УДК 535.37:546.26

ИССЛЕДОВАНИЕ ГЕТЕРОФАЗНОЙ СРЕДЫ НА ОСНОВЕ РЕЛАКСИРУЮЩЕЙ ПЛАЗМЫ ДИАФРАГМЕННОГО РАЗРЯДА В ВАКУУМЕ

© 2022 г. Е.В.Калашников*

Акционерное общество "Научно-исследовательский институт оптико-электронного приборостроения" (АО "НИИ ОЭП"), г. Сосновый Бор, Россия

**E-mail: evk1955@yandex.ru* Поступила в редакцию 05.10.2020 г. После доработки 21.02.2021 г. Принята к публикации 19.05.2021 г.

Исследовано неравновесное свечение молекулы C₂ в струе продуктов высокотемпературной эрозии диафрагменного разряда в вакууме ($P_{\rm Hav} = 10$ Па) на ранней стадии послесвечения (0.8–1.2 мс) по эмиссионным спектрам системы полос Свана C₂ ($d^3\Pi_g - a^3\Pi_u$) сравнением интенсивностей излучения в полосах, образующих секвенции с $\Delta v = +1$ и 0. Получены экспериментальные результаты на стадии окончания конденсации продуктов разряда, и рассмотрены процессы получения разнообразных высокодисперсных структур с оценкой их параметров.

DOI: 10.31857/S0040364422010069

введение

По мере остывания струи релаксирующей плазмы диафрагменного разряда в вакууме с большим содержанием углерода [1, 2] излучателями в видимой области спектра являются ионы и атомы (CI, CaII, MgI), радикалы (CN, CO), а также молекулы (C_2, C_3) и т.д. В то же время описание оптических свойств и кинетики процессов и плазмохимических реакций с участием молекул в возбужденных состояниях типа C_2, C_3, C_4 представляет большой интерес для изучения свойств зарождающихся углеродных частиц, условий и механизма образования сажи, кластерных образований и возможных фрактальных агрегатов при эволюции эрозионной плазмы диафрагменного разряда.

Данная работа посвящена экспериментальному исследованию процессов в распадающейся плазме струи диафрагменного разряда в опорном режиме электропитания с использованием углеродсодержащего плазмообразующего материала [3]:

- кинетики процессов и плазмохимических реакций с участием молекулы C_2 в электронном состоянии $d^3 \Pi_g$ в остывающих продуктах высокотемпературной эрозии сложного плазмообразующего материала известного стехиометрического состава ($C_{70}O_{12}H_{12}N_{10}Cl_3$)_n при начальном давлении остаточной атмосферы в разрядной камере $P_{\text{нач}} = 10$ Па;

 процессов конденсации в плазме послесвечения с образованием кластеров и оценкой их параметров.

ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ

Параметры и состав среды на ранней стадии послесвечения струйного диафрагменного разряда (СДР). Для определения параметров и состава гетерофазной среды на основе релаксирующей плазмы струйного диафрагменного разряда в вакууме фотографировались интегральные спектры и временные развертки спектров излучения струи разряда на дифракционном спектрографе ДФС-452 в области длин волн $\Delta\lambda = 220-580$ нм с обратной линейной дисперсией 1.6 нм/мм. Данные, полученные после первичной обработки спектров, использовались для определения температуры Т_е энергетического распределения электронов на ранней стадии послесвечения струи (0.5–1.5 мс после начала разряда) по отношению интенсивностей спектральных линий ионов CaII ($\lambda = 396.8$ нм и $\lambda = 317.9$ нм), а также вращательной температуры $T_{\rm BD}$ радикала CN по крутизне спада интенсивности в оттенении полосы CN 388.3 нм на промежутке времени t = 0.5 - 1.2 мс (см. таблицу). Также проводилась фотоэлектрическая регистрация излучения на оси катодной части разрядного промежутка с помощью двойного монохроматора и фотоумножителя с записью на запоминающем осциллографе в полосах фиолетовой системы циана СМ при спектральной ширине щели $\Delta \lambda = 0.2$ нм. Для определения колебательной температуры Ткол использовалось свечение полос фиолетовой системы циана CN (0-0) при *t* = 0.8-1.2 мс. Измеренные значения $T_{\rm кол}$ по отношению интегральных и

Температуры, определенные по соотношению интенсивностей линий иона CaII и полос фиолетовой системы молекулы циана CN при t = 0.8-1.2 мс (диафрагма из органопластика)

<i>t</i> , мс	0.8	1.0	1.2
<i>T_e</i> , K	5600 ± 800	4800 ± 700	4000 ± 850
$T_{\rm кол}, {\rm K}$	6000 ± 450	4600 ± 450	3800 ± 350
<i>Т</i> _{вр} , К	5200 ± 750	4300 ± 750	3700 ± 750
T_{Γ} , K	5600	4570	3820

максимальных интенсивностей спектральных полос 388.3 нм (0-0) и 387.2 нм (1-1) с использованием графиков из обзора [4] представлены также в таблице.

Сравнение результатов измерений температуры электронов T_e, колебательной T_{кол} и вращательной $T_{\scriptscriptstyle \rm BD}$ температур показало близость их значений в пределах погрешности измерений для этих экспериментов. Совпадение значений вращательной и колебательной температур, определенных по спектрам молекулы циана, согласуется с результатом, полученным в [5]. В работе [5] установлено, что в продольном разряде в сверхзвуковом потоке воздуха при инжекции пропана. этилена и кислорода в зону разряда вращательная температура, определенная по полосам испускания фиолетовой системы молекулы циана CN $(B^{2}\Sigma^{+} \rightarrow X^{2}\Sigma^{+})$, оказывается близкой к колебательной температуре, определяющей распределение заселенностей по нижним колебательным уровням электронного состояния $B^{2}\Sigma^{+}$. Температуры лежат в диапазоне 7000-9000 К и заметно выше, чем характерное значение поступательной температуры (2000-4000 К), определенное по полосам системы Свана С₂ ($d^3\Pi_g \rightarrow a^3\Pi_u$) молекулы углерода, в исследуемых условиях [5]. Кроме того, результаты определения вращательной ($T_{\rm вр} =$ = 1700-2200 K) и колебательной ($T_{\text{кол}} = 4600$ -7300 К) температур по полосам системы Свана молекулы С2 в СВЧ-разряде в жидких углеводородах [5-9] свидетельствуют о том, что поступательная температура в струе релаксирующей плазмы меньше, чем $T_e, T_{\text{кол}}$ и $T_{\text{вр}}$ (таблица).

Таким образом, значения T_e , $T_{\text{кол}}$ и $T_{\text{вр}}$, приведенные в таблице, можно рассматривать как верхний предел поступательной температуры в струе релаксирующей плазмы для промежутка времени t = 0.5 - 1.2 мс.

Это дает возможность по газовой температуре $T_{r}(t)$ и по измеренному давлению P(t) в струе с помощью пьезодатчика [10] рассчитать концентрации компонент на оси струи распадающейся плазмы в приближении термодинамического равновесия в многокомпонентной газовой фазе по известному начальному составу плазмообразующей диафрагмы [11], в том числе значения концентраций углеродсодержащих соединений C_2 , CN, C_3 , C_4 , C_5 . На рис. 1 представлены расчетные значения концентрации некоторых компонент $[n_i]$ газовой фазы в струе продуктов эрозии для диафрагменного разряда в вакууме по измеренным значениям давления P(t) и температуры $T_r(t)$ для материала

Рис. 1. Расчетные значения концентрации некоторых компонент $[n_i]$ газовой фазы в струе продуктов эрозии для диафрагменного разряда в вакууме: (a) – концентрация атомов (1 - 0, 2 - H, 3 - N, 4 - Cl); (б) – концентрация молекул ($1 - CN, 2 - CO, 3 - N_2, 4 - NO, 5 - CO_2$); (в) – концентрация атомов и молекул углерода ($1 - C, 2 - C_2, 3 - C_3, 4 - C_4, 5 - C_5$).

Рис. 2. Временная зависимость интенсивности излучения осевой зоны катодной струи в полосах системы Свана молекулы С₂ при диафрагменном разряде в вакууме ($P_{\text{нач}} = 10 \text{ Па}$): (a) 1 - для (0-0), 2 - (1-1), 3 - (2-2); (б) 1 - (1-0), 2 - (2-1), 3 - (3-2), 4 - (4-3), 5 - (5-4), 6 - (6-5).

плазмообразующей диафрагмы — органопластика $(C_{70}O_{12}H_{12}N_{10}Cl_3)_n$.

Для экспериментального исследования заселенности уровней молекулы $C_2 (d^3 \Pi_g)$ регистрировалось излучение на оси катодной части разрядного промежутка с помощью монохроматора и фотоумножителя с записью на запоминающем осциллографе в полосах молекулы C_2 системы Свана $d^3 \Pi_g \rightarrow$ $\rightarrow a^3 \Pi_u$ при спектральной ширине щели $\Delta \lambda = 0.2$ нм и фотографировались интегральные спектры и временные развертки спектров излучения струи разряда на дифракционном спектрографе ДФС-452 в области длин волн $\Delta \lambda = 220-580$ нм с обратной линейной дисперсией 1.6 нм/мм. На рис. 2 представлены результаты измерения интенсивности в относительных единицах для послетокового отрезка времени от 0.7 до 1.5 мс, где стадия протекания тока разряда составляла временной промежуток t = 0-0.5 мс с максимумом тока $I_{\text{max}} = 50$ кА при $t_{\text{max}} = 90$ мкс.

Из системы полос молекулы С2 для определения заселения состояния $d^3\Pi_g$ использовались полосы, образующие секвенции с $\Delta v = 0$ и +1: кант полосы (0-0) с λ = 516.5 нм, (1-1) с λ = 512.9 нм, (2-2) с $\lambda = 509.7$ нм, а также (1-0) $\lambda = 473.7$ нм, (2-1) $\lambda = 471.5 \text{ HM}, (3-2) \lambda = 469.7 \text{ HM}, (4-3) \lambda = 468.4 \text{ HM}$ [12]. Относительная заселенность колебательных уровней определялась, как и в [13]. В ходе обработки результатов регистрации спектров излучения системы Свана обнаружено наличие неравновесного заселения колебательных уровней электронного состояния $d^3 \Pi_{g}$ для секвенции $\Delta v = 0$ для всех уровней (v' = 0, 1, 2) и, начиная с третьего, для секвенции $\Delta v = +1$ (v' = 3, 4, 5, 6). Для уровней v' = 1, 2колебательная температура, определяемая по наклону отрезка прямой на графике $\ln(N_v/N_1) =$ $= \text{const} - E_v/(kT)$ при t = 0.8 мс, составила $T_{\text{кол}} =$ $= 3800 \pm 350$ К (рис. 3). Это значительно ниже равновесной газовой температуры $T_r = 5600 \text{ K},$ полученной на основе спектральных оценок по свечению молекулы CN (см. таблицу).

Для дальнейшего анализа можно предположить, что в послесвечении кинетика процессов и плазмохимических реакций с участием молекулы углерода C_2^* в электронно-возбужденном состоянии $d^3 \Pi_g$ описывается следующей схемой:

$$C_2^* + A \rightleftharpoons C_2 + A, \tag{1}$$

Рис. 3. Относительная заселенность колебательных уровней состояния $d^3 \Pi_g$ молекулы C₂ в послесвечении для момента времени t = 0.8 мс после начала разряда: $1 - \Delta v = 0, 2 - \Delta v = +1$.

2022

$$2C_2 + e \to C_2^- + C_2^*,$$
 (2)

$$C_2^* + X \rightleftharpoons Y + Z, \tag{3}$$

$$C_2^* + A \rightleftharpoons C + C + A, \tag{4}$$

$$C_2^* \to C_2 + hv, \tag{5}$$

где А, Х, Ү, Z – молекулы и атомы.

В послесвечении концентрация и температура электронов уменьшаются (см. таблицу). Поэтому реакция (2), предложенная в [14], и столкновения первого и второго рода электронов с возбужденными молекулами C_2^* ($d^3\Pi_g$) не играют заметной роли в формировании распределения по колебательным уровням молекулы углерода в возбужденном состоянии $d^3\Pi_g$ в послесвечении. Реакция (2) и столкновения первого рода электронов с молекулами C_2 определяют механизм заселения колебательных уровней только на стадии протекания тока (для t < 0.5 мс).

Из обменных реакций (3), обусловливающих заселение колебательных уровней $v' \ge 6$ состояния $d^3\Pi_g$ молекулы углерода, наиболее вероятной является реакция [15, 16]

$$C_2O + C \to C_2 \ (d^3\Pi_g), \ \nu' = 6 + CO.$$
 (6)

Окись дикарбона C_2O является неустойчивой молекулой. Ее концентрация слишком мала в исследуемом диапазоне температуры и давления газа (таблица). Образование молекулы C_2^* ($d^3\Pi_g$) в послесвечении в результате реакции (6) является маловероятным.

Таким образом, отклонение функции распределения по колебательным уровням v' молекулы углерода в состоянии $d^3\Pi_g$ от больцмановского распределения может быть обусловлено дезактивацией (1), реакциями диссоциации молекулы C_2^* $(d^3\Pi_g)$ и рекомбинации атомов углерода С (4) и процессом (5) радиационного распада. Для выяснения роли этих процессов и реакций в механизме формирования распределения по колебательным уровням молекулы углерода в возбужденном состоянии $d^3\Pi_g$ выполнена оценка их констант скоростей.

Реакции диссоциации и рекомбинации (4) могут играть ведущую роль в балансе концентрации

 C_2^* . В этих реакциях третьей частицей (A) могут быть атомы C, O, N, H и молекулы CO и N₂, которые образуются в большом количестве в струе релаксирующей плазмы (рис. 1). Константа скорости рекомбинации атомов C с образованием молекулы углерода в основном электронном состоянии составляет $1.8 \times 10^{-21} T^{-1.6}$ см⁶ моль⁻² c⁻¹ [17]. Константа скорости диссоциации молекулы C_2^* равна 1.2×10^{-15} см³ с⁻¹ при температуре 6000 К.

При одних и тех же условиях константа k_1 ско-

рости столкновительной дезактивации $C_2^*(d^3\Pi_g)$ в процессе (1) приближенно равна соответствующей константе скорости для молекулы циана в возбужденном состоянии $B^2\Sigma^+$. Ее величина лежит в диапазоне $10^{-11}-10^{-10}$ см³ с⁻¹ в молекулярных N₂ и CO газах.

Расчеты и сопоставление скоростей процесса (1) и реакций (4) с учетом выше найденных значений их констант скоростей показывает, что формирование функции распределения по колебательным уровням v' молекулы углерода в состоянии $d^3\Pi_g$ на ранней стадии релаксации плазменной струи обусловлено процессами столкновительной дезактивации (1) и радиационного распада (5).

Степень важности процессов столкновительной дезактивации (1) и радиационного распада (5) в балансе концентрации молекулы C_2^* определяется посредством сравнения величин $1/\tau$ и $k_1[n_A]$. Здесь τ – время жизни возбужденной молекулы углерода $C_2^*(d^3\Pi_{e})$, равное 170 нс [18], а [n_A] – концентрация бесструктурной частицы А (рис. 1) для реакции (1). Константа скорости тушения люминесценции возбужденной молекулы $\mathrm{C}_2^*(d^3\Pi_g)$ составляет 2 imes× 10^{-10} см³ с⁻¹. Оценка $k_1[n_A]$, выполненная с учетом рассчитанных концентраций атомов Mg, Ca, Ar, Ne, молекул N₂, CO и атомов C, O, N, Cl в струе релаксирующей плазмы показывает, что столкновительная дезактивация (1) дает вклад, соизмеримый с вкладом радиационного распада (4), в баланс концентрации $C_2^*(d^3\Pi_a)$.

Таким образом, на ранней стадии остывания струи плазмы (t = 0.8-1.2 мс) в релаксации распределения по колебательным уровням v' молекулы углерода в состоянии $d^3\Pi_g$ доминирует процесс (1) с участием атомов С, N, H и молекул N₂ и СО. Он обусловливает отклонение распределения по колебательным уровням v' молекулы углерода в состоянии $d^3\Pi_g$ от больцмановского (рис. 3).

Экспериментальные результаты и оценка параметров продуктов релаксации эрозионной плазмы на стадии их конденсации. Экспериментальные результаты на стадии окончания процесса конденсации продуктов разряда и получения фрактальных агрегатов и разнообразных структур для выбранного исходного плазмообразующего материала (органопластика), согласно способа и устройства по [3], показаны на рис. 4 и 5.

Для визуализации структуры агрегатов, получаемых в результате релаксации эрозионной плазмы диафрагменного разряда, использовался метод электронной микроскопии в НИИ физики СПбГУ (a)

Рис. 4. Микрофотографии кластеров (увеличение – ×40000), образованных при коагуляции продуктов эрозии разряда с электропитанием от конденсаторной батареи с параметрами контура $U_0 = 5 \text{ кB}$, $C_0 = 2.8 \text{ мФ}$, $L_k = 5.6 \text{ мк}\Gamma$, $R_k = 1.9 \text{ мОм}$.

[19]. Для этого проводился отбор проб продуктов разряда на подложки — формваровые пленки, прозрачные для электронного пучка. Пленка наносилась на металлическую сетку с размером ячейки 30 мкм, которая обеспечивала механическую

ТЕПЛОФИЗИКА ВЫСОКИХ ТЕМПЕРАТУР том 60 № 1

прочность подложки и возможность перемещения образцов от места отбора к месту анализа.

Осаждение частиц на подложку проводилось в вакуумных условиях, в которых происходил эрозионный разряд, за счет гравитационной седиментации. Подложка помещалась непосредственно в разрядной камере объемом 50 л.

Электронные микроснимки на рис. 4 показывают, что структура кластеров достаточно разнообразна. Встречаются как типичные развитые фракталоподобные агрегаты (рис. 4а), так и линейные вытянутые структуры (рис. 4б). В ряде случаев наблюдаются компактные глобулярные скопления первичных частиц (рис. 46, 4в).

На рис. 5 приведены распределения кластеров по размерам для продуктов разряда в трех режимах электропитания: $I(t_{\text{max}} = 90 \text{ мкc}) = 75, 50 \text{ и } 30 \text{ кA}.$

Рассмотрим основные механизмы образования и роста углеродсодержащих кластеров на основе подходов и моделей, изложенных в работах [20, 21] для кластеров металлов. В рамках модели жидкой капли для роста углеродсодержащих кластеров можно выделить следующие стадии превращения атомного пара углерода, находящегося в буферном газе из продуктов распадающейся плазмы, в газ кластеров. На первой стадии процесса нуклеации в результате трехчастичного процесса происходит образование двухатомных молекул углерода, которые становятся центрами конденсации с последующим ростом кластеров. Эти кластеры оказываются большими. Вторая стадия нуклеации – процесс коагуляции. Рост кластеров углерода происходит через атомный пар, который находится в равновесии с кластерами. Взаимодействие пара и кластеров ведет к испарению малых кластеров и росту больших. В результате число кластеров уменьшается, а их средний размер увеличивается.

Рис. 5. Распределение кластеров по размерам для продуктов разряда в режимах электропитания: $I(t_{\text{max}} = 90 \text{ мкc}) = 75 \text{ кA} (1), 50 \text{ кA} (2), 30 \text{ кA} (3).$

2022

А. В режиме образования и роста углеродных кластеров, когда этот процесс начинается с атомного пара, на первой стадии превращения пара в газ кластеров важную роль играет трехчастичный процесс, который протекает по схеме

$$2C + A \rightarrow C_2 + A$$

где С – атом углерода, А – атом (О, Н, N) или молекула (СО, СN, NO, N₂) буферного газа, константа скорости трехчастичного процесса $K_A \approx 1 \times 10^{-33}$ см⁶ с⁻¹.

Процесс нуклеации начинается с образования двухатомных молекул C₂, которые являются ядрами конденсации для кластеров (см. рис. 1).

При использовании модели жидкой капли [20], когда каждая молекула C_2 является центром конденсации, на котором растет кластер в зоне с падением температуры до T = 2000 K, константа скорости прилипания атомов к поверхности кластера может быть представлена как

$$k_n = n_{\rm C} k_0 n^{3/2},$$

где $n_{\rm C}$ – плотность атомов углерода, $k_0 = (8T/\pi m)^{1/2} \pi r_w^2 \approx 4 \times 10^{-11}$ см³ с⁻¹ – константа скорости прилипания атомов к кластеру при T = 2000 K, r_w – радиус Вигнера–Зейтса, n – количество атомов в кластере через время $t_{\rm Hykr}$.

Чтобы определить характерное время нуклеации $t_{\rm нукл}$ атомного пара углерода в буферном газе с концентрацией частиц $[n_i] = n_A \approx 10^{17} - 10^{18}$ см⁻³, когда все свободные атомы углерода будут связаны, в рамках модели жидкой капли [21] необходимо учесть состав буферного газа и константы скорости трехчастичного процесса для его составляющих:

$$t_{\rm HYK\pi} = 1/k_0 n_{\rm C}, \ (k_0/K_{\rm A}n_{\rm A})^{1/4} \approx 1-10 \ {\rm MKC}$$

Типичное количество атомов кластера к этому времени

$$n \approx (k_0 / K_A n_A)^{3/4} \approx 3 \times 10^3 - 2 \times 10^4.$$

Таким образом, при рассматриваемых условиях в разрядной камере образуются большие кластеры.

Б. Если образование кластеров реализуется в области, где температура ниже 2000 К, например при появлении атомов углерода в оболочке струи (на ее периферии) на послетоковой стадии разряда, то процесс роста кластеров определяется характерным временем образования свободных атомов $t_{\rm pacn}$ в результате распада сложных молекул в продуктах испарения органопластика в отверстии плазмообразующей диафрагмы. Оно может быть велико по сравнению со временем их прилипания к кластерам ($t_{\rm pacn} > t_{\rm нукл}$).

После первой стадии процесса конденсации образуются двухатомные молекулы при трехчастичных столкновениях атомов углерода и атомов буферного газа, которые становятся центрами конденсации для роста кластеров. Если не учитывать электризацию кластеров и прекращение их контактов как заряженных тел на этом этапе, в конце процесса конденсации характерное количество атомов кластера оценивается по приведенной в [20] формуле

$$n \approx \left(k_0 n_{\rm C} t_{\rm pacn}\right)^3$$

где $t_{\text{расп}} \approx 10^{-5} - 10^{-4} \text{ с}$ – характерное время распада молекул продуктов испарения органопластика, содержащих атомы углерода [2]. Оно может достигать значения $n \approx 8 \times 10^5 \text{ см}^{-3}$.

Таким образом, рост кластеров определяется процессами

$$C_n + C \rightarrow C_{n+1},$$
$$C_n + C \leftarrow C_{n+1}$$

при условии $n_{\rm C} \gg n^*$, где $n_{\rm C}$ – плотность свободных атомов углерода, n^* – полная плотность связанных атомов в кластере, когда процесс конденсации за-канчивается.

В другом режиме, когда выполняется условие $n_C \ll n^*$, рост кластеров происходит по схеме

$$C_{n-i} + C_i \rightarrow C_n$$

В первом случае рост кластеров не зависит от их заряда, во втором — рост прекращается, когда кластеры приобретают заряд одного знака.

Впоследствии коагуляция жидких кластеров при их контакте может быть описана как превращение двух жидких капель в одну большую каплю. В результате остывания потока распадающейся плазмы или ухода частиц из зоны высокой температуры получается система твердых частиц, которые сохраняют свою форму. В твердых кластерах в ходе контакта между частицами образуется химическая связь. При дальнейшем росте твердых кластеров могут образовываться фрактальные агрегаты. Такой характер роста частиц описан в работе [21] как механизм кластер-кластерной агрегации. В результате этот способ объединения твердых частиц дает фрактальные агрегаты, которые представляют собой рыхлую структуру с падающей плотностью при увеличении ее размеров. Фрактальные свойства таких структур из твердых частиц описываются обычно [22] фрактальной размерностью системы D. При этом через фрактальную размерность D, являющуюся параметром плотности такой системы, можно оценить число частиц в составе фрактального агрегата как $n = (R/r)^D$, где R – средний радиус фрактального агрегата, *r* – размер частицы.

Полученные экспериментальные результаты при диафрагменном разряде в вакууме показали, что, как правило, образуются мелкие агрегаты с достаточно сильно выраженной цепочечной структурой. При этом чем больше амплитуда тока разряда, тем больше концентрация первичных частиц, формирующихся на начальной стадии релаксации эрозионной плазмы, и тем больше дисперсных агрегатов на конечной стадии процесса. На рис. 5 показано распределение кластеров по размерам для продуктов разряда в трех разных режимах электропитания, где видно, что распределение размеров характеризуется наличием ярко выраженной мелкодисперсной моды в диапазоне 0.6–2 мкм для всех режимов. При этом с уменьшением амплитуды тока разряда происходит перераспределение частиц — доля более крупных агрегатов перемещается в сторону увеличения их размеров в диапазоне 5–10 мкм.

В заключение следует также отметить, что цепочечные агрегаты микронных размеров могут привести к формированию разнообразных структур в зависимости от наличия внешних температурных, электрических и магнитных полей. Однако они существенно отличаются от кластеров, как системы связанных атомов и молекул нанометрового размера. Во-первых, для кластеров характерно наличие магических чисел. Во-вторых, невозможно сохранение свойств кластеров длительное время, так как они объединяются между собой и теряют свои исходные свойства, т.е., например, их невозможно хранить в виде порошков. В-третьих, кластеры в отличие от фрактальных агрегатов существуют только в виде кластерных пучков либо в буферном газе. Полученные в результате релаксации плазмы разряда и остывания продуктов конденсации фрактальные агрегаты можно накапливать и хранить в виде порошков для дальнейшего использования, например для создания источников излучения.

Предварительные сравнительные оценки и исследования показали, что излучательные свойства фрактальных кластеров и фрактальных агрегатов нанометрового и микронного размера чрезвычайно высоки и эффективны, и они могут стать основой для новых источников излучения [23]. Можно ожидать, что предлагаемый метод генерации высокодисперсных агрегатов позволит расширить представления о возможности создания энергосберегающих источников излучения на основе гетерофазной среды с фракталоподобными частицами.

ЗАКЛЮЧЕНИЕ

Исследовано неравновесное свечение молекулы C_2 в струе продуктов высокотемпературной эрозии диафрагменного разряда в вакууме ($P_{\text{нач}} = 10 \text{ Па}$) на ранней стадии послесвечения (0.8-1.2 мc) по эмиссионным спектрам системы полос Свана $C_2(d^3\Pi_g \rightarrow a^3\Pi_u)$ при сравнении интенсивностей излучения в полосах, образующих секвенции с $\Delta v = +1 \text{ и } 0$. С использованием предложенной кинетической схемы возбуждения молекулы C_2 в струе разряда получена оценка $k \le 2 \times 10^{-10}$ см³ с⁻¹ константы скорости тушения электронного состояния C_2 ($d^3\Pi_g$) атомами C, H, N и молекулами CO, N₂.

Получены экспериментальные результаты на стадии окончания конденсации продуктов разряда, и рассмотрены процессы получения разнообразных высокодисперсных структур с оценкой их параметров. Характерное число атомов в кластерах составляет 10^3-10^5 и их распределение по линейным размерам зависит от режима питания разряда на токовой фазе.

Автор выражает благодарность сотрудникам НИИ физики им. В.А. Фока Санкт-Петербургского государственного университета Е.В. Михайлову и А.А. Киселеву за снимки, полученные на электронном микроскопе.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Калашников Е.В.* Радиальное распределение давления в струе плазмы сильноточного диафрагменного разряда в вакууме // ТВТ. 1996. Т. 34. № 4. С. 501.
- 2. Данилов М.Ф., Калашников Е.В. Компонентный состав оболочки плазменной струи диафрагменного разряда в вакууме // ТВТ. 1995. Т. 33. № 5. С. 663.
- Калашников Е.В., Рачкулик С.Н. Способ получения фракталоподобных структур и устройство для его осуществления. Патент РФ № 2180160 от 05.07.2000.
- Оптическая пирометрия плазмы. Сб. статей / Под ред. Соболева Н.Н. М.: ИЛ, 1960. С. 328.
- Иншаков С.И., Скворцов В.В., Рожков А.Ф., Шахатов В.А., Иншаков И.С., Успенский А.А., Урусов А.Ю. Спектроскопические исследования продольных разрядов в сверхзвуковом потоке воздуха при инжекции пропана, этилена и кислорода в зону разряда // ТВТ. 2019. Т. 57. № 6. С. 835.
- Lebedev Y.A., Epstein I.L., Shakhatov V.A., Yusupova E.V., Konstantinov V.S. Spectroscopy of Microwave Discharge in Liquid C₇-C₁₆ Hydrocarbons // High Temp. 2014. V. 52. № 3. P. 319.
- 7. Аверин К.А., Лебедев Ю.А., Шахатов В.А. Некоторые результаты исследования СВЧ-разряда в жидких тяжелых углеводородах // Прикл. физика. 2016. № 2. С. 41.
- Averin K.A., Bilera I.V., Lebedev Y.A. et al. Microwave Discharge in Liquid n-Heptane with and without Bubble Flow from of Argon // Plasma Processes Polym. 2019. P. 1800198.
- 9. *Lebedev Y.A., Shakhatov V.A.* Gas Temperature in the Microwave Discharge in Liquid *n*-Heptane with Argon Bubbling // Eur. Phys. J. D. 2019. V. 73. P. 167.
- Калашников Е.В. Пьезоэлектрический датчик импульсного давления. А.с. № 1323880 от 03.10.1984.
- Трусов Б.Г., Бадрак С.А., Туров В.П., Барышевская И.М. Автоматизированная система термодинамических данных и расчетов равновесных состояний // Математические методы химической термодинамики. Новосибирск: Наука, 1982. С. 213.
- 12. Pearse R.W.B., Gaydon A.G. Indentification of Molecular Spectra. London, 1950.

- Галактионов И.И., Зверева Г.Н. Исследование неравновесного заселения колебательных уровней состояния (d³П_g) молекулы C₂ // Опт. и спектр. 1992. Т. 73. № 1. С. 111.
- 14. Ионих Ю.З., Костюкевич И.Н., Чернышева Н.В. Возбуждение полос Свана молекулы С₂ в стационарной и распадающейся плазме в смеси Не–СО // Опт. и спектр. 1994. Т. 76. № 3. С. 406.
- 15. *Kunz C., Harteck P., Dondens S.* Mechanism for Excitation of the C₂ High Pressure Bands [C + C₂O → C₂ + + CO] // J. Chem. Phys. 1967. V. 46. № 10. P. 4157.
- 16. Naegeli D.W., Palmer H.B. On the Excitation Mechanism of the C₂ High-Pressure Bands // J. Mol. Spectr. 1968. V. 26. № 1. P. 152.
- 17. *Slack M.W.* Kinetic and Thermodynamics of the CN Molecule. III. Shock Tube Measurement of CN Dissociation Rates // J. Chem. Phys. 1976. V. 64. № 1. P. 228.

- 18. *Хьюбер К.-П., Герцберг Г.* Константы двухатомных молекул. Ч. 1. М.: Мир, 1984. 408 с.
- Михайлов Е.Ф., Власенко С.С. Влияние анизотропии частиц на рост фрактальных кластеров в газовой фазе // Хим. физика.1991. Т. 10. № 7. С. 1017.
- Смирнов Б.М. Кластерная плазма // УФН. 2000. Т. 170. № 5. С. 495.
- Смирнов Б.М. Процессы с участием кластеров и малых частиц в буферном газе // УФН. 2011. Т. 181. № 7. С. 141.
- 22. Смирнов Б.М. Фрактальный клубок новое состояние вещества // УФН. 1991. Т. 161. № 8. С. 141.
- Калашников Е.В., Михайлов Е.Ф., Рачкулик С.Н. Излучение высокодисперсных структур при релаксации плазмы струй диафрагменного разряда в вакууме // ТВТ. 2004. Т. 42. № 2. С. 192.