований, проведенных по изложенному алгоритму с целью построения оценок для кинетических констант гетерогенных химических реакций, протекающих на поверхности карбида кремния, которые используются в полуэмпирической модели А. В качестве примера здесь же приводится аналогичная информация для модели I–R.

Расчетные исследования выполнены применительно к опубликованным в работе [8] экспериментальным данным, из которых были исключены эксперименты, характеризовавшиеся заметным увеличением массы образца за время эксперимента, равное 4000 с. Исключение сделано только для эксперимента № 6, в котором наблюдалось лишь крайне незначительное увеличение массы образца.

Исходные данные для этих экспериментов, необходимые для решения поставленной задачи, приведены в табл. 2, где  $q_{w,Rad}$  – радиационный тепловой поток, замеренный калориметром, MBT/м<sup>2</sup>.

При проведении настоящих исследований установлено, что в таком достаточно узком диапазоне изменения экспериментальных данных одновременное определение кинетических констант  $K_{w,O}$  и  $T_{Act,O}$  с одной стороны, и кинетических констант  $K_{w,N}$  и  $T_{Act,N}$  с другой стороны, не представляется возможным.

В этой связи решение оптимизационной задачи для модели А проводилось только для констант  $K_{w,O}$  и  $K_{w,N}$  при использовании различных фиксированных значений температур активации.

Определенные в результате проведенных исследований оптимальные значения кинетических констант для моделей I–R и A показали, что оптимальное решение рассмотренной задачи характеризуется отрицательными значениями степени рекомбинации азота.

На рис. 1 приведено сопоставление расчетных и экспериментальных данных, полученных с использованием моделей I–R и A, информация о которых изображена соответственно светлыми и закрашенными значками.

Из анализа представленной информации следует:

• что применение предложенной методики обработки экспериментальных данных рассматриваемого типа позволяет обеспечить достаточно высокое качество описания экспериментальных

| Модель | γo     | $\gamma_{N}$          | $T_{\rm Act,O}$ | $T_{\rm Act,N}$ | $K_{w,O} \times 10^6$ | $K_{w,N} \times 10^6$ | σ, % |
|--------|--------|-----------------------|-----------------|-----------------|-----------------------|-----------------------|------|
| I–R    | 0.0186 | $1.14 \times 10^{-6}$ |                 | 64              |                       |                       |      |
| А      | _      | _                     | 1000            | 1000            | 0.397                 | 0.00939               | 39   |
|        |        |                       | 2000            | 2000            | 2.456                 | 1.1190                | 30   |
|        |        |                       | 3000            | 3000            | 1.977                 | 0.1698                | 14   |
|        |        |                       | 4000            | 4000            | 1.945                 | 1.1900                | 29   |
|        |        |                       | 6000            | 6000            | 3.962                 | 0.1845                | 17   |

Таблица 3. Оптимальные значения кинетических констант

данных в рамках обеих полуэмпирических моделей;

• что как близкое к единице оптимальное значение вероятности  $\gamma_0$ , так и отрицательное значение оптимальной вероятности  $\gamma_N$ , означающее превышение скорости диссоциации  $N_2$  над скоростью рекомбинации N, в модели I–R представляется маловероятным с физической точки зрения.

В этой связи представляет значительный интерес получение решения рассматриваемой задачи, при котором в процессе оптимизации исключаются из рассмотрения отрицательные значения кинетических констант  $\gamma_N$  и  $K_{w,N}$ .

Результаты решения такой задачи приведены в табл. 3, в которой σ – среднеквадратическое рассогласование между расчетными и экспериментальными данными, а также на рис. 2.

Как следует из анализа представленной информации, в рассмотренных условиях проведения оптимизационного расчета использование модели А позволяет сохранить высокое качество описания экспериментальных данных, но уже в



**Рис. 2.** Сопоставление расчетных и экспериментальных данных при  $T_{Act,O} = 3000$ ,  $T_{Act,N} = 3000$  К без учета отрицательных значений кинетических констант  $\gamma_N$  и  $K_{w,N}$ :  $1 - \delta$ ,  $2 - q_w$ ; светлые маркеры – модель I– R, закрашенные – модель А.

ТЕПЛОФИЗИКА ВЫСОКИХ ТЕМПЕРАТУР том 60 № 1 2022

более широком интервале изменения температуры активации. В то же время модель I–R характеризуется существенно более высоким уровнем рассогласования между расчетными и экспериментальными данными, что вызывает серьезные сомнения в целесообразности ее использования при решении задач рассматриваемого класса.

Оптимальному решению задачи, полученному в рамках рассмотренных подходов, соответствуют значения отношений  $\gamma_N/\gamma_O$  и  $K_{w,N}/K_{w,O}$  порядка  $10^{-4}$  и  $10^{-1}$ .

В заключение настоящих исследований необходимо отметить следующее.

Во-первых, частному решению рассматриваемой задачи, полученному в рамках модели I–R с допущением о равенстве  $\gamma_0$  и  $\gamma_N$ , применяемом в работах [5, 13], соответствует величина этой вероятности порядка 0.02, что находится в удовлетворительном согласии с результатами указанных работ. Однако величина среднеквадратического отклонения  $\sigma$  достигает уже 78%.

Во-вторых, учет конечной каталитической активности карбида кремния приводит примерно к двукратному снижению теплового потока, проходящего в стенку, что необходимо учитывать как при расчете прогрева реальной конструкции, так и при решении задачи об окислении карбида кремния, которая рассматривается в работах [7, 14].

## ЗАКЛЮЧЕНИЕ

1. На базе расчетных исследований, выполненных для карбида кремния, установлено, что применение стандартной процедуры, предназначенной для описания кинетики гетерогенных химических реакций, позволяет обеспечить высокое качество согласования расчетных и экспериментальных данных.

2. Показано, что применение повсеместно используемых в литературе газодинамических моделей катализа не позволяет с удовлетворительной точностью воспроизвести экспериментальные данные по этому вопросу без учета зависимости кинетических констант от условий проведения эксперимента, что свидетельствует о физическом несовершенстве этих моделей.

## СПИСОК ЛИТЕРАТУРЫ

- 1. *Goulard R*. On Catalytic Recombination Rates in Hypersonic Stagnation Heat Transfer // Jet Propulsion. 1958. V. 28. № 11. P. 733.
- 2. *Ковалев В.Л., Колесников А.Ф.* Экспериментальное и теоретическое моделирование гетерогенного катализа в аэромермохимии (обзор) // Изв. РАН. МЖГ. 2020. № 5. С. 137.
- 3. *Ковалев В.Л.* Гетерогенные каталитические процессы в аэротермодинамике. М.: Физматлит, 2002. 224 с.
- Никитин П.В., Сотник Е.В. Катализ и излучение в системах тепловой защиты космических аппаратов. М.: Янус-К, 2013. 336 с.
- 5. Власов В.И., Залогин Г.Н., Землянский Б.А., Кнотько В.Б. Экспериментальное определение каталитичности карбида кремния и анализ данных, полученных в ходе полета спускаемого аппарата OREX // Космонавтика и ракетостроение. 2005. № 2. С. 8.
- Rosner D.E., Allendorf H.D. High Temperature Kinetics of the Oxidation and Nitration of Pirolitic Silicon Carbide in Dissociated Gases // J. Phys. Chem. 1970. V. 74. № 9. P. 1829.
- Горский В.В. Теоретические основы расчета абляционной тепловой защиты. М.: Научный мир, 2015. 688 с.

- 8. Yakushin M., Gordeev A., Venneman D., Novelli A. Mass Loss of SiC Sample Surfaces Under Different Flow Conditions // AIAA Paper 98-2605. 1998.
- 9. Лойцянский Л.Г. Механика жидкости и газа. М.: Дрофа, 2003. 840 с.
- 10. Чепмен С., Каулинг Т. Математическая теория неоднородных газов. М.: Изд-во иностр. лит., 1960. 510 с.
- Землянский Б.А., Лунев В.В., Власов В.И. и др. Конвективный теплообмен летательных аппаратов / Под ред. Землянского Б.А. М.: Физматлит, 2014. 377 с.
- 12. Горский В.В., Адаменко Р.А. Моделирование химического состава газа в неравновесном воздушном пограничном слое на стенке, обладающей конечной каталитической активностью // Матем. моделирование и числ. методы. 2018. № 4. С. 93.
- 13. Колесников А.Ф., Гордеев А.Н., Васильевский С.А. Моделирование нагрева в критической точке и определение каталитической активности поверхности для спускаемого аппарата "EXPERT" // Физико-химическая кинетика в газовой динамике. Электр. журнал. 2010. Т. 9. http://chemphys. edu.ru/issues/2010-9/articles/123/
- 14. Горский В.В., Гордеев А.Н., Дудкина Т.И. Расчетнотеоретическая модель аэротермохимической деструкции карбида кремния, омываемого высокотемпературным потоком воздуха // ТВТ. 2012. Т. 50. № 5. С. 692.