———— ИССЛЕДОВАНИЕ ПЛАЗМЫ ———

УДК 533.95

ЭЛЕКТРОННЫЙ ТОК НАСЫЩЕНИЯ НА ЦИЛИНДРИЧЕСКИЙ ЗОНД В ПОТОКЕ РАЗРЕЖЕННОЙ ЗАМАГНИЧЕННОЙ ПЛАЗМЫ

© 2022 г. В. А. Шувалов*, Ю. П. Кучугурный, Г. С. Кочубей, С. В. Носиков

Институт технической механики Национальной академии наук Украины (ИТМ), г. Днепр, Украина *E-mail: vashuvalov@ukr.net

> Поступила в редакцию 22.04.2021 г. После доработки 04.08.2021 г. Принята к публикации 28.09.2021 г.

Разработана процедура диагностики замагниченной разреженной плазмы с использованием электронного тока насыщения на цилиндрический электрический зонд. Получены приближенные формулы и зависимости электронного тока насыщения от угла между осью зонда и вектором индукции внешнего магнитного поля, а также от масштабных параметров, характеризующих собирание зондового тока: радиусов зонда и приэлектродного слоя, ларморовского радиуса электронов плазмы. Показано, что для углов более 65° электронный ток на цилиндрический зонд в замагниченной плазме равен электронному току насыщения в отсутствие внешнего магнитного поля. Представленные формулы и зависимости позволяют определить параметры электронов в потоке разреженной замагниченной плазмы с использованием двух выходных сигналов – зондового тока и потенциала зонда.

DOI: 10.31857/S0040364422010033

введение

Электрические цилиндрические зонды широко используются для диагностики потоков разреженной замагниченной плазмы: на летательных аппаратах в верхней атмосфере и ионосфере Земли; в плазменных аэродинамических трубах; в струях, генерируемых электрореактивными двигателями; при исследовании магнитогидродинамических процессов и течений [1-4]. Интерпретацию зондовых измерений затрудняют достаточно сложная теория, описывающая взаимодействие зондов с плазмой, и процессы, сопровождающие собирание тока в системе "зонд-плазма". На вольт-амперной характеристике (ВАХ) зонда (зависимости собираемого тока от потенциала зонда) условно выделяются три участка: ветвь ионного тока насыщения, переходный участок и область насыщения электронного тока на зонд.

Собирание тока цилиндрическими электрическими зондами и электродами в потоках разреженной замагниченной плазмы широко обсуждалось в литературе, например [5–8] и др. Установлено, что при отрицательных потенциалах зонда φ_p относительно потенциала плазмы φ_{∞} ($\varphi_W = \varphi_p - \varphi_{\infty} < 0$) влиянием внешнего магнитного поля с индукцией $B_{\infty} \le 10^{-2}$ Тл на ионную ветвь ВАХ можно пренебречь [9].

Математически ионный ток на зонд в потоке разреженной замагниченной плазмы представляет многопараметрическую функцию. Интерпретация ионного тока на цилиндрический зонд, определение концентрации заряженных частиц (ионов N_i) по ионной ветви ВАХ сопряжены с необходимостью учета ряда параметров: зависимости ионного тока от ориентации оси симметрии зонда (\mathbf{l}_p) относительно векторов скорости потока плазмы \mathbf{U}_{∞} и индукции внешнего магнитного поля \mathbf{B}_{∞} , числа Маха (температуры, химического состава и молекулярной массы частиц), степени неизотермичности плазмы и ряда характеристических длин, таких как радиус r_p и длина l_p зонда, ларморовский радиус ионов r_i , дебаевский радиус λ_d плазмы, радиус приэлектродного слоя r_s .

Собирание ионного тока сопровождается процессами фотоэмиссии (в ионосфере на освещенном участке орбиты летательного аппарата и вторичной ионно-электронной эмиссии. При плотности ионного тока насыщения на цилиндрический зонд $j_{isat} \sim 10 \times 10^{-9}$ А/см² в ионосфере на высотах 500—800 км плотность тока фотоэмиссии для материалов зонда (W, Mo, Au, Pt) лежит в пределах $(2-8) \times 10^{-9}$ А/см², что составляет 50-70% собираемого ионного тока насыщения [2, 10]. Значения коэффициентов вторичной ионно-электронной эмиссии ионов H_2^+ , He^+ , Ne^+ , Ar^+ , $N_2^+,\,O_2^+,\,Kr^+$ и Xe^+ на поверхностях материалов электрических зондов близки к аппроксимации $\gamma_i \approx 1.6 \times 10^{-2} (h_i - 2 \chi_W)$, где h_i – потенциал ионизации иона, χ_W — работа выхода материала зонда [11]. Токи вторичной ионно-электронной эмиссии для большинства ионов с энергией $E_i \leq 100$ эВ составляют 5—25% от собираемого зондом ионного тока. Учет перечисленных факторов существенно затрудняет интерпретацию ионной ветви ВАХ, снижает точность определения концентрации N_i заряженных частиц в потоке разреженной замагниченной плазмы.

Собирание электронного тока насыщения I_{esat} при положительных потенциалах цилиндрического зонда ($\phi_W > 0$) в потоке разреженной замагниченной плазмы зависит от ориентации оси симметрии зонда l_p относительно вектора индукции внешнего магнитного поля $\mathbf{B}_{\scriptscriptstyle{\infty}}$ и от характеристических длин r_p, l_p, r_s, r_e (r_e – ларморовский радиус электронов). Эмиссионные процессы практически не влияют на собирание электронного тока насыщения: при $\phi_W > 0$ фото-, вторичные и отраженные электроны движутся в тормозящем поле зонда и большая их часть возвращается на поверхность зонда [12, 13]. Плотность электронного тока насыщения *j*_{esat} на цилиндрический зонд в потоке разреженной замагниченной плазмы не зависит от угла между осью симметрии l_n зонда и вектором скорости потока U_∞ и практически на 1.5–2 порядка превышает плотность j_{isat} ионного тока насыщения. При этом количество параметров, характеризующих собирание электронного тока насыщения j_{esat} , значительно меньше и, соответственно, процедура интерпретации электронной ветви ВАХ существенно проще, чем для ионной составляющей *j*_{isat} зондового тока.

Цель работы:

 получить приближенные зависимости электронного тока насыщения на цилиндрический зонд в потоке разреженной замагниченной плазмы с использованием элементов теории стока электронов на зонд [14], данных спутниковых и ракетных измерений ВАХ в ионосферной разреженной плазме, а также результатов физического (стендового) эксперимента;

— разработать процедуру определения параметров электронов в потоке разреженной замагниченной плазмы с использованием электронной ветви ВАХ, выходных сигналов j_{esat} и φ_p цилиндрического зонда.

ПАРАМЕТРЫ ЭЛЕКТРОННОГО ТОКА НАСЫЩЕНИЯ

Несмотря на многочисленные публикации, приближенные и численные решения задачи о собирании ионного и электронного тока цилиндрическим зондом в замагниченной бесстолкновительной плазме, данные о непосредственном сравнении расчетных и измеренных значений ВАХ скудны. Расчеты и интерпретация ВАХ зонда в замагниченной разреженной плазме в конкретных условиях измерений затруднительны.

В [15] для электронного тока I_{eB} на зонд произвольной формы при положительных потенциалах, близких к потенциалу плазмы $\Phi_W = e \phi_W / k T_e \ge 0$ и $T_i / T_e \ll 1$ получена зависимость

$$I_{eB}(\phi_{W} \ge 0) = I_{0e} \left[1 + \frac{A_{p} \overline{V_{e}}}{16\pi \sqrt{\xi} C_{B} D_{e_{\parallel}} (1 + T_{i}/T_{e})} \right]^{-1},$$

где T_e , T_i — температура электронов и ионов; $I_{0e} = A_p e \overline{V_e} N_e / 4$; $A_p = 2\pi r_p l_p$ — площадь поверхности зонда; e, $\overline{V_e} = (8 k T_e / \pi m_e)^{1/2}$, N_e , m_e — заряд, средняя тепловая скорость, концентрация, масса электрона; k — постоянная Больцмана; $D_{e_{\parallel}} = \overline{V_e} l_e / 3$ — коэффициент диффузии вдоль силовых линий магнитного поля; l_e — средняя длина свободного пробега электронов; $\xi = D_{e_{\perp}} / D_{e_{\parallel}}$; $D_{e_{\perp}}$ — коэффициент диффузии поперек силовых линий магнитного поля; C_B — электростатическая емкость зонда в пространстве, ограниченном длиной свободного пробега электрона, где все разме-

ры вдоль силовых линий ${f B}_{\infty}$ увеличены в $\xi^{1/2}$ раз.

В [5, 6, 14] ток электронов на слабо заряженный положительный ($\Phi_W \ge 0$) цилиндрический зонд представлен в виде

$$I_{eB}\left(\Phi_{W}\geq 0\right)=I_{0e}\left(1+\delta_{B}\right)^{-1},$$

где $\delta_B = \zeta r_p / r_e$ — параметр стока электронов на зонд, ζ — числовой множитель.

При высоких положительных потенциалах по результатам измерений электронного тока насыщения $I_{eB}(\Theta_B, \Phi_W)$ на цилиндрический зонд (радиус $r_p = 3.8 \times 10^{-2}$ см, длина $l_p = 20.3$ см) научного модуля NASA 18.70 [8] в ионосфере на высотах h = 250-340 км для $r_p/\lambda_d = 0.11, 0.021, 0.012; r_p/r_e = 0.014; r_e/\Delta r_s = 0.3, 0.45, 2.5$ установлено, что при $\Theta_B \ge 65^{\circ}$

$$\frac{I_{eB}\left(\theta_{B},5\right)}{I_{eB}\left(\pi/2,5\right)} = \frac{I_{eB}\left(\theta_{B},5\right)}{I_{esat}\left(\Phi_{W}\right)} \approx 1,$$

где $\Delta r_s = r_s - r_p$ — толщина приэлектродного слоя, θ_B — угол между \mathbf{l}_p и вектором индукции внешнего магнитного поля \mathbf{B}_{∞} .

Электронный ток насыщения на цилиндрический зонд для $\theta_B \ge 65^\circ$ и $\Phi_W = 5.0$ практически равен электронному току насыщения на зонд в отсутствие внешнего магнитного поля ($B_{\infty} = 0$). Этот результат согласуется с выводом и расчетами ра-

боты [16]: для больших $|\phi_p|$ ток, ограниченный орбитальным движением электронов, является верхним пределом, не зависит от B_{∞} и изменяется как $|\phi_p|^{1/2}$.

В общем виде электронный ток насыщения на цилиндрический зонд, произвольно ориентированный относительно вектора индукции внешнего магнитного поля \mathbf{B}_{∞} , можно представить в виде зависимости

$$I_{eB} = I_{0e} f_{eB} \left(\delta_B, \theta_B, \varphi_W, r_p / r_e, r_e / r_s \right),$$

где функция f_{eB} может быть определена с использованием расчетных и экспериментальных данных собирания электронного тока на цилиндрический зонд в потоках разреженной замагниченной плазмы в ионосфере и в лабораторной плазме. Вид функции f_{eB} и электронный ток насыщения I_{eB} при $\Phi_W \ge 5.0$ в значительной мере определяют параметры r_p , λ_d , r_s и ларморовский радиус $r_e = V_e/\omega_{eB}$, где ω_{eB} – циклотронная частота электрона.

В [8] для оценки отношения $\Delta r_s / \lambda_d$ используется соотношение

$$\Delta r_s / \lambda_d = [2.50 - 1.54 \exp(-0.32 r_p / \lambda_d)] \Phi_W^{1/2} = F \Phi_W^{1/2}$$

Для $r_p/\lambda_d \le 0.17$ с погрешностью менее 4% множитель $F \approx 1.0$ и

$$\Delta r_s / \lambda_d = \Phi_W^{1/2}.$$
 (1)

Из (1) следует

$$\left(\Delta r_s / r_p\right)^2 = 1.05 \times 10^{-5} \frac{l_p}{r_p} \frac{\varphi_W^{3/2}}{I_{\rm esat}}.$$
 (2)

При $r_s/r_p \ge 1$ с погрешностью $\le 7\% (\Delta r_s/r_p)^2 \rightarrow \to (r_s/r_p)^2$. Соотношение (2) подобно закону "3/2" для цилиндрического электрода [17]

$$\beta^{2} (r_{s}/r_{p})^{2} = 1.47 \times 10^{-5} \frac{l_{p}}{r_{p}} \frac{\varphi_{W}^{3/2}}{I_{e}}$$

T.e. $r_s/r_p \approx 0.84\beta (r_s/r_p)$, a $r_s = 1.29 \times 10^{-3} \phi_w^{3/4} \times (A_p/I_{esat})^{1/2}$.

При этом в [18—20] для параметров $\Delta r_s/\lambda_d$ и Φ_W получены соотношения, которые могут быть представлены в виде

$$\Delta r_s / \lambda_d = \gamma \Phi_W^{3/4}. \tag{3}$$

Из (3) следует

$$\left(\Delta r_s/r_p\right)^2 = 6.22\gamma^2 \frac{l_p}{r_p} \frac{\phi_w^2}{V_e I_{esat}}.$$
 (4)

ТЕПЛОФИЗИКА ВЫСОКИХ ТЕМПЕРАТУР том 60

При $\varphi_w \ge 1$ в (2), (4) $\varphi_w \simeq \varphi_p$. В [18, 21] для цилиндрических зондов приведена зависимость $\gamma = 1.278/[\ln(\Delta r_s/r_p)]^{1/2}$, из которой при $10 < \Delta r_s/r_p \le 300$ следует $\gamma_{\text{mid}} \approx 0.60$. По результатам измерений ВАХ цилиндрических зондов в ионосфере и в лабораторной плазме при $0.17 \le T_e \le 6.15$ эВ и $5 \times 10^4 \le N_e \le 4 \times 10^9$ см⁻³ [4, 21–23] имеем $0.49 \le \gamma \le 0.58$, среднее значение $\gamma_{\text{mid}} = 0.53$. В то же время из равенства соотношений (1) и (3) $\gamma \approx \Phi_w^{-1/4}$ и для $5 < \Phi_w \le 25$ получим $\gamma_{\text{mid}} = 0.51$.

ТЕХНИКА ЭКСПЕРИМЕНТА

Экспериментальные исследования проводились на плазмодинамическом стенде Института технической механики НАН Украины (ИТМ). Стенд относится к классу плазменных аэродинамических труб. Безмасляная откачивающая система производительностью ~50 м³/с, наличие криопанелей, охлаждаемых жидким азотом, обеспечивают в вакуумной камере стенда (цилиндр диаметром 1.2 м и длиной 3.5 м) остаточное давление ~1 × $\times 10^{-5}$ H/м², а при натекании газа — рабочее давление 10^{-4} — 10^{-3} H/м². Источником потоков разреженной плазмы служит газоразрядный ускоритель с ионизацией рабочего газа электронным ударом, осцилляцией электронов во внешнем магнитном поле и "саморазгоном" плазмы [3].

Для диагностики потока разреженной плазмы на стенде использовались: микроволновой интерферометр, работающий на частоте 5.45 ГГц, система электрических зондов (цилиндрические, плоский и многоэлектродный зонд-анализатор) и цилиндр Фарадея. Зонды установлены на подвижных платформах (верхней и нижней) с четырьмя степенями свободы каждая. Платформы обеспечивают угловые и поперечные перемещения зондов в горизонтальной и вертикальных плоскостях и вращение вокруг вертикальной оси. Точность отсчета для линейных перемещений ~0.5×10⁻³ м, угловой ~0.5°. Определение параметров плазмы осуществлялось с использованием вольт-амперных характеристик зондов и сигналов микроволнового интерферометра [24].

В экспериментах использовались три цилиндрических зонда, изготовленных из молибдена, со следующими геометрическими характеристиками: $r_{p_1} = 5 \times 10^{-2}$ см, $l_{p_1} = 8 \times 10^{-1}$ см; $r_{p_2} = 4.5 \times 10^{-3}$ см, $l_{p_2} = 9 \times 10^{-1}$ см; $r_{p_3} = 4 \times 10^{-3}$ см, $l_{p_3} = 4 \times 10^{-1}$ см. При измерениях ВАХ для всех зондов реализован режим бесстолкновительного обтекания потоком плазмы.

Сигнал микроволнового интерферометра не зависит от наличия (отсутствия) внешнего магнитного поля. Концентрация электронов N_e пропорцио-

№ 1 2022

нальна частоте зондирующей волны и фазовому сдвигу, обусловленному присутствием плазмы между антеннами [24].

В [8] показано, что концентрация электронов N_e в потоке разреженной замагниченной плазмы может быть определена по электронному I_{esat} току насыщения цилиндрического зонда, ось которого ортогональна векторам скорости потока плазмы U_{∞} и индукции внешнего магнитного поля **B**_{∞}. При $\phi_p \ge \phi_{\infty}$ концентрация может быть определена из соотношения

$$N_e = \chi^{-1} I_{esat} \varphi_p^{-1/2}$$
где $\chi = \frac{A_p}{2} e \left(2e/m_e\right)^{1/2} \approx \text{const.}$

и Участок электронного тока насыщения I_{esat} , соответствующий условию $\varphi_p \gg \varphi_{\infty}$, не сложно определить на электронной ветви ВАХ, построенной в

В [25, 26] экспериментально установлено, что корректное определение температуры электронов T_e в потоке разреженной замагниченной плазмы может быть осуществлено с помощью тонких цилиндрических зондов, собирающая поверхность которых перпендикулярна векторам U_{∞} и B_{∞} .

линейном или полулогарифмическом масштабе.

Для оценки потенциала плазмы ϕ_{∞} и температуры электронов T_e могут быть использованы линейный участок электронной ветви ВАХ ($\phi_{\infty} - \phi_p$) и соотношения [22]

$$\varphi_{W\text{sat}} = \varphi_{p\text{sat}} - \varphi_{\infty} = I_{e\text{sat}}^2 \left(\frac{dI_{e\text{sat}}^2}{d\varphi_p}\right)^{-1},$$
$$T_e = \left(\frac{4e}{\pi k}\right) I_{0e}^2 \left(\frac{dI_{e\text{sat}}^2}{d\varphi_p}\right)^{-1},$$

где I_{0e} –электронный ток, соответствующий началу линейного участка на электронной ветви ВАХ ($\varphi_p \ge \varphi_{\infty}$).

Измерения зондового тока проводились в потоке разреженной плазмы азота для двух режимов работы плазменного ускорителя:

I) при температуре $T_{e_1} = 1.2 \times 10^4$ K, концентрации электронов $N_{e_1} = 4.6 \times 10^6$ см⁻³, скорости ионов $U_{i_1} \approx 8.3$ км/с и двух значениях индукции внешнего магнитного поля $B_{11} = 150$ Гс, $B_{12} = 15$ Гс;

II) при $T_{e_2} = 3.5 \times 10^4$ K, $N_{e_2} = 2.5 \times 10^9$ см⁻³, $U_{i_2} = 10.6$ км/с и $B_{21} = 150$ Гс, $B_{22} = 15$ Гс.

Масштабные коэффициенты, характеризующие собирание электронного тока зондами, приведены в таблице. Там же представлены масштабные коэффициенты для условий измерения электронного тока цилиндрическим зондом в ионосфере на научном модуле NASA 18.70 [8] и на космическом аппарате (KA) "Explorer-31". При оценке масштабных коэффициентов для KA "Explorer-31" использовались данные из [27–30].

СОБИРАНИЕ ЭЛЕКТРОННОГО ТОКА НАСЫЩЕНИЯ

На рис. 1 показана нормированная на величину $I_{0e} = I_{esat} (\Phi_W = 0)$ зависимость электронного тока насыщения на цилиндрический зонд, ось симметрии которого параллельна вектору индукции внешнего магнитного поля **B**_∞, от параметра r_p/r_e :

$$i_{eB}^{-} = I_{eB} \left(\theta_{B} = 0, \Phi_{W} = 0 \right) / I_{0e},$$

где $I_{0e}^- = A_p \overline{V}_e N_e / 4$. Кривая 4 на рис. 1 соответствует аппроксимации авторов $i_{eB}^- (\theta_B = 0, \Phi_W = 0) =$

$$=\left(1+rac{3\pi r_p}{16 r_e}
ight)$$
. В сильном магнитном поле, когда па-

Условия измерений	Режим	Масштабные коэффициенты				
		l_p/r_p	r_p/λ_d	l_p/λ_d	r_p/r_e	r_e/r_s
Стенд ИТМ	Ι	16	0.14	2.3	0.018-2.2	0.15-8
		200	0.013	2.6		
	II	100	0.15	15.4	0.01-1.3	
Ионосфера, модуль NASA 18.70, <i>h</i> = 250-340 км	A	534	0.1	58.8	0.014	2.5
	В		0.021	11.2		0.47
	С		0.012	6.4		0.3
Ионосфера, KA "Explorer-31"	<i>h</i> = 618 км		0.02	32.1	0.0088	0.57
	<i>h</i> = 2200-2400 км	1533	0.0061	9.8	0.0043	0.72

Масштабные коэффициенты при измерениях электронного тока насыщения на цилиндрический зонд в потоке замагниченной плазмы

Рис. 1. Нормированная зависимость электронного тока насыщения на цилиндрический зонд, ось симметрии которого \mathbf{l}_p параллельна вектору \mathbf{B}_{∞} индукции внешнего магнитного поля при $\Phi_W = 0$: 1 - измерение на стенде ИТМ при $1.8 \times 10^{-2} \le r_p/r_e \le 2.2$, 2 - данные [6] (кривая 5 на рис. 4); 3 - данные [6] (рис. 5), плоский зонд; 4 - аппроксимация авторов.

раметр r_p/r_e увеличивается, цилиндрический зонд, ориентированный параллельно **B**_{∞} ($\theta_B = 0$), работает как плоский.

При высоких положительных потенциалах зонда собирающей поверхностью служит поверхность приэлектродного слоя радиусом r_s . На рис. 2 приведены зависимость от r_e/r_s электронного тока насыщения

 $\bar{I}_{eB} = I_{eB}(0, \Phi_W \ge 5) / I_{eB}(\pi/2, \Phi_W \ge 5),$ нормирован-

Рис. 2. Зависимость $\bar{i_{eB}}$ от r_e/r_s : 1 – данные [8], 2 – измерения на КА "Explorer-31" [25], 3 – измерения авторов на стенде, 4 – аппроксимация авторов (5).

ного на его максимальное значение, когда его ось ортогональна вектору индукции внешнего магнитного поля ($\theta_B = \pi/2$), и аппроксимация авторов

$$i_{eB}^{-}(\theta_B = 0, \, \Phi_W \ge 5) = \left(1 + \frac{3\pi r_s}{16 r_e}\right)^{-1}.$$
 (5)

В слабых магнитных полях, когда $r_e/r_s \ge 1$ $(r_e/r_s \ge 50)$, нормированный ток на зонд $\bar{i_{eB}}(0, \Phi_W \ge 2 \le 5) \simeq 1$, т.е. $I_{eB}(\Theta_B = 0, \Phi_W \ge 5) = I_{eB}(\Theta_B = 0, \Phi_W \ge 5) = I_{eB}(\Theta_B = 0, \Phi_W \ge 5) = I_{esat} (\Phi_W \ge 5)$, где $I_{esat} = \frac{A_p}{4} e N_e \overline{V_e} \frac{2}{\sqrt{\pi}} \times (1 + \Phi_W)^{1/2}$. Для $\Phi_W \ge 5$ и $\phi_p \ge \phi_\infty$ электронный ток насыщения на цилиндрический зонд составляет $I_{esat} = \frac{A_p}{\pi} e N_e (2e \phi_p/m_e)^{1/2}$ и концентрация электронов N_e определяется по измеренным значениям I_{esat} и ϕ_p .

На рис. 3 представлены зависимости нормированного i_{eB}^{-} электронного тока насыщения на цилиндрический зонд от угла θ_B между осью \mathbf{l}_p и вектором индукции внешнего магнитного поля \mathbf{B}_{∞} для фиксированных значений безразмерного потенциала $\Phi_W = 5$ (работа [8] и $\Phi_W \approx 12.6$ при измерениях тока $i_{eB}^{-}(\theta_B)$ на стенде). Электронный ток насыщения $I_{eB}(\theta_B, \Phi_W)$ нормирован на его

Рис. 3. Зависимости нормированного электронного тока насыщения i_{eB}^- на цилиндрический зонд от угла θ_B для $\Phi_W = 5$ [8] и $\Phi_W \approx 12.6$ (измерения на стенде): 1-3 – режимы *A*, *B*, *C* измерения тока цилиндрическим зондом научного модуля NASA 18.70 в ионосфере на высотах h = 250-340 км [8]; 4 – измерения авторов на стенде; 5 – расчет по (6) для $\Phi_W \ge 5$.

ТЕПЛОФИЗИКА ВЫСОКИХ ТЕМПЕРАТУР том 60 № 1 2022

максимальное значение $I_{eB}(\pi/2, \Phi_W)$, собираемое зондом, ось которого ортогональна вектору **B**_{∞}.

Значения 5 на рис. 3 для $\Phi_W \ge 5$ соответствуют аппроксимации авторов

$$i_{eB}^{-}(\theta_{B}, \Phi_{W}) = \frac{I_{eB}(\theta_{B}, \Phi_{W})}{I_{eB}(\pi/2, \Phi_{W})} = \frac{I_{eB}(\theta_{B}, \Phi_{W})}{I_{esat}(\Phi_{W})} =$$
(6)
= $\sin\theta_{B} + i_{eB}^{-}(0, \Phi_{W})(1 - \sin\theta_{B})^{0.7}$,

где

$$i_{eB}^{-}(0,\Phi_{W}) = \frac{I_{eB}(0,\Phi_{W})}{I_{eB}(\pi/2,\Phi_{W})} = \left(1 + \frac{3\pi}{16}\frac{r_{s}}{r_{e}}\right)^{-1},$$

$$I_{eB}(\pi/2,\Phi_{W}) = I_{esat}(\Phi_{W}) = I_{0e}\frac{2}{\sqrt{\pi}}(1+\Phi_{W})^{1/2},$$

$$I_{0e} = \frac{A_{p}}{4}eN_{e}\overline{V_{e}}.$$

При $\varphi_p \gg \varphi_{\infty}$, $\theta_B = \pi/2$ имеем $I_{esat} = \frac{A_p}{\pi} e N_e \times (2e \varphi_p/m_e)^{1/2}$, откуда

$$N_e = \pi I_{esat} / A_p e \left(2e \, \varphi_p / m_e \right)^{1/2} = \chi^{-1} I_{esat} \varphi_p^{-1/2}.$$
(7)

Из соотношений (6) и (7) при $\Phi_W \ge 5$ или $\phi_p \gg \phi_\infty$ следует

$$r_{e}^{-1} = \frac{16}{3\pi r_{s}} \left(i_{eB}^{-1} \left(0, \Phi_{W} \ge 5 \right) - 1 \right),$$

а при $\phi_p \approx \phi_{\infty}$

$$r_e^{-1} = \frac{16}{3\pi r_s} \left(i_{eB}^{-1} \left(0, 0 \right) - 1 \right).$$

Для
$$r_e = 3.37 \sqrt{T_e} / B_{\infty}$$
 получим

$$\frac{B_{\infty}}{\sqrt{T_e}} = \frac{5.7}{r_s} (i_{eB}^{-1} (0, \Phi_W \ge 5) - 1).$$
(8)

Здесь T_e в эВ, B_{∞} в Гс, r_e и r_s в см.

На орбите космического аппарата "Explorer-31" при витке 546, высоте h = 618 км, наклонении орбиты $\beta_H \approx 80^\circ$ индукция дипольного магнитного поля Земли $B_{\infty} \approx 0.47$ Гс.

Для значений масштабных коэффициентов, характеризующихсобираниеэлектронноготоканасышения (см. таблицу) при i_{eB}^{-} ($\theta_B = 0, \Phi_W \ge 1$) ≈ 0.49 (рис. 8б и 9б в [27]), из (8) получим $T_e \approx 0.23$ эВ, что в пределах погрешности $\le 5\%$ согласуется со значением $T_e \approx 0.24$ эВ (день, средняя солнечная активность [28, 31]).

В то же время для режимов *A* и *B* собирания электронного тока насыщения цилиндрическим зондом (эксперимент NASA 18.70, таблица) на высотах h = 250-340 км с наклонением орбиты

 $\beta_H \approx 32^\circ$ при $T_e = (8.6-8.9) \times 10^{-2}$ эВ и $i_{eB} \approx 0.81$ (режим *A*), $i_{eB} \approx 0.46$ (режим *B*) (рис. 4) значение индукции внешнего магнитного поля Земли $B_{\infty} \approx 0.36$ Гс по (8) с погрешностью ≈3% согласуется с оценкой $B_{\infty} \approx 0.37$ Гс.

С использованием электронных ветвей ВАХ двух взаимно ортогональных цилиндрических зондов (или двух положений цилиндрического зонда относительно вектора индукции внешнего магнитного поля \mathbf{B}_{∞} при $\theta_B = 0$ и $\theta_B = \pi/2$) соотношение (8) устанавливает связь между индукцией магнитного поля B_{∞} и температурой электронов плазмы T_e . Процедура определения концентрации N_e и температуры T_e электронов в потоке замагниченной плазмы по электронному току насыщения цилиндрического зонда, где $\varphi_p \ge \varphi_{\infty}$, включает использование соотношений (2), (7), (8) и выходных сигналов I_{esat} и φ_p .

В соответствии с данными рис. 3 и выводами работы [8] для углов $\theta_B \ge 65^\circ$ при $\Phi_W \ge 5$ и $r_p < r_e \le r_s$ электронный ток насыщения на цилиндрический зонд в потоке разреженной замагниченной плаз-

мы не зависит от угла θ_B : $i_{eB} \simeq 1.0$ и $I_{eB} \ge I_{esat}$.

Эти выводы подтверждают и результаты измерения электронного тока насыщения на цилиндрический зонд КА "Explorer-31" [27]. Измеренные в [27] (рис. 86, 96) на высоте h = 618 км значе-

ния $i_{eB}(\theta_B, \Phi_W)$ при $\Phi_W =$ const показаны на рис. 4. Значения масштабных коэффициентов для режи-

Рис. 4. Зависимость нормированного электронного тока i_{eB}^- на цилиндрический зонд от θ_B при Φ_W = const: *1–3* – режимы *A*, *B*, *C* измерения электронного тока в [8]; *4* – расчет авторов по (8); *5*, *6* – значения тока, измеренные на высоте *h* = 618 км [25] (рис. 86, 96).

Рис. 5. Зависимость нормированного электронного тока i_{eB}^- на цилиндрический зонд от θ_B при Φ_W = const: *1* – измерения на высоте *h* = 2200 км [25] (рис. 11); *2*, *3* – *h* = 2420 км [25] (рис. 8a, 9a); *4* – расчет авторов по (8).

мов измерения приведены в таблице. Расчетные значения $i_{eB}(\theta_B, \Phi_W)$ при $\Phi_W =$ const по аппроксимации (8) коррелируют с результатами измерений электронного тока насыщения на цилиндрический зонд KA "Explorer-31" на высотах h = 2200-2420 км

в [27]. Зависимости $i_{eB}(\theta_B, \Phi_W)$ показаны на рис. 5.

ЗАКЛЮЧЕНИЕ

По результатам стендовых (лабораторных), спутниковых и ракетных экспериментов выявлено влияние взаимной ориентации оси цилиндрического зонда и вектора индукции внешнего магнитного поля на собирание электронного тока насыщения в потоке разреженной замагниченной плазмы. Установлено, что для углов $\theta_B \ge 65^\circ$ между осью цилиндрического зонда І, и вектором индукции внешнего магнитного поля В., электронный ток на зонд равен току насыщения в незамагниченной плазме: влияние внешнего магнитного поля на собирание зондового тока отсутствует. Получены приближенные формулы, зависимости электронного тока насыщения от отношения масштабных коэффициентов, таких как радиус зонда, ларморовский радиус электронов и радиус приэлектродного слоя.

Показано, что полученные формулы и зависимости позволяют определять кинетические параметры электронов в потоке замагниченной разреженной плазмы с использованием электронного тока насыщения, двух выходных сигналов – собираемого зондового тока I_{esat} и потенциала φ_p поверхности цилиндрического зонда.

СПИСОК ЛИТЕРАТУРЫ

- 1. Котельников В.А., Котельников М.В., Кассин О.В. Зондовые измерения на борту гиперзвукового летательного аппарата // ТВТ. 2020. Т. 58. № 2. С. 175.
- 2. Whipple E.S. Potential of Surfaces in Space // Rep. Prog. Phys. 1981. V. 4. № 11. P. 1197.
- 3. Шувалов В.А., Токмак Н.А., Кучугурный Ю.П., Резниченко Н.П. Торможение намагниченного тела при взаимодействии его магнитного поля с потоком разреженной плазмы // ТВТ. 2020. Т. 58. № 2. С. 163.
- Губский В.Ф. Влияние магнитного поля на измерения концентрации и температуры электронов цилиндрическими зондами в ионосфере Земли // Солнечно-земная физика. 2008. Т. 2. Вып. 12. С. 261.
- 5. *Каган Ю.М., Перель В.И.* О диагностике плазмы в магнитном поле с помощью тонкого цилиндрического зонда // ЖТФ. 1968. Т. 38. № 10. С. 1663.
- Бакшт Ф.Ю., Дюжев Г.А., Циркель Б.И., Школьник С.М., Юрьев В.Г., Антонов С.В., Вайнберг Л.И., Казанец Г.И. Зондовая диагностика низкотемпературной плазмы в магнитном поле. Ч. III // ЖТФ. 1977. Т. 47. № 11. С. 2269.
- Laframboise J.G., Sonmor L.J. Current Collection by Probes and Electrodes in Space Magnetoplasmas: A Review // J. Geophys. Res.: Space Phys. 1993. V. 98. № A1. P. 337.
- Szuszczewicz E.P., Takas P.Z. Magnetosheath Effects on Cylindrical Langmuir Probes // Phys. Fluids. 1979. V. 22. № 12. P. 2424.
- 9. Алексеев Б.В., Котельников В.А. Зондовый метод диагностики плазмы. М.: Электроатомиздат, 1988. 240 с.
- Смирнова В.В. К теории горячего и фотозонда // Геомагнетизм и аэрономия. 1966. Т. 6. № 2. С. 275.
- 11. Шувалов В.А. Об аккомодации энергии газовых ионов на поверхности поликристаллов // ПМТФ. 1983. № 6. С. 17.
- 12. Грановский В.А. Электрический ток в газах. М.–Л.: Гостехиздат, 1952. Т. 1. 432 с.
- Шульман А.Р., Фридрихов Б.С. Вторично-эмиссионные методы исследования твердого тела. М.: Наука, 1977. 552 с.
- 14. *Мальков М.А.* Сток электронов на зонд в плазме средних давлений и в плазме в магнитном поле // ТВТ. 1991. Т. 29. № 3. С. 429.
- Bohm D., Burhop E.H.S., Massey H.S.W. The Use of Probes for Plasma Exploration in Strong Magnetic Field. In: The Characteristics of Electrical Discharge in Magnetic Field. Ch. 2 / Ed. by Cuthric A., Macerling R.K. N.Y.: McGrow Hill, 1949. P. 13.
- 16. *Rubinstein J., Laframboise J.G.* Upper-bound Current to a Cylindrical Probe in a Collisionless Magnetoplasma // Phys. Fluids. 1978. V. 21. № 9. P. 1655.
- Langmuir J., Blodgett K. Current Collection by Space Charge Coaxial Cylinders // Phys. Rev. 1923. V. 22. № 4. P. 374.
- Bettinger R., Walker E.H. Relationship for Plasma Sheaths about Langmuir Probe // Phys. Fluids. 1965. V. 8. № 4. P. 748.

- Bettinger R.T., Chen A.A. An End Effect Associated with Cylindrical Langmuir Probes Moving at Satellite Velocities // J. Geophys. Res. 1968. V. 73. № 7. P. 2513.
- Hester S.D., Sonin A.A. Ion Temperature Sensitive End Effect in Cylindrical Langmuir Probe Response at Ionosphere Satellite Conditions // Phys. Fluids. 1970. V. 11. № 5. P. 1265.
- Bettinger R.T. An in situ System for Measurement of Ionospheric Parameters. In: Interaction of Space Vehicles with an Ionized Atmosphere / Ed. by Singer S.F. London: Pergamon Press, 1965. P. 163.
- Шувалов В.А., Письменный Н.И., Лазученков Д.Н., Кочубей Г.С. Зондовая диагностика потоков лабораторной и ионосферной разреженной плазмы // ПТЭ. 2013. № 4. С. 98.
- 23. *Хазен А.М., Шувалов В.А.* Применение термоанемометра – зонда Ленгмюра для диагностики разреженной плазмы // ТВТ. 1969. Т. 7. № 5. С. 866.
- 24. Шувалов В.А., Чурилов А.Е., Турчин В.В. О диагностике струи разреженной плазмы с применением зондового и СВЧ-методов // ТВТ. 1978. Т. 16. № 1. С. 9.
- Носачев Л.В., Скворцов В.В. Исследование параметров замагниченного потока синтезированной плазмы // ЖТФ. 1978. Т. 48. № 1. С. 49.

- 26. Носачев Л.В., Скворцов В.В. Характеристики зондов замагниченного потока синтезированной плазмы // ЖТФ. 1978. Т. 48. № 11. С. 2319.
- 27. *Miller N.J.* Some Implications of Satellite Spin Effects in Cylindrical Probe Measurements // J. Geophys. Res. 1972. V. 77. № 16. P. 2851.
- Wrenn G.L., Smith P.A. Results Derived from Simulations Measurements Using the Langmur Plate and Spherical Ion Probe on Explorer-XXXI and the Ionosonde on Alouette // Proc. IEEE. Spec. Iss. 1969. V. 57. № 6. P. 1085.
- Findlay J.S., Brace L.A. The Cylindrical Electrostatic Probes Employed on Alouette-II and Explorer-XXXI Satellites // Proc. IEEE. Spec. Iss. 1969. V. 57. № 6. P. 1054.
- Donley J.L., Brace L.N., Findlay J.A., Hoffman J.H., Wrenn G.L. Comparison of Results on Explorer-XXXI Direct Measurement Probes // Proc. IEEE. Spec. Iss. 1969. V. 57. № 6. P. 1078.
- *Гуревич А.В., Шварцбург А.Б.* Нелинейная теория распространения радиоволн в ионосфере. М.: Наука, 1973. 272 с.