УДК 536.3:629.78

МОДЕЛИРОВАНИЕ ТЕПЛОВЫХ НАГРУЗОК НА ПОВЕРХНОСТЬ КОСМИЧЕСКОГО АППАРАТА В ИМИТАТОРЕ С СЕТЧАТЫМИ МОДУЛЯМИ

© 2022 г. А. В. Колесников¹, А. В. Палешкин^{1, *}, П. Ф. Пронина¹, Е. В. Шеметова^{2, **}

¹Московский авиационный институт (национальный исследовательский университет), Москва, Россия ²АО "НПО им. С.А. Лавочкина", Химки, Россия

*E-mail: paleshkin@mai.ru **E-mail: elena_shemetova08@mail.ru Поступила в редакцию 10.11.2020 г. После доработки 14.09.2021 г. Принята к публикации 28.09.2021 г.

Представлены результаты исследований, связанных с проблемой создания инфракрасного имитатора многомодульного типа для моделирования тепловых нагрузок на поверхность космических аппаратов при их тепловакуумной отработке. Показано, что такой имитатор может быть создан с использованием в качестве модулей сетчатых излучателей, применяемых при проведении автономных тепловакуумных испытаний отдельных элементов космического аппарата с преимущественно плоскими внешними поверхностями. При этом возникает задача управления многомодульным имитатором, заключающаяся в необходимости определения такого характера распределения электрической мощности, подводимой к отдельным модулям, при котором расчетные внешние тепловые нагрузки на поверхность испытуемого объекта воспроизводились бы с максимально возможной для рассматриваемой имитационной системы точностью. Данная задача решается как обратная задача теории управления тепловыми процессами. Результаты вычислительных экспериментов свидетельствуют о возможности достижения высокой точности моделирования внешних тепловых нагрузок на космические аппараты с невогнутой формой наружной поверхности.

DOI: 10.31857/S0040364422020260

введение

В настоящее время подходы к наземной отработке космической техники претерпели существенные изменения по сравнению с теми, которые декларировались в первые десятилетия развития практической космонавтики, когда основное внимание уделялось решению приоритетных задач, определяющих технический и научный уровень стран-разработчиков новой техники, в том числе и космической. На этом этапе экспериментальные установки создавались, исходя из критерия максимально возможного приближения имитируемых внешних условий эксплуатации разрабатываемых систем аэрокосмического назначения к реальным. При этом стоимость достижения данного эффекта являлась вторичным фактором.

Однако, столкнувшись с трудностями практической реализации концепции наземной экспериментальной отработки космической техники в условиях, максимально приближенных к натурным, создатели космической техники все большее внимание стали уделять разработке приближенных методов физического моделирования внешних тепловых нагрузок на поверхность космических аппаратов (KA) и разработке методического и программного обеспечения управления энергетическими характеристиками технических средств, реализующих эти методы.

В качестве таких приближенных средств моделирования используются упрошенные излучающие системы, различные по конструкции и способу подвода энергии [1-5], но с одной общей особенностью - основная энергия испускаемого ими излучения сосредоточена в средней и дальней инфракрасных полосах спектра с длиной волны излучения, превышающей 3 мкм, где спектральная поглощательная способность большинства наружных покрытий КА слабо зависит от длины волны падающего излучения. В этом заключается основное преимущество инфракрасных имитаторов перед другими. Практическое же использование таких имитаторов сопряжено с необходимостью преодоления больших трудностей, связанных с управлением их энергетическими режимами эксплуатации. Основная трудность заключается в выборе таких режимов, при которых обеспечивалась бы максимально возможная точность моделирования заданных тепловых нагрузок, разумеется, в рамках принципиальных возможностей рассмат-

Рис. 1. Геометрическая модель имитатора (представлена без каркаса).

риваемой излучающей системы. Данные сложности обусловлены тем, что такие имитаторы не воспроизводят параметры поля излучения источников, тепловое воздействие которых на поверхность КА требуется в процессе испытаний. С их помощью воспроизводятся лишь расчетные значения внешних тепловых нагрузок, источником которых могут быть Солнце, тепловое излучение планет, их спутников, а также тепловое влияние частей КА, не вошедших в состав испытуемого объекта, например, по причине ограниченности размеров экспериментальной установки.

При проведении автономных тепловых испытаний частей КА с плоскими наружными поверхностями расчетные внешние тепловые нагрузки часто воспроизводятся с помощью так называемых сетчатых излучателей. Такие излучатели конструктивно выполняются в виде тонких параллельно расположенных токопроводящих проводов (чаще всего из нихрома), смонтированных на рамке из неэлектропроводного материала. Сетчатые излучатели имитатора устанавливаются в непосредственной близости от тех участков поверхности испытываемого объекта, на которые они должны воспроизводить расчетные внешние тепловые нагрузки.

Обладая рядом достоинств, например, такими как простота в изготовлении и эксплуатации, незначительное экранирование облучаемой поверхности, сетчатые излучатели в то же время имеют серьезный недостаток, чрезвычайно ограничивающий область их применения: каждый излучатель должен участвовать в облучении лишь той поверхности, в непосредственной близости от которой находится. Пересечение областей лучистого воздействия излучателей приводит к появлению погрешностей моделирования облученности испытываемого объекта с неплоской наружной поверхностью. В связи с этим актуальной является задача создания имитатора внешних тепловых нагрузок на основе совокупности сетчатых излучателей, установленных вокруг испытуемого объекта на существенном от него расстоянии с тем, чтобы каждый модуль мог участвовать в облучении различных по ориентации и расположению тепловоспринимающих элементов испытуемого объекта.

Для создания такого имитатора необходимо рассмотреть, по крайней мере, следующие задачи, которые и решаются в настоящей работе:

1) выявить среди известных оптимальный методический подход и алгоритм расчета локальных угловых коэффициентов между тепловоспринимающими элементами испытуемого объекта и элементами сетчатых модулей имитатора (тонкими проводами);

2) установить зависимость плотности падающего на элемент теплового потока от подводимой к сетчатому модулю электрической мощности и его геометрических параметров;

3) выявить оптимальный в отношении точности воспроизведения заданных внешних тепловых нагрузок закон распределения подводимой к модулям электрической мощности.

МЕТОДИЧЕСКИЙ ПОДХОД К ОПРЕДЕЛЕНИЮ ЛОКАЛЬНЫХ УГЛОВЫХ КОЭФФИЦИЕНТОВ

На рис. 1 изображен имитатор цилиндрической формы с однотипными сетчатыми излучателями (модулями), расположенными на боковой и торцевых ажурных, но достаточно жестких поверхностях.

Для упрощения вводится предположение о том, что сетчатый излучатель рассматривается как совокупность параллельно расположенных и параллельно запитываемых электрическим током одинаковых по длине проводов длиной *l* и диаметром *d*. Такое допущение можно принять в силу того, что в реальных сетчатых излучателях $l \gg \Delta b$, где $\Delta b - \text{шаг}$ между проводами. Число проводов в модуле принимается равным N. Чтобы в модуле была центральная нить, число N должно быть нечетным. Середина центральной нити считается центральной точкой модуля. Предполагается, что на боковой поверхности цилиндрической части каркаса имитатора модули располагаются так, что их нити параллельны образующим прямым каркаса имитатора, а центральные нити лежат на самом каркасе. У торцевых модулей центральные точки размещаются на концентрических окружностях разного диаметра, но с одинаковым угловым шагом.

Расположение каждого *j*-го сетчатого модуля определяется цилиндрическими координатами их центральных точек в связанной с каркасом имитатора системе координат (R_j, γ_j, Z_j) . Тогда середина каждого *k*-го излучающего элемента (провода

длиной *l*) этого модуля в связанной с каркасом имитатора системе координат имеет следующие координаты:

$$r_k = \sqrt{R_j^2 + (b/2 - ((k-1)\Delta b))^2},$$

где $k \in [1; N]$, N — число параллельных нитей в модуле;

$$\gamma_{k} = \begin{cases} \gamma_{j} - \arctan\left(\frac{b}{2} - (k-1)\Delta b\right) \\ R_{j} \end{cases} \quad \text{при } k \in \left[1; \frac{N+1}{2}\right], \\ \gamma_{j} + \arctan\left(\frac{\left(k - \frac{N+1}{2}\right)\Delta b}{R_{j}}\right) \\ \text{при } k \in \left[\frac{N+1}{2} + 1; N\right]. \end{cases}$$

Локальный угловой коэффициент ϕ_{di-j} между тепловоспринимающим элементом dF_i испытуемого объекта и *j*-м сетчатым модулем имитатора будет равен сумме локальных угловых коэффициентов между площадкой dF_i и всеми N проводами *j*-го модуля:

$$\varphi_{di-j} = \sum_{k=1}^{N} d\varphi_{di-k}.$$
 (1)

Апробированы два метода расчета коэффициента ϕ_{di-i} для сетчатых нагревателей [5–7]. Первый из них основан на аппроксимации короткого по длине участка поверхности излучающей нити поверхностью многогранника с треугольными гранями, другой на замене данного участка цилиндрической излучающей нити плоским излучателем с изменяющейся в зависимости от расположения тепловоспринимающего элемента ориентацией. Результаты сопоставления свидетельствуют о предпочтительности второго подхода. В основе замены лежит то обстоятельство, что в направлении любого элемента тепловоспринимающей поверхности достаточно короткий элемент излучающей нити, имеющей круглое сечение, испускает излучение практически как плоский элемент dF_i . Ширина такого элемента равна диаметру нити d, а нормаль лежит в плоскости Ω , проходящей через ось нити и вектор $\mathbf{\rho}_{dj-di}$ с началом в центральной точке этого плоского элемента и концом в центральной точке элемента dF_i тепловоспринимающей поверхности. Если, например, $d/\rho = 0.01$, то угловой диаметр излучающего элемента не превышает 0.29°, т.е. лучи, исходящие от него, можно считать параллельными.

ПЛОТНОСТЬ ТЕПЛОВОГО ПОТОКА, ПАДАЮЩЕГО НА ЭЛЕМЕНТЫ ИСПЫТУЕМОГО ОБЪЕКТА

Подводимая к сетчатому модулю электрическая мощность W_i за счет излучения его проводов

рассеивается в окружающее пространство. Интенсивность *I* уходящего с поверхности проводов излучения при диффузном характере их излучения и при степени черноты их поверхности ε может быть представлена в виде $I = \varepsilon I^0$, где I^0 – интенсивность (яркость) излучения абсолютно черного тела с температурой, равной температуре провода.

Плотность теплового потока q_i , приходящего на некий тепловоспринимающий элемент dF_i испытуемого объекта от какого-то *j*-го сетчатого модуля, определяется выражением

$$q_i = \varepsilon \pi I_i \varphi_{i-i}, \tag{2}$$

где φ_{i-j} – локальный угловой коэффициент *i*-го тепловоспринимающего элемента и *j*-го модуля, при этом $\varphi_{i-j} = \sum_{k=1}^{N} \varphi_{i-k}$. Здесь φ_{i-k} – угловой коэффициент между *i*-м тепловоспринимающим элементом и *k*-й нитью модуля.

С учетом того, что W_j – мощность, подводимая к *j*-му модулю, запишем

$$W_i = \varepsilon \pi I_i \pi dN. \tag{3}$$

Тогда выражение для *q_i* примет другой, более удобный для последующего решения задачи вид:

$$q_i = \frac{W_j \varphi_{i-j}}{\pi l dN}.$$

Используя соотношения (2) и (3), можно выразить I_j через W_j . Это позволит для оптимизации режима работы имитатора с сетчатыми модулями использовать те же методические подходы, что и для имитаторов модульного типа с линейчатыми или условно точечными излучателями.

ОПТИМИЗАЦИЯ РЕЖИМА РАБОТЫ ИМИТАТОРА

Задача определения оптимального в отношении точности воспроизведения заданных внешних тепловых нагрузок закона распределения подводимой к модулям электрической мощности решается как одна из обратных задач [8, 9] теории управления тепловыми процессами в следующей постановке. Пусть $\mathbf{q}^0 = (q_1^0, q_2^0, q_3^0, ..., q_n^0)$ – вектор заданных значений плотности теплового потока в определенных точках поверхности испытуемого объекта, а $\mathbf{W}^0 = (W_1, W_2, ..., W_m)$ – вектор управления. Координаты данного вектора представляют собой упорядоченную совокупность значений электрической мощности, подводимой к модулям сетчатого имитатора.

Вектор **W**⁰ выбирается из условия определенной согласованности вектора \mathbf{q}^0 с $\mathbf{q} = (q_1, q_2, q_3, ..., q_n)$ значений плотности тепловых потоков, поглощаемых тепловоспринимающими элементами испытуемого объекта в условиях облучения его модулями рассматриваемого имитатора [7, 10]. При

этом
$$q_i = \sum_{j=1}^m \frac{W_j \varphi_{di-j}}{\pi dl N}.$$

В качестве меры отклонения вектора \mathbf{q}_i от вектора \mathbf{q}_i^0 выбирается среднеквадратичная невязка

$$\Psi(W_1, W_2, ..., W_m) = \sum_{i=1}^n \left(\sum_{j=1}^m \frac{W_j \varphi_{di-j}}{\pi dl N} - q_i^0 \right)^2.$$

Решаемая задача сводится к минимизации функции $\psi(W^0)$ при следующих естественных физических ограничениях на искомые величины W_i : $W_i \ge 0, W_i \le W_{\max}$ при любых $j \in [1; m]$. Для оптимизации вектора **W**⁰ используется итерационный алгоритм: $W_0^{(k+1)} = W_0^{(k)} + \Delta W_0^{(k)}$, где надстрочный индекс k – номер приближения. Начальное приближение искомого вектора можно задавать в значительной степени произвольно. В качестве приращения ΔW_0^k при переходе к следующему приближению используется вектор $\Delta W_0^k = -\beta^{(k)} \cdot \mathbf{I}^{(k)}$, где I^(k) – векторная величина, определяющая направление спуска, т.е. направление перехода от вектора $\mathbf{W}_{0}^{(k)}$ к вектору $\mathbf{W}_{0}^{(k+1)}$, а $\beta^{(k)}$ — скалярная величина, характеризующая длину шага вдоль этого направления (глубину спуска). В данной работе направление спуска определялось методом скорейшего спуска, т.е. определялось направлением, противоположным градиенту функционала $\psi(W_0)$ (противоположным вектоpy $\psi^{i}(W_{0}) = (\partial \psi / \partial W_{1}; \partial \psi / \partial W_{2}; \dots \partial \psi / \partial W_{m})).$

Глубина спуска $\beta^{(k)}$ рассчитывалась численно с использованием итерационного алгоритма, который в данном случае реализуется следующим об-

разом. В качестве нулевого приближения значения $\beta^{(k)}$ принимается $\beta^{(k)} = 0$. Малый шаг $\Delta \beta^{(k)}$ изменения величины $\beta^{(k)}$ задается, например, равным $0.01 I^{(k)}$. Тогда первое приближение вектора $\Delta \mathbf{W}_{0}^{k}$ равно $-\Delta\beta^{(k)}$. Далее осуществляется расчет целевой функции при полученном первом приближении приращения вектора $\mathbf{W}_{0}^{(k)}$. Если полученное значение целевой функции окажется выше предыдущего, то после увеличения $\beta^{(k)}$ на $\Delta\beta^{(k)}$ вычисляется следующее приближение вектора $\mathbf{W}_{0}^{(k)}$ и снова определяется значение целевой функции $\Psi(W_0)$. Полученное значение сравнивается с предыдущим. Итерационный процесс прекращается тогда, когда последующее значение целевой функции окажется больше предыдущего. Это предыдущее значение и будет считаться минимальным при выбранном направлении спуска. Значение $\beta^{(k)}$, при котором достигается минимум $\psi(W_0)$, и является оптимальной глубиной спуска при пере-

ходе от вектора $\mathbf{W}_0^{(k)}$ к вектору $\mathbf{W}_0^{(k-1)}$.

После вычисления (k + 1) приближения векто-

ра $W_0^{(k+1)}$ определяется следующее приближение. На каждой итерации значение вектора W^0 корректируется в связи с необходимостью выполнения условий по ограничению этого вектора. Итерационный процесс прекращается, как только наметится тенденция к увеличению целевой функции.

Разработанный и представленный в данной статье метод моделирования тепловых нагрузок на поверхность КА в имитаторе с блочными сетчатыми излучателями реализован в виде многоблочной компьютерной программы и используется в вычислительных экспериментах для исследования возможностей данной имитационной системы в отношении точности моделирования внешних тепловых нагрузок на объекты с разной формой внешней поверхности.

ВЫЧИСЛИТЕЛЬНЫЙ ЭКСПЕРИМЕНТ

Пусть в имитаторе с цилиндрическом каркасом установлен симметрично расположенный с ним испытуемый объект цилиндрической формы.

На боковой поверхности имитатора сетчатые модули установлены в пяти равноотстоящих друг от друга секциях — по 16 модулей в каждом сечении, а на торцевых панелях — по восемь модулей на каждой.

Требуется определить такое распределение подводимой к модулям имитатора электрической мощности, при котором достигается максимальная точность моделирования заданной внешней тепловой нагрузки на поверхность испытуемого объекта с определенными относительными размерами. В качестве моделируемой внешней тепловой нагрузки рассматривалась нагрузка, соответствующая нахождению объекта над поверхностью Земли на высоте 300 км в подсолнечной точке (зенитный угол Солнца равен 0°). Продольная ось 0*z* объекта располагалась параллельно поверхности Земли, а ось 0*x* направлена к центру Земли. При этом ось 0*x* направлена на Солнце. Сферическое альбедо Земли $a_{c\phi}$ принималось равным 0.35, а величина солнечной постоянной S = 1400 Вт/м².

Расчет плотности внешних тепловых потоков, падающих на элементы цилиндрического объекта, осуществлялся по методике, изложенной в работе [11].

Для решения рассматриваемой задачи необходимо задать геометрические модели имитатора и испытываемого объекта. Эти модели должны быть полными в той мере, чтобы можно было определить величины локальных угловых коэффициентов между тепловоспринимающими элементами испытуемого объекта и модулями имитатора.

К имеющимся обозначениям вводятся следующие дополнительные обозначения: D – диаметр имитатора; L – его длина; d_0 , l_0 – соответственно диаметр и длина испытываемого объекта. Размеры объекта и длина имитатора относятся к диаметру имитатора.

Геометрическая модель имитатора. Как уже отмечалось, расположение каждого *j*-го сетчатого модуля боковой поверхности имитатора (j = 1,...,n) определяется цилиндрическими координатами их центральных точек в связанной с каркасом имитатора цилиндрической системе координат (R_i, γ_i, Z_i).

Расположение центральных точек торцевых модулей задается в полярных координатах на торцевых плоскостях имитатора. Длина каждого модуля равна длине провода *l*. Ширина модуля $b = (N - 1)\Delta b$.

В рассматриваемой модельной задаче геометрическим параметрам имитатора и испытуемого объекта присваиваются следующие значения: D = 3 м, L/D = 1.5, $l_0/d_0 = 1.5$, $d_0/D = 0.4$, $d = 10^{-3} \text{ м}$, N = 11, l = 0.3 м, $\Delta b = 10^{-2} \text{ м}$, b = 0.1 м.

Геометрическая модель испытуемого объекта. Для расчета лучистого теплообмена испытуемого объекта в имитаторе необходимо знать координаты центральных точек элементов поверхности объекта, ориентацию их нормалей, площади поверхности каждого элемента. В связи с этим целесообразно осуществить аппроксимацию поверхности исследуемого объекта многогранной поверхностью с мелкими гранями. Для этого на цилиндрической поверхности в связанной с испытуемым объектом системе координат задаются цилиндрические координаты большого числа точек. Затем осуществляется аппроксимация этой поверхности многогранной поверхностью с треугольными гранями и определяются ориентации нормалей, координаты центральных точек и площади каждой грани. Центральные точки треугольных граней определялись как точки пересечения их мелиан. Данный полход к заданию геометрической модели поверхности испытуемого объекта описан в статье [6] и реализован в данной работе в виде компьютерной программы. В рассматриваемой модельной задаче боковая поверхность испытуемого объекта аппроксимировалась поверхностью многогранника с 912 треугольными гранями, находящимися в 19 поясах с 48 гранями в каждом поясе. Пояса образованы 20 поперечными сечениями цилиндрической поверхности, следующих друг за другом с одинаковым шагом $\Delta z = l_0/20$. Аппликата первого сечения равна нулю, последнего $-l_0$.

Разбиение торцевых поверхностей цилиндра на мелкие площадки осуществляется с помощью системы окружностей с радиусами R_j , изменяющимися от 0 до d/2 с шагом dR, и прямых, проходящих через центр круга под углом γ по отношению к оси 0x с угловым шагом $d\gamma$. В этом случае координаты центральных точек площадок dF_i можно представить в виде $x_i = (R_i - dR/2)\cos(\gamma - d\gamma/2)$, $y_i = (R_i - dR/2)\sin(\gamma - d\gamma/2), z_i = 0 - для нижнего$ $торца и <math>z_i = -1 - для$ верхнего. Выражение для площадей торцевых элементарных площадок деления при принятых обозначениях имеет вид

$$dF_i = (R_i^2 - (R_i - dR/2))d\gamma/4.$$

Всего на поверхности объекта выделялось 1872 тепловоспринимающих элемента (элементарные площадки). В качестве радиационно-оптических характеристик поверхности объекта, характеризуемых коэффициентом поглощения A_s поверхности по отношению к падающему солнечному излучению и степенью черноты ε , принимались характеристики широко применяемой в космической технике облицовочной арамидной желтой ткани, у которой $A_s \approx 0.29$, а $\varepsilon \approx 0.55$.

Результаты расчета. Полученные в результате решения задачи абсолютные размерные погрешности Δq_i ($i \in [1, n_{\text{max}}]$) моделирования расчетных значений тепловых нагрузок относились к характерной $q_{\text{хар}}$ для данной задачи величине, в качестве которой принималась максимальная локальная плотность поглощаемого поверхностью испытуемого объекта потока излучения, исходящего от

Рис. 2. Безразмерные погрешности моделирования расчетных тепловых нагрузок в точках, расположенных в определенных поясах сечений поверхности цилиндрического испытываемого объекта в имитаторе с блочными сетчатыми излучателями: (а) – боковая поверхность: *1* – первый пояс, *2* – четвертый, *3* – седьмой, *4* – десятый, *5* – 13-й, *6* – 16-й, *7* – 19-й; (б) – ториевая поверхность: *1* – первый пояс, *2* – седьмой, *3* – 13-й, *4* – 19-й.

Солнца и Земли. Эта величина оказалась равной 403 Вт/м². В статье, следовательно, анализировались безразмерные локальные погрешности

$$\Delta q_i = \Delta q_i / q_{\rm xap}.$$

Погрешности на графиках рис. 2 представлены не для всех элементов испытываемого объекта, а лишь для нескольких их совокупностей, сгруппированных следующим способом: элементы боковой (цилиндрической) поверхности сгруппированы по поясам, которые образованы соседними поперечными сечениями поверхности объекта. Номера поясов на графиках обозначены символом *Р*_{бок}. Группы элементов торцевых поверхностей образованы соседними окружностями, с помощью которых торцевая поверхность (круг) делится на отдельные элементы. Погрешности моделирования внешних тепловых нагрузок для левой и правой торцевых частей объекта отличаются незначительно благодаря симметричному расположению объекта относительно имитатора. Поэтому погрешности моделирования тепловых нагрузок на торцевые поверхности в работе представлены только для одного торца (рис. 2б). При этом номера поясов на графиках обозначены символом $P_{\text{тор}}$, а номера тепловоспринимающих элементов в каждом поясе приводятся на графиках по оси абсписс.

Значения электрических мощностей, подводимых к модулям имитатора и температуры проводов, представлены в табл. 1, 2.

Таблица 1. Величины W_j [Вт] электрических мощностей (слева), подводимых к боковым модулям имитатора, и температуры T_j [К] проводов боковых модулей (справа)

№ модуля	№№ боковых секций имитатора				
(сетки) в секции	1	2	3	4	5
1	283/917	267/903	297/928	281/915	387/991
2	212/853	75/657	91/691	54/606	118/736
3	247/886	256/894	274/909	268/904	328/951
4	48/588	7/367	9/384	0/0	17/451
5	0/0	0/0	0/0	0/0	0/0
6	303/933	242/881	266/903	236/876	336/957
7	323/947	215/856	244/883	215/856	312/939
8	435/1021	362/975	380/987	345/963	454/1031
9	424/1014	339/959	365/977	343/962	458/1034
10	395/996	252/890	291/923	238/878	376/984
11	348/965	307/935	322/947	309/937	379/986
12	101/709	59/620	70/646	57/614	95/699
13	0/0	0/0	0/0	0/0	0/0
14	197/8370	134/760	152/785	134/761	185/824
15	220/860	167/803	194/835	169/806	261/899
16	224/865	165/801	161/796	150/782	164/800

Таблица 2. Величины W_j [Вт] электрических мощностей (слева), подводимых к торцевым модулям имитатора, и температуры T_J [K] проводов торцевых модулей (справа)

Торцевая секция ($z = 0$)				
внутренняя	внешняя			
27/508	52/599			
23/490	58/618			
27/510	35/544			
21/480	55/608			

ЗАКЛЮЧЕНИЕ

1. Результаты вычислительных экспериментов показывают, что разработанный метод экспериментального моделирования тепловых нагрузок на внешние поверхности космических аппаратов с помощью имитаторов модульного типа на основе сетчатых излучателей позволяет с высокой точностью обеспечивать воспроизведение расчетных внешних тепловых нагрузок на взаимно незатеняемые поверхности, в том числе и на поверхности околопланетных аппаратов, подвергающиеся одновременному воздействию потоков излучения, исходящих от Солнца и планеты.

2. Представленный в работе метод моделирования тепловых нагрузок и его реализация в виде вычислительного алгоритма могут быть использованы в любых имитаторах модульного типа с условно трубчатыми излучателями, в частности в имитаторах воздействия конвективных тепловых потоков большой плотности на поверхность гиперзвуковых летательных аппаратов.

Работа выполнена в рамках госзадания Министерства науки и высшего образования РФ (шифр FSFF-2020-0016).

СПИСОК ЛИТЕРАТУРЫ

1. Елисеев В.Н., Товстоног В.А. Теплообмен и тепловые испытания материалов и конструкций аэрокосмической техники при радиационном нагреве. М.: Изд-во МГТУ им. Н.Э. Баумана, 2014. 396 с.

- Cao Z., Pei Y., Liu S., Yin X. Infrared Lamp Array Design and Radiation Heat Flux Analysis // Recent Adv. Heat Transfer, Therm. Eng. Environ., Proc. IASME/WSEAS Int. Conf. Heat Transfer, Therm. Eng. Environ. (HTE '09). 2009. P. 96.
- Wang Jing, Liu Shouwen, Pei Yifei. Infrared Lamp Array Simulation Technology Used During Satellite Thermal Testing // Int. J. Mechanical, Aerospace, Industrial, Mechatronic, and Manufacturing Engineering. 2010. V. 4. № 9. P. 905. https://publications.waset.org/73/pdf
- Добрица Д.Б., Ушакова А.А., Шабарчин А.Ф., Ященко Б.Ю. Моделирование внешних тепловых воздействий от инфракрасных источников излучения при испытаниях ракетно-космической техники в ВК-600/300 // Вестн. Самарск. ун-та. Аэрокосмическая техника, технологии и машиностроение. 2017. Т. 16. № 3. С. 27.
- 5. Колесников А.В., Палешкин А.В. Численный метод выбора энергетического режима работы сетчатых нагревателей // Тр. МАИ. 2010. № 39. http://trudy-mai.ru
- 6. Колесников А.В., Палешкин А.В., Сыздыков Ш.О. Методика расчета облученности элементов испытуемых объектов в ламповых имитаторах внешних тепловых нагрузок // Тепловые процессы в технике. 2017. Т. 9. № 6. С. 267.
- Колесников А.В., Палешкин А.В., Сыздыков Ш.О. Моделирование внешних тепловых нагрузок на космический аппарат в термобарокамере // ИФЖ. 2019. Т. 92. № 4. С. 997.
- 8. *Алифанов О.М.* Обратные задачи теплообмена. М.: Машиностроение, 1988. 280 с.
- 9. Викулов А.Г., Ненарокомов А.В. Уточненное решение вариационной задачи идентификации математических моделей теплообмена с сосредоточенными параметрами // ТВТ. 2019. Т. 57. № 2. С. 234.
- Колесников А.В., Палешкин А.В., Мамедова К.И. Методика выбора оптимального режима работы сетчатого нагревателя // Тепловые процессы в технике. 2015. Т. 7. № 1. С. 37.
- 11. Залетаев В.М., Капинос Ю.В., Сургучев О.В. Расчет теплообмена космического аппарата. М.: Машиностроение, 1979. 207 с.