УДК 544.31.031:546.881.5

ТЕРМОДИНАМИКА ИСПАРЕНИЯ И СОСТАВ ПАРА ТРИФТОРИДА СКАНДИЯ

© 2022 г. Е. Л. Осина^{1,} *, С. Б. Осин²

¹Объединенный институт высоких температур РАН, Москва, Россия ²Московский государственный университет, химический факультет, Москва, Россия

> **E-mail: j-osina@yandex.ru* Поступила в редакцию 24.12.2020 г. После доработки 31.05.2021 г. Принята к публикации 28.09.2021 г.

В результате критического анализа экспериментальных и теоретических данных по структуре и частотам колебаний димерной формы трифторида скандия выбраны значения молекулярных постоянных и рассчитаны термодинамические функции Sc₂F₆. Выполнены расчеты состава пара трифторида скандия в широком интервале температур 1200–1825 К. Определены величины энтальпий сублимации и образования мономера и димера трифторида скандия по III закону термодинамики. Полученные величины введены в базу данных программного комплекса ИВТАНТЕРМО.

DOI: 10.31857/S0040364422010215

ВВЕДЕНИЕ

В литературе имеются данные по термохимическим свойствам тригалогенидов скандия, иттрия и лантана [1, 2], а также димеров иттрия и лантана [2–4]. Данные для димеров тригалогенидов скандия либо ограничены, либо отсутствуют, как в случае Sc_2F_6 . В экспериментальных исследованиях состава пара над трифторидом скандия [5–11] димеры не наблюдались, но были обнаружены в спектральных работах в матрицах инертных газов [12, 13].

Целью данной работы является определение термохимических характеристик димера трифторида скандия, а также расчет температурной зависимости отношения парциальных давлений димера и мономера P_{Π}/P_{M} , так как следует ожидать его существенного повышения с ростом температуры. Необходимые для этого значения термодинамических величин $ScF_3(\kappa p.)$ и ScF_3 опубликованы в [1, 14], а Sc₂F₆ были рассчитаны по оцененным молекулярным постоянным на основе закономерностей их изменений в рядах аналогов (MX_3 , M_2X_6 ; M = Al, Ga). В настоящее время в литературе появились расчетные данные по структурным параметрам, частотам колебаний, а также результаты исследования спектров, которые дают возможность получить более надежные величины термодинамических функций Sc_2F_6 .

ТЕРМОДИНАМИЧЕСКИЕ ФУНКЦИИ Sc₂F₆

Строение молекулы гексафторида дискандия до настоящего времени экспериментально не исследовалось. Квантово-механические расчеты структурных параметров молекулы проведены DFT-методом в вариантах B3LYP и BPW91 в работе [13]. Авторы установили, что в основном электронном состоянии X^1A_1 молекула Sc₂F₆ имеет структуру симметрии D_{2h} с плоским четырехчленным циклом F_b -Sc- F_b -Sc (F_b – атом фтора в плоском четырехчленном цикле). Произведение моментов инерции в табл. 1 вычислено по структурным параметрам из [13] (B3LYP с базисом 6-311+G(3df/SDD)): $r_e(Sc-F_t) = 1.841 \pm 0.02$ Å, $r_e(Sc-F_b) = 2.046 \pm 0.02$ Å (F_t – концевой атом фтора), $\angle F_t$ -Sc- $F_t = 116.6^\circ \pm 3^\circ$, $\angle F_b$ -Sc- $F_b = 76.9^\circ \pm 5^\circ$.

Колебательный спектр молекулы Sc_2F_6 наблюдался и исследовался только в инертных матрицах в работах [12, 13]. Авторы [13] исследовали ИК-спектр продуктов взаимодействия атомов скандия, полученных лазерным испарением, с газообразным фтором в атмосфере Ar в области валентных частот колебаний. В спектре наблюда-

Таблица 1. Молекулярные постоянные Sc_2F_6 ($\sigma = 4$, $p_x = 1$) в см⁻¹, $I_A I_B I_C = 8.29 \times 10^{122} \, \text{г}^3 \, \text{см}^6$

ν_1	ν_2	v ₃	ν_4	v_5	ν_6	ν_7	ν_8	v ₉
728	715	698	662	480	478	452	376	262
ν_{10}	ν_{11}	ν_{12}	v_{13}	ν_{14}	v_{15}	ν_{16}	ν_{17}	ν_{18}
216	159	142	136	128	105	95	70	45

Примечание. $\sigma-число симметрии, p_x-статистический вес основного состояния.$

Интервал температур, К	ϕ_1	φ ₂	$\phi_3 imes 10^{-4}$	$\phi_4 \times 10^{-1}$	φ ₅	φ ₆	φ ₇
298.15-1500	819.6319	160.9459	-103.0747	25.0193	236.3776	-638.9064	912.9056
1500-3000	989.5466	239.1541	-1244.106	8.994757	-285.4908	356.1966	-233.1924

Таблица 2. Коэффициенты полиномов, аппроксимирующих значения $\Phi^{\circ}(T)$ для молекулы Sc₂F₆ в двух температурных интервалах

лись четыре полосы (710.1, 649.9, 476.2, 436.7 см⁻¹), которые отнесли к концевым и мостиковым валентным колебаниям молекулы. В работе [12] изучались ИК-спектры продуктов термического испарения $ScF_3(\kappa p.)$ в матрицах Ne, Ar и N₂ в областях как валентных, так и деформационных колебаний (33-4000 см⁻¹) и наблюдались полосы, отнесенные авторами к молекуле Sc₂F₆. Полосы при 710, 475 и 435 см⁻¹ (матрица Ar) близки к соответствующим полосам в [13]. Однако полосы при 678, 555 и 543 см⁻¹ в [13] не наблюдались и, по мнению авторов [13], относятся к более высоким олигомерам. Значения валентных частот колебаний, приведенные в исследованиях [12, 13], хорошо согласуются с результатами квантово-механических расчетов [13]. Согласно результатам расчетов [13], интенсивности деформационных полос очень малы. Самая интенсивная полоса должна находиться при 104.2 см⁻¹, а остальные (активные в ИК-спектре) – при 159.2, 216.1 и 44.1 см⁻¹ в порядке убывания интенсивностей. ИК-спектр в области деформационных частот колебаний молекулы Sc_2F_6 в работе [12] не приведен. Указаны лишь по две частоты, наблюдавшиеся в матрицах Ar и Ne при 190, 141 и 206, 146 см⁻¹ соответственно, и их отнесение по симметрии колебаний. На основании приведенного отнесения теоретическую частоту 104.2 см⁻¹ можно сравнить с экспериментальной частотой при 206 см⁻¹ (Ne), а частоту при 159.2 – с частотой при 146 см⁻¹ (Ne). Сравнение показывает плохое согласие в первом случае и удовлетворительное – во втором. В связи с этим, а также с ограниченностью экспериментальных данных значения частот колебаний, которые приведены в табл. 1, приняты по результатам расчета [13] (B3LYP-приближение).

Термодинамические функции Sc₂F₆ вычислены без учета возбужденных электронных состояний в приближении "жесткий ротатор—гармонический осциллятор". Погрешность рассчитанных значений термодинамических функций определяется в основном неточностью принятых величин молекулярных постоянных. Суммарная погрешность велика и составляет 9, 15 и 20 Дж K⁻¹ моль⁻¹ для приведенной энергии Гиббса $\Phi^{\circ}(T)$ при T = 298.15, 1000 и 3000 K соответственно.

Результаты расчетов термодинамических функций представлены полиномами:

$$\Phi^{\circ}(T) = \varphi_1 + \varphi_2 \ln X + \varphi_3 X^{-2} + \varphi_4 X^{-1} + \varphi_5 X + \varphi_6 X^2 + \varphi_7 X^3,$$

где $X = T \times 10^{-4}$.

Для увеличения точности аппроксимации значений термодинамических функций температурный интервал 298.15–3000 К разбивался на два подынтервала 298.15–1500 и 1500–3000 К. При этом отклонение рассчитанных и аппроксимированных значений $\Phi^{\circ}(T)$ в каждом интервале не превышало 0.001 Дж моль⁻¹ K⁻¹.

Коэффициенты полиномов даны в табл. 2. В табл. 3 приведены значения термодинамических функций (теплоемкости, энергии Гиббса, энтропии, энтальпии) молекулы Sc_2F_6 при нескольких значениях температур.

СОСТАВ ПАРА НАД ScF₃(кр.)

В работах по испарению трифторида скандия, выполненных масс-спектрометрическим методом в комбинации с эффузионным [5, 9], эффузионно-торсионным [6, 10], статическим [7], массспектрометрическим [8, 11] методами, было показано, что при температурах ниже 1500 К ScF₃ является единственной составляющей пара в равновесии с ScF₃(кр.). Теоретическая оценка состава пара над ScF₃(кр.) в широком интервале температур от 1200

Т, К	$C_p^{\circ}(T)$	$\Phi^{\circ}(T)$	$S^{\circ}(T)$	$H^{\circ}(T) - H^{\circ}(0)$
298.15	149.724	333.094	439.236	31.646
1000	178.787	491.190	642.775	151.585
2000	181.854	601.791	767.992	332.403
3000	182.442	670.326	841.863	514.610

Таблица 3. Термодинамические функции $Sc_2F_6(\Gamma)$ (Дж K^{-1} моль⁻¹)

ТЕПЛОФИЗИКА ВЫСОКИХ ТЕМПЕРАТУР том 60 № 1 2022

Т, К	$P_{\rm A}/P_{\rm M}, 10^{-2}$ [18]	$P_{\rm g}/P_{\rm M}, 10^{-3} [10]$	$P_{\rm g}/P_{\rm m}, 10^{-3}$ [15]
1200	0.268	0.678	0.170
1300	0.614	1.73	0.478
1368	0.10	3.01	_
1400	1.25	3.84	1.16
1500	2.30	7.65	2.45
1600	3.91	14.0	4.81
1700	6.25	23.7	8.06
1800	9.47	37.9	13.9
1825	10.4	42.2	15.2*

Таблица 4. Состав насыщенного пара над твердым фтористым скандием ScF₃(кр.)

* При температуре 1828 К.

до температуры плавления (1828 К) впервые была предпринята в работе [15]. Для оценки состава пара авторы использовали термодинамические характеристики реакции диссоциации $Sc_2F_6 = 2ScF_3$, рассчитанные с использованием электростатической модели. Константа равновесия реакции диссоциации являлась функцией двух эмпирических параметров: межъядерного расстояния r(Sc-F) и кажущихся эффективных зарядов атомов. С использованием данных по общему давлению мономера и димера [15] и уравнения для константы равновесия реакции диссоциации авторами были получены уравнения температурной зависимости логарифма давления пара мономера и димера. По полученным уравнениям был рассчитан состав пара над ScF₃(кр.) в интервале от 1200 до 1828 К. В данном интервале температур, согласно [15], отношение парциальных давлений $P_{\rm A}/P_{\rm M}$ мало и возрастает от 1.7 × 10⁻⁴ до 1.5 × 10⁻² (табл. 4). Согласно расчетным данным работы [15], содержание в паре Sc_2F_6 при 1600 К составило 0.5%, а содержание родственных молекул La₂F₆, согласно данным экспериментальной работы [16], при 1575 К больше и равно 1%. Это противоречит экспериментальным данным для энтальпий сублимации Δ_cH^o(298.15) – - 375.0 [1] и 448 ± 12 кДж моль⁻¹ [17] для ScF₃ и LaF₃ соответственно и ставит под сомнение надежность данных, полученных в расчетной работе [15].

Ab initio-расчет энтальпий образования ScF_3 и Sc_2F_6 недавно опубликован в [18]. Расчет проведен методом DLPNO–CCSD(T) с учетом поправок на скалярные и спин-орбитальные релятивистские эффекты, поправку на нулевые колебания, а также ошибку, возникающую в результате использования приближения DLPNO-CCSD(T) относительно результатов, рассчитанных с CCSD(T). Полученные авторами величины, а также значение

энтальпии образования ScF₃(кр.) [19] были использованы для расчета энтальпии реакции

$$ScF_3(\kappa p.) + ScF_3(r) = Sc_2F_6(r), \qquad (1)$$

по уравнению "третьего закона термодинамики": $\Delta_r H^{\circ}(0) = T(\Delta_r \Phi^{\circ}(T) - R \ln K_{\rm D})$. Термодинамические функции ScF₃(кр.), ScF₃(г) и Sc₂F₆(г), необходимые для расчетов, взяты из [14], [1] и данной работы соответственно. Значение энтальпии реакции получено равным $\Delta_{r}H^{\circ}(0) = 109.17 \ \kappa \ Дж$ моль⁻¹. Величина $\Delta_r H^{\circ}(0)$ дала возможность рассчитать отношения парциальных давлений димера Sc₂F₆(г) и мономера ScF₃(г) P_{π}/P_{μ} в любой температурной точке. Расчеты показали, что в интервале 1200-1825 К (температура плавления по [14]) отношение парциальных давлений $P_{\rm g}/P_{\rm M}$ больше, чем в [15], и возрастает от 2.7 × 10⁻³ до 1.0 × 10⁻¹ (см. табл. 4). С использованием значений P_{Π}/P_{M} из табл. 4, а также экспериментальных величин общих давлений мономера и димера при температурах 1368 и 1400 К [10] получены следующие значения давлений P_{π} димера Sc₂F₆: 3.25 × 10⁻⁵ и 6.48 × 10⁻⁵ атм. Таким образом, величины энтальпий образования $\Delta_{f}H^{\circ}(0) = -1267.1$ и -2783.5 кДж моль⁻¹ для ScF₃ и $Sc_{2}F_{6}$, рассчитанные в [18], занижены, что приводит к повышенным значениям давлений паров димеров, присутствие которых в экспериментальных работах [5-11] должно было бы наблюдаться. Следует отметить, что энтальпия сублимации мономера, полученная из теоретических данных [18], $\Delta_{s} H^{\circ}(0) = 358.5 \text{ кДж моль}^{-1}$ существенно меньше значения, принятого в [1] на основании обработки экспериментальных значений общих давлений мономера и димера [10, 11] по уравнению "третьего закона термодинамики" 374.1 кДж моль-1.

В экспериментальной работе [10] авторы оценили отношение парциальных давлений димера и мономера $P_{\rm m}/P_{\rm m}$ на основании имеющихся в лите-

ратуре данных по испарению родственных молекул AlF₃(кр.) и LaF₃(кр.). Согласно оценке [10], содержание Sc_2F_6 в насыщенном паре над $ScF_3(\kappa p.)$ составляет 0.3% от общего давления мономера и димера при температуре 1368 К. Данная оценочная величина P_{Π}/P_{M} использовалась в настоящих расчетах энтальпии реакции (1) и отношения парциальных давлений димера Sc₂F₆(г) и мономера ScF₃(г). Значение энтальпии реакции получено $\Delta_{r}H^{\circ}(0) = 122.9$ кДж моль⁻¹, а отношение парциальных давлений P_{π}/P_{M} возрастало от 6.8 × 10⁻⁴ до 4.2×10^{-2} (табл. 4). С использованием рассчитанных значений P_{π}/P_{μ} , а также экспериментальных величин обших давлений при температурах 1368 и 1400 К [10] получены реалистичные значения давлений димера $Sc_2F_6P_{\pi} = 9.85 \times 10^{-8}$ и $2.5 \times \times 10^{-7}$ [10], отличные от завышенных данных [18] (3.25 × 10^{-5} и 6.48 × 10^{-5}). На основании этих результатов и с учетом величин общих давлений мономера и димера над трифторидом скандия из работы [10] вычислены значения парциальных давлений ScF₃ и Sc_2F_6 ($P_{\rm M}$ и $P_{\rm II}$), которые используются для расчета энтальпий сублимации ScF₃ в форме мономера и димера. Осредненные значения составили: $\Delta_{s}H^{\circ}(ScF_{3}, 0 K) = 372.1 \pm 5, \Delta_{s}H^{\circ}(Sc_{2}F_{6}, 0 K) =$ $= 495.0 \pm 10, \Delta_s H^{\circ}(ScF_3, 298.15 \text{ K}) = 373.0 \pm 5,$ $\Delta_{\rm s} H^{\circ}({\rm Sc}_2{\rm F}_6, 298.15~{\rm K}) = 496.6 \pm 10~{\rm кДж}$ моль⁻¹. Погрешности рассчитанных величин энтальпий сублимации приведены с учетом как воспроизводимости измерений давления пара, погрешности отношения $P_{\rm II}/P_{\rm M}$, так и неточности использованных в вычислениях термодинамических функций $ScF_3(кр.), ScF_3$ и Sc_2F_6 . Следует заметить, что величины энтальпии сублимации ScF₃, полученные с учетом димерных молекул в составе пара, незначительно отличаются от значений, когда димеры не были учтены [1] (374.1 кДж моль⁻¹). Комбинация приведенных энтальпий сублимаций с энтальпией образования кристаллического ScF₃[18] дала значения энтальпий образования молекул ScF₃ и Sc₂F₆: $\Delta_f H^{\circ}$ (ScF₃, 298.15 K) = -1256.0 ± 8, $\Delta_{f}H^{\circ}(ScF_{3}, 0 K) = -1253.5 \pm 8$ кДж моль⁻¹; $\Delta_{f}H^{\circ}(\mathrm{Sc}_{2}\mathrm{F}_{6}, 298.15 \mathrm{K}) = -2761.4 \pm 12, \Delta_{f}H^{\circ}(\mathrm{Sc}_{2}\mathrm{F}_{6}, 4.15 \mathrm{K})$ газ, 0 К) = -2756.2 ± 12 кДж моль⁻¹.

Данные величины можно рекомендовать как наиболее надежные термохимические характеристики мономера и димера трифторида скандия.

По принятым данным об энтальпии образования мономера и димера трифторида скандия получено значение энергии диссоциации Sc_2F_6 $D_0(g = 2m) = 249.2$ кДж моль⁻¹, которое практически совпало с приведенным в [18] 249.3 кДж моль⁻¹.

ЗАКЛЮЧЕНИЕ

Выбраны значения молекулярных постоянных, рассчитаны термодинамические функции Sc₂F₆ и состав пара ScF₃(кр.) в широком интервале температур на основе результатов критического анализа экспериментальных и теоретических данных по структуре и частотам колебаний димерной формы молекул трифторида скандия, а также экспериментальных данных по давлению пара. Получены величины энтальпий сублимации и образования мономера и димера трифторида скандия. Приведенные результаты отражают высокую энергетическую стабильность кристаллического трифторида скандия, что приводит к большим энергетическим затратам при переходе в газовую фазу и, соответственно, низкому давлению димерных молекул. По этой причине они до настоящего времени не были обнаружены при исследованиях паров трифторида скандия. Наблюдение в ИК-спектрах [12, 13] полос, отнесенных авторами к Sc_2F_6 , можно объяснить стабилизацией димеров на поверхности инертной матрицы за счет низких температур и избытка инертного газа.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Осина Е.Л., Горохов Л.Н.* Новое значение энтальпии образования молекул ScF₃ // ТВТ. 2017. Т. 55. № 4. С. 631.
- 2. Осина Е.Л., Горохов Л.Н., Осин С.Б. Термодинамика испарения трииодида иттрия в форме молекул YI₃ и Y₂I₆ // ТВТ. 2020. Т. 58. № 5. С. 764.
- 3. Соломоник В.Г., Смирнов А.Н. Строение и энергетическая стабильность димерных молекул тригалогенидов лантана и лютеция // Журн. структур. химии. 2005. Т. 46. № 6. С. 1013.
- Motalov V.B., Dunaev A.M., Tsybert A.O., Kudin L.S., Butman M.F., Krämer K.W. Sublimation Enthalpies of Gadolinium and Thulium Triiodides and Formation Enthalpies of the Molecules LnI₃, Ln₂I₆, and Ln₃I₉ (Ln = Gd, Tm) // Int. J. Mass Spectrom. 2017. V. 417. P. 29.
- Kent R.A., Zmbov K.F., Kana'an A.S., Besenbruch G., McDonald J.D., Margrave J.L. Mass Spectrometric Studies at High Temperatures – X: The Sublimation Pressures of Scandium(III), Yttrium(III), and Lanthanium(III) Trifluorides // J. Inorg. Nucl. Chem. 1966. V. 28. № 6–7. P. 1419.
- 6. *Суворов А.Л., Новиков Г.И.* Давление насыщенного пара трифторидов скандия, иттрия и лантана // Вест. Ленинградск. гос. ун-та. Сер. физ. хим. 1968. № 4. С. 83.
- Fischer W., Lange R. Sättigungsdruckmessungen an Scandiumfluorid nach dem "Glockenverfahren" // Z. Anorg. Allg. Chem. 1970. Bd. 379. S. 165.
- Rinehart G.H., Behrens R.G. Vapor Pressure Vaporization Thermodynamics of Scandium Trifluoride // J. Less-Common Met. 1980. V. 75. № 1. P. 65.
- Ратьковский И.А., Суворов А.В. Давление насыщенного пара трифторида скандия // Общ. и прикл. химия. 1972. Т. 5. С. 56.

ТЕПЛОФИЗИКА ВЫСОКИХ ТЕМПЕРАТУР том 60 № 1 2022

- Petzel T. Über die Thermodynamik der Verdampfung von Scandium(III)-fluorid // Z. Anorg. Allg. Chem. 1973. Bd. 395. S. 1.
- 11. *Hildenbrand D.L., Lau K.H.* Thermochemical Properties of the Gaseous Scandium, Yttrium, and Lanthanum Fluorides // J. Chem. Phys. 1995. V. 102. № 9. P. 3769.
- Hastie J.W., Hauge R.H., Margrave J.L. Geometries and Entropies of Metal Trifluorides from Infrared Spectra: ScF₃, YF₃, LaF₃, CeF₃, NdF₃, EuF₃, and GdF₃ // J. Less-Common Met. 1975. V. 39. № 2. P. 309.
- 13. Wang X., Andrews L. Infrared Spectra of MF_2 , MF_2^+ , MF_4^- , MF_3 , and M_2F_6 Molecules (M = Sc, Y, La) in Solid Argon // J. Phys. Chem. A. 2010. V. 114. No 6. P. 2293.
- 14. Аристова Н.М., Белов Г.В. Уточнение термодинамических функций трифторида скандия ScF₃ в конденсированном состоянии // ЖФХ. 2016. Т. 90. № 3. С. 473.

- 15. Сонин В.И., Поляченок О.Г., Ипполитов Е.Г. Энергетика и устойчивость газообразных фторидов скандия // Журн. неорг. химии. 1973. Т. 18. № 11. С. 2918.
- Skinner H.B., Searcy A.W. Demonstration of the Existence of La₂F₆ Gas and Determination of Its Stability // J. Phys. Chem. 1971. V. 76. № 1. P. 108.
- 17. Mar R.W., Searcy A.W. The Vapor Pressure, Heat of Sublimation, and Evaporation Coefficient of Lanthanum Fluoride // J. Phys. Chem. 1967. V. 71. № 4. P. 888.
- Minenkova I., Osina E.L., Cavallo L., Minenkov Y. Gasphase Thermochemistry of MX₃ and M₂X₆ (M = Sc, Y; X = F, Cl, Br, I) from a Composite Reaction-based Approach: Homolytic versus Heterolytic Cleavage // Inorg. Chem. 2020. V. 59. № 23. P. 17084.
- Аристова Н.М., Белов Г.В. Термодинамические величины трифторида и трииодида скандия в конденсированном состоянии // ЖФХ. 2015. Т 89. № 6. С. 921.