УДК 536+620.3+546.654:41:56:47:711

ТЕРМОДИНАМИКА И ЭЛЕКТРОФИЗИКА НОВОГО МЕДНО-ЦИНКОВОГО МАНГАНИТА ЛАНТАНА И КАЛЬЦИЯ LaCaCuZnMnO₆

© 2022 г. Б. К. Касенов^{1,} *, Ш. Б. Касенова¹, Ж. И. Сагинтаева¹, Е. Е. Куанышбеков¹, А. А. Мухтар¹, К. С. Какенов²

¹Химико-металлургический институт им. Ж. Абишева, Караганда, Казахстан ²Карагандинский экономический университет Казпотребсоюза, Караганда, Казахстан

**E-mail: kasenov 1946@mail.ru* Поступила в редакцию 23.06.2021 г. После доработки 09.12.2021 г. Принята к публикации 15.02.2022 г.

Из оксидов лантана(III), меди(II), цинка(II), марганца(III) и карбоната кальция в интервале температур 1073–1473 К синтезирован медно-цинковый манганит лантана и кальция LaCaCuZnMnO₆. Измельчением материала на вибрационной мельнице получены наноструктурированные частицы. Исследована теплоемкость соединения в интервале 298.15–673 К на калориметре ИТ-С-400. На кривой зависимости $C_p^{\circ} \sim f(T)$ при 598 К обнаружен аномальный скачок теплоемкости. На установке LCR-781 (Тайвань) при 293–483 К и при частотах 1, 5 и 10 кГц исследованы температурные зависимости электросопротивления и относительной диэлектрической проницаемости. Установлен полупроводниковый характер проводимости. При 483 К выявлено аномально высокое значение диэлектрической проницаемости при всех исследуемых частотах.

DOI: 10.31857/S0040364422020235

ВВЕДЕНИЕ

Большой интерес у исследователей вызывают синтез и изучение физико-химических свойств купратов и манганитов редкоземельных элементов, легированных оксидами щелочноземельных металлов и обладающих эффектами сверхпроводимости, колоссального магнитосопротивления, диэлектрической проницаемости, полупроводниковыми и другими свойствами [1–5].

С учетом вышеизложенного целью данной работы является исследование физико-химических свойств не отдельного купрата, манганита или цинката, редкоземельного и щелочноземельного металлов, а изучение их в едином комплексе, т.е. как медно-цинкового манганита. Исходя из этого, целью данной статьи является синтез медноцинкового манганита лантана и кальция и исследование его термодинамических и электрофизических свойств.

ЭКСПЕРИМЕНТ

Синтез LaCaCuZnMnO₆ осуществлялся в ходе твердофазного взаимодействия La₂O₃ (марки "ос. ч."), CuO, ZnO, Mn₂O₃ и CaCO₃ (квалификации "ч. д. а.") в интервале температур 1073–1473 К в общей сложности в течение 30 ч. Наноструктурированные частицы размерами в пределах 100– 200 нм образовавшегося LaCaCuZnMnO₆ получались измельчением при определенных условиях из его поликристаллического образца на вибрационной мельнице компании Retsch (Германия). Размеры определены на электронном микроскопе Mira 3LMU, Tescan (рис. 1).

2 пм царана с

Рис. 1. Изображение LaCaCuZnMnO₆ на электронном микроскопе Mira 3LMU, Tescan; числа – значения диаметров частиц, нм.

Рентгенофазовый анализ наноструктурированного LaCaCuZnMnO₆ проводился на дифрактометре ДРОН-2.0. Условия съемки: U = 30 кB, J = 10 мA,скорость вращения счетчика – 20 об/мин, диапазон шкалы – 1000 импульс/с, постоянная времени $\tau = 5$ с, интервал углов 2θ – от 10° до 90° . Интенсивность дифракционных максимумов определялась по 100-балльной шкале. Снятие данных для рентгенограммы проводилось аналитическим методом [6]. Пикнометрическая плотность определялась согласно [7]. На основании рентгенограммы установлено, что наноструктурированный LaCaCuZnMnO₆ кристаллизуется в кубической сингонии со следующими параметрами решетки: $a = 13.69 \pm 1.78$ Å, $V^{\circ} = 2564.6 \pm 5.35$ Å³, Z = 4, $V_{_{9Л.84}}^{\circ} = 641.15 \pm 1.34$ Å³, $\rho_{\text{рент}} = 4.43$ г/см³, $\rho_{\text{пикн}} = 4.41 \pm 0.03$ г/см³.

Изобарная теплоемкость наноструктурированного LaCaCuZnMnO₆ измерялась при 298.15-673 К на калориметре ИТ-С-400. Принцип и методика работы калориметра подробно изложены в [8, 9]. Измерительная схема прибора обеспечивает замер температуры в точках с шагом 25 К. Калориметр градуировался на основании определения тепловой проводимости тепломера путем проведения пяти параллельных экспериментов с медным образцом и пустой ампулой. Работа калориметра проверялась измерением теплоемкости α- Al_2O_3 в интервале 180-650 К с использованием в качестве охладителя жидкого азота и сравнением полученных результатов с новыми литературными данными по теплоемкостям α-Al₂O₃ [10]. В табл. 1 приведены сравнения теплоемкости α-Al₂O₃ (квалификации "ч. д. а.", ТУ 6.09-426-75), измерен-ные на калориметре [11], с данными [10]. Результаты показывают хорошее согласие данных – в

Таблица 1. Сравнение значений теплоемкости Al₂O₃, используемого для проверки работы калориметра

<i>Т</i> , К	$C_p^{\circ}(T)$, Дж/(моль К)		
	[11]	[10]	
180	44.50	43.83	
230	64.86	61.18	
250	70.37	67.08	
280	77.07	74.82	
300	76.31	79.41	
350	86.49	88.86	
400	94.12	95.21	
450	100.26	101.8	
500	105.47	106.1	
550	110.09	109.7	
600	114.29	112.5	
650	118.20	114.9	

пределах 3–4% (табл. 1). Для каждого осредненного значения удельной теплоемкости из пяти параллельных экспериментов определялось среднеквадратичное отклонение ($\overline{\delta}$), а для осредненных значений мольных теплоемкостей – случайные составляющие погрешности [9]. Предельная погрешность определения теплоемкости, согласно паспортным данным, равна ±10.0%. Погрешности коэффициентов в уравнениях зависимости $C_p^{\circ} \sim \sim f(T)$ определялись осреднением средних случайных погрешностей экспериментальных значений теплоемкостей.

Исследование электрофизических свойств проводилось по методике [12], т.е. измерением электроемкости медно-цинкового манганита на серийном приборе LCR-781 (Тайвань) при рабочих частотах 1, 5 и 10 кГц через 10 К в интервале 293-483 К. Точность измерения электроемкости, относительной диэлектрической проницаемости и электросопротивления, согласно паспортным данным прибора, равна $\pm 0.05\%$ [13]. Предварительно изготавливался плоскопараллельный образец в виде диска диаметром 10 мм и толщиной 5-6 мм со связующей добавкой. Прессование проводилось под давлением 20 кг/см³. Полученный диск обжигался в силитовой печи при температуре 673 К в течение 6 ч. Затем диск тщательно шлифовался с двух сторон.

Диэлектрическая проницаемость определялась по электроемкости образца. Для получения зависимости между электрической индукцией и напряженностью электрического поля использована схема Сойера—Тауэра. Ширины запрещенной зоны рассчитывалась по формуле

$$\Delta E = \frac{2kT_1T_2}{0.43(T_2 - T_1)} \lg \frac{R_1}{R_2},$$

где k – постоянная Больцмана, 8.6173303 × $\times 10^{-5}$ эВ K⁻¹; R_1 , R_2 – сопротивление при T_1 и T_2 .

Для подтверждения достоверности полученных данных измерена диэлектрическая проницаемость стандартного вещества — титаната бария BaTiO₃ при частотах 1 и 5 кГц. Полученные значения диэлектрической проницаемости BaTiO₃ при 293 К составляют 1296 (при 1 кГц) и 1220 (5 кГц) и удовлетворительно согласуются с рекомендованной величиной 1400 ± 250 [14–16].

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

В табл. 2 и на рис. 2 приведены результаты калориметрических исследований, из которых следует, что при 598 К на кривой зависимости $C_p^{\circ}(T)$ для LaCaCuZnMnO₆ наблюдается λ -образный аномальный скачок теплоемкости, вероятно, связанный с фазовым переходом II рода, обусловленным изменениями магнитных, электрофизических и др. характеристик. График на рис. 2 построен на основании экспериментальных данных по про-

Т, К	$C_p^{\circ}(T) \pm \overline{\delta}, $ Дж/(г К)	$C_p^{\circ}(T) \pm \overset{\circ}{\Delta}, $ Дж/(моль К)
298.15	0.4841 ± 0.0139	222 ± 18
323	0.4873 ± 0.0084	224 ± 11
348	0.5638 ± 0.0068	259 ± 9
373	0.5830 ± 0.0171	267 ± 22
398	0.6181 ± 0.0144	284 ± 18
423	0.6589 ± 0.0150	302 ± 19
448	0.7040 ± 0.0134	323 ± 17
473	0.7633 ± 0.0124	350 ± 16
498	0.7998 ± 0.0096	367 ± 12
523	0.8063 ± 0.0159	370 ± 20
548	0.8205 ± 0.0163	376 ± 21
573	0.8300 ± 0.0163	381 ± 21
598	0.8617 ± 0.0140	395 ± 18
623	0.8058 ± 0.0110	370 ± 14
648	0.8301 ± 0.0151	381 ± 19
673	0.8652 ± 0.0125	397 ± 16

Таблица 2. Экспериментальные значения теплоемкостей LaCaCuZnMnO₆

грамме "KOMПAC-3D LT". С учетом температуры фазового перехода выведены уравнения температурной зависимости теплоемкости медноцинкового манганита, которые описываются следующими полиномами [Дж/(моль K)]:

$$C_{p(1)}^{\circ} = (337 \pm 17) + (166.0 \pm 8.6) \times 10^{-3}T - (145.9 \pm 7.6) \times 10^{5}T^{-2}$$
 (298.15–598 K),

Рис. 2. Температурная зависимость теплоемкости LaCaCuZnMnO₆.

$$C_{p(2)}^{\circ} = (1009 \pm 52) +$$

+ $(1026.4 \pm 53.3) \times 10^{-3}T (598-623 \text{ K}),$
 $C_{p(3)}^{\circ} = (30 \pm 2) + (544.6 \pm 28.3) \times$

$$\times 10^{-3}T$$
 (623–673 K).

Стандартная теплоемкость LaCaCuZnMnO₆ рассчитана также по методу ионных инкрементов [17] и по правилу Коппа—Неймана [18] и полученные значения равны соответственно 232.3 и 230.1 Дж/(моль К), которые согласуются с экспериментальной величиной 222 Дж/(моль К) с точностями 4.4 и 3.5%.

В связи с тем, что технические характеристики калориметра не позволяют рассчитать стандартную энтропию LaCaCuZnMnO₆ непосредственно из экспериментальных данных по теплоемкости, ее значение вычислялось с использованием системы ионных энтропийных инкрементов [17] по схеме:

$$S^{\circ} (298.15, LaCaCuZnMnO_{6}) = S^{i} (La^{3+}) + S^{i} (Ca^{2+}) + S^{i} (Cu^{2+}) + S^{i} (Zn^{2+}) + S^{i} (Mn^{3+}) + 6S^{i} (O^{2-}),$$

где S^i — ионные энтропийные инкременты. При расчете по данной схеме используются энтропийные инкременты следующих ионов [Дж/(моль K)]: $S^i(\text{La}^{3+}) = 40.4$, $S^i(\text{Ca}^{2+}) = 32.0$, $S^i(\text{Cu}^{2+}) = 36.5$, $S^i(\text{Zn}^{2+}) = 34.2$, $S^i(\text{Mn}^{3+}) = 34.7$, $S^i(\text{O}^{2-}) = 11.7$ [17].

Т, К	$S^{\circ}(T) \pm \overset{\circ}{\Delta}, $ Дж/(моль К)	$H^{\circ}(T) - H^{\circ}(298.15) \pm \overset{\circ}{\Delta},$ Дж/моль	$\Phi^{xx}(T) \pm \overset{\circ}{\Delta}, Дж/(моль K)$
298.15	248 ± 7	—	248 ± 20
300	249 ± 21	447 ± 20	248 ± 20
350	288 ± 24	13040 ± 690	251 ± 21
400	327 ± 27	27790 ± 1460	258 ± 21
450	366 ± 30	44120 ± 2320	268 ± 22
500	403 ± 33	61660 ± 3240	280 ± 23
550	438 ± 36	80220 ± 4220	292 ± 24
600	472 ± 39	99630 ± 5240	306 ± 25
650	502 ± 41	118580 ± 6240	320 ± 26
675	517 ± 43	128360 ± 6750	327 ± 27

Таблица 3. Значения термодинамических функций LaCaCuZnMnO₆

Рассчитанное таким образом значение $S^{\circ}(298.15, LaCaCuZnMnO_6) = 248 \pm 7.0 Дж/(моль K).$

На основании экспериментальных данных по теплоемкостям и расчетного значения стандартной энтропии вычислены температурные зависимости $C_p^{\circ}(T)$ и термодинамических функций $S^{\circ}(T)$, $H^{\circ}(T) - H^{\circ}(298.15)$ и $\Phi^{xx}(T)$ LaCaCuZnMnO₆ (табл. 3).

Исследование температурной и частотной зависимостей диэлектрической проницаемости є наноструктурированного LaCaCuZnMnO₆ показывает очень большие значения. Так, при 483 К є LaCaCuZnMnO₆, равные $5.53 \times 10^8 \pm 2.76 \times 10^5$ (при 1 кГц), $4.1 \times 10^7 \pm 2.05 \times 10^4$ (5 кГц) и 1.29 × $\times 10^7 \pm 6.45 \times 10^3$ (10 кГц), превышают аналогичные характеристики эталонного BaTiO₃ при 483 К в 256339 раз (при 1 кГц), в 19522 раз (5 кГц) и в 6145 раз (10 кГц) (табл. 4). В табл. 4 собраны температурные зависимости электросопротивления и ди-электрической проницаемости при частоте 1 кГц.

Таблица 4. Электрофизические характеристики LaCaCuZnMnO₆

Т, К	С, нФ	<i>R</i> , Ом	ε	lgε	lg <i>R</i> [Ом]
293	7.804	337 500	67 399	4.83	5.53
303	8.2832	320200	71 538	4.85	5.51
313	9.0174	293900	77879	4.89	5.47
323	10.634	257000	91841	4.96	5.41
333	12.788	220900	110444	5.04	5.34
343	18.859	176100	162876	5.21	5.25
353	30.879	138300	266687	5.43	5.14
363	46.445	110900	401 123	5.60	5.04
373	90.926	79060	785283	5.90	4.90
383	174.08	56930	1503444	6.18	4.76
393	349.36	39130	3017251	6.48	4.59
403	572.22	28530	4941984	6.69	4.46
413	1195.7	19240	10326676	7.01	4.28
423	2237.1	13410	19320738	7.29	4.13
433	4152.9	9478	35866566	7.55	3.98
443	7630.2	6861	65898305	7.82	3.84
453	12390	5161	107006369	8.03	3.71
463	22183	3734	191 583 720	8.28	3.57
473	35339	2832	305205657	8.48	3.45
483	64081	2012	553436252	8.74	3.30

Большие значения диэлектрической проницаемости LaCaCuZnMnO₆ при 483 К могут обусловливаться, согласно [19], высокими диэлектрическими потерями. В работе [4] установлены гигантские значения диэлектрической проницаемости ($\varepsilon = 10^5 - 10^6$) для керамики La_{15/8}Sr_{1/8}NiO₄ и природу этого явления авторы также объясняют в рамках теории эффекта Максвелла–Вагнера, согласно которому в области промежуточных частот диэлектрические потери велики, так как период колебаний напряженности электрического поля сопоставим со временем релаксации поверхностной поляризации. В рассматриваемом случае исследуемая область находится в пределах 1–10 кГц, которую можно отнести к промежуточным частотам.

Следует отметить, корректность и достоверность полученных результатов подтверждаются точностью работы прибора LCR-781 ($\pm 0.05\%$) и удовлетворительным согласием ε стандартного вещества BaTiO₃, полученного на данной установке с его рекомендованной величиной.

Температурная зависимость электросопротивления показывает полупроводниковый характер проводимости в исследованном интервале температур. Ширина запрещенной зоны равна 0.49 эВ, и LaCaCuZnMnO₆ можно отнести к узкозондовым полупроводникам.

ЗАКЛЮЧЕНИЕ

Впервые получены наноструктурированные частицы медно-цинкового манганита лантана и кальция состава LaCaCuZnMnO₆. В интервале температур 298.15—673 К исследованы температурные зависимости теплоемкости, где при 598 К обнаружен фазовый переход II рода. При 298.15—675 К вычислены температурные зависимости термодинамических функций.

При 293—483 К и частотах 1, 5, 10 кГц исследованы диэлектрическая проницаемость и электросопротивление. Результаты показывают, что полученный материал представляет интерес для микроэлектроники и микроконденсаторной технологии.

Исследование профинансировано Комитетом науки Министерства образования и науки Республики Казахстан (грант № ИРН АР08855601).

СПИСОК ЛИТЕРАТУРЫ

1. Третьяков Ю.Д., Брылёв О.А. Новые поколения неорганических функциональных материалов // Журн. Рос. хим. общ-ва им. Д.И. Менделеева. 2000. Т. 45. № 4. С. 10.

- Третьяков Ю.Д., Гудилин Е.А., Перышков Д.В. и др. Структурные и микроструктурные особенности функциональных материалов на основе купратов и манганитов // Успехи химии. 2004. Т. 73. № 9. С. 954.
- 3. *Кузнецов М.В., Морозов Ю.Г., Белоусова О.В. и др.* Ферромагнитные наночастицы Zn/ZnO // Неорган. материалы. 2014. Т. 50. № 4. С. 399.
- 4. *Ерин Ю*. Найдено вещество с гигантским значением диэлектрической проницаемости // Химия и химики. 2009. № 1. С. 16.
- Солин Н.И., Наумов С.В. Магнитные и электрические свойства слаболегированных манганитов La_{1-x}Ca_xMn_{1-z}O₃ с недостатком марганца // ЖЭТФ. 2013. Т. 143. Вып. 1. С. 166.
- Ковба Л.М., Трунов В.К. Рентгенофазовый анализ. М.: Изд-во МГУ, 1976. 232 с.
- 7. *Кивилис С.С.* Техника измерений плотности жидкости и твердых тел. М.: Стандартгиз, 1959. 191 с.
- 8. Платунов Е.С., Буравой С.Е., Курепин В.В. и др. Теплофизические измерения и приборы. Л.: Машиностроение, 1986. 256 с.
- Техническое описание и инструкции по эксплуатации ИТ-С-400. Актюбинск: АЗ "Эталон", 1986. 48 с.
- Бодряков В.Ю., Быков А.А. Корреляционные характеристики температурного коэффициента объемного расширения и теплоемкости корунда // Стекло и керамика. 2015. № 2. С. 30.
- Касенов Б.К., Касенова Ш.Б., Сагинтаева Ж.И. и др. Термодинамические характеристики кобальто(никелито)-купрато-манганитов LaSrCoCuMnO₆ и LaSrNiCuMnO₆ // TBT. 2020. Т. 58. № 2. С. 208.
- 12. Окадзаки К. Технология керамических диэлектриков. М.: Энергия, 1976. 327 с.
- Руководство по эксплуатации. Измеритель RLC (LCR-781). М.: ЗАО "ПриСТ", 2012. С. 3.
- 14. Фесенко Е.Г. Семейство перовскита и сегнетоэлектричество. М.: Атомиздат, 1972. 248 с.
- 15. Веневцев Ю.Н., Политова Е.Д., Иванов С.А. Сегнето- и антисегнетоэлектрики семейства титаната бария. М.: Химия, 1985. 256 с.
- 16. Лайнс М., Гласс А. Сегнетоэлектрики и родственные им материалы. М.: Мир, 1981. 736 с.
- Кумок В.Н. Проблема согласования методов оценки термодинамических характеристик. В сб.: Прямые и обратные задачи химической термодинамики. Новосибирск: Наука, 1987. С. 108.
- Верятин У.Д., Маширев В.П., Рябцев Н.Г. и др. Термодинамические свойства неорганических веществ. Спр. М.: Атомиздат, 1965. 460 с.
- Барфут Дж. Введение в физику сегнетоэлектрических явлений. М.: Мир, 1970. 352 с.