———— ИССЛЕДОВАНИЕ ПЛАЗМЫ ———

УДК 537.523.5;533.93

ДИФФУЗИЯ И ПЛОТНОСТЬ АТОМОВ В СИЛЬНОИОНИЗОВАННОЙ НЕОДНОРОДНОЙ ПЛАЗМЕ Не

© 2022 г. О. В. Коршунов¹, Д. И. Кавыршин^{1, 2,} *, В. Ф. Чиннов¹

¹ФГБУН Объединенный институт высоких температур РАН (ОИВТ РАН), Москва, Россия ²ФГБОУ ВО "Национальный исследовательский университет "МЭИ", Москва, Россия

**E-mail: dimakav@rambler.ru* Поступила в редакцию 19.06.2019 г. После доработки 27.12.2021 г. Принята к публикации 07.06.2022 г.

Показано, что ключевым звеном кинетики ионизации и рекомбинации сильноионизованной неравновесной плазмы Не атмосферного давления в узком водоохлаждаемом дуговом канале является ионизационно-диффузионный баланс атомов, регулирующий концентрацию атомов n и электронов n_e и поддерживающий близкие к изохорическим условия с высоким уровнем концентрации нейтралов $n \sim n_e$, на два-три порядка превышающим равновесные по Саха значения. С использованием измеренных радиальных зависимостей $n_e(r)$ и T(r) приближенно решена задача о диффузии атомов в бинарной смеси с учетом амбиполярной диффузии электрон-ионного газа как одного из компонентов бинарной смеси. Найдены концентрация атомов в центре дуги и ее радиальная зависимость, сильно растущая при удалении от центра, особенно при мощном импульсном подогреве стационарной дуги. Давление при наложении импульса достигает своего максимума и вдвое превышает атмосферное. Из-за высокой концентрации атомов и разрушения уровней плазменными микрополями тройная рекомбинация в десятки раз слабее амбиполярной диффузии. Одним из следствий преобладания амбиполярной диффузии в кинетике заряженных частиц является низкая плотность двукратных ионов $n^{++}/n^+ \sim 10^{-3}$.

DOI: 10.31857/S0040364422040135

введение

Уже в работах 60-x-90-x годов прошлого века по исследованию сильноионизованной неоднородной гелиевой плазмы [1-3] отмечается важная роль амбиполярной диффузии в установлении ее неравновесных параметров, однако авторам неизвестны попытки включения процессов диффузионного переноса в численную кинетическую модель неравновесной плазмы гелия.

Сильноионизованная дуговая плазма гелия атмосферного давления с диаметром токового канала около 2 мм исследовалась в серии недавних работ [4-8], где показано, что высокая пространственная неоднородность параметров плазмы, обусловленная узостью водоохлаждаемого канала, диаметр которого составлял 3.5 мм, является причиной ионизационной неравновесности сильноионизованной приосевой плазмы разряда, несмотря на большую плотность зарядов $(n_{\rho} \sim 10^{17} \text{ см}^{-3})$ и высокую степень ионизации $(n_c/n > 1)$. В [4] предложена кинетическая модель, описывающая параметры такой плазмы, основанная на спектральных данных и модифицированном диффузионном приближении (МДП) [9]. В [5] на этой основе разработаны методы определения температуры электронов в неравновесных условиях и найдены ее значения на оси дуги в разных токовых режимах ($T_e = 3.2-4.2$ эВ). В [6] с хорошей точностью измерена концентрация электронов, а в [7, 8] получены радиальные профили концентрации и температуры электронов. При этом характеристики нейтральной компоненты плазмы — концентрации атомов в основном состоянии и их температуры — надежно измерить методами эмиссионной спектроскопии в [4–8] не удалось.

Однако в неравновесной кинетике протекающих в пространственно-неоднородных условиях процессов атомы Не играют не менее важную роль, чем электроны, и вопрос об их концентрации и температуре в сильноионизованной неравновесной плазме требует своего разрешения. Поэтому целью настоящей работы является нахождение плотности атомов n и ее зависимости от радиуса n(r) на основе измеренных характеристик свободных электронов: радиальных распределений $n_e(r)$ и $T_e(r)$. Для этого необходимо решить кинетическое уравнение баланса атомов Не, которое не было включено в кинетическую модель [4, 5]. В сильно неоднородной плазме оно определяется процессами переноса, регулируя пространственные потоки частиц. Поскольку неоднородность существует только в направлении, поперечном дуговому каналу, рассматривается только радиальная диффузия заряженных и нейтральных частиц.

КИНЕТИКА ПРОЦЕССОВ

Совместная (амбиполярная) диффузия ионов и электронов называлась в [4-8] и других более ранних работах [3] главным следствием поперечной неоднородности, приводящим к ионизационному неравновесию – неожиданной особенности сравнительно плотной и высокоионизованной плазмы Не. Рассмотрим кинетику процессов такой плазмы в соответствии с представлениями, развитыми в [4]. Ее определяют потоки возбуждения и ионизации, идущие ступенчато из основного состояния атома. В отличие от равновесной плазмы потоки "вниз" (тройная рекомбинация и девозбуждение) пренебрежимо малы. За все параметры плазмы на оси дуги отвечает замкнутая цепочка элементарных и диффузионных процессов. Это процессы возбуждения

$$He + e \to He^* + e, \tag{1}$$

ионизации

$$\text{He}^* + e \rightarrow \text{He}^+ + e$$
,

амбиполярной диффузии

 $He^+ + e \rightarrow$ рекомбинация на стенках (2)

и встречной диффузии атомов

периферия плазмы \rightarrow He.

Они входят в уравнения баланса электронов (и ионов He⁺)

$$Q_{\rm ct} = Q_{\rm m} \tag{3}$$

и возбужденных атомов

$$K_{01}n_en = Q_{\rm cr},\tag{4}$$

где Q_{cr} — скорость образования электронов и ионов в процессах ступенчатой ионизации атомов¹ [4], Q_{π} — скорость исчезновения электронов и ионов вследствие их амбиполярной диффузии, K_{01} — константа скорости возбуждения электронами основного состояния атома He, в см³/с. В МДП [9] это переход 0–1:

$$K_{01} = 8.7 \times 10^{-6} \Lambda_1 / \left[E_1 T_e^{0.5} \varepsilon \exp\left(E_1 / T_e\right) \right] \approx$$
$$\approx 3 \times 10^{-11} / \varepsilon.$$

Здесь $E_1 = 20.78 \ \text{эB}$ – энергия первого объединенного состояния возбужденного атома, $\Lambda_1 \approx 0.05$ – логарифм связанных состояний [9]; численные значения даны для $T_e = 3.5$ эВ. Для расчета при других температурах необходимо воспользоваться приведенным в [9] графиком $\Lambda(T_e/E)$ (рис. 4.4). В диапазоне значений T_e/E_1 , соответствующем диапазону $T_e = 3-5$ эВ, применима аппроксимация $\Lambda_1 = 0.4T_e/E_1 - 0.185$. Параметр є отражает вклад неучтенных процессов, главным образом девозбуждения атомов. Несмотря на ослабление ступенчатой ионизации из-за разрушения уровней плазменными микрополями (см. ниже), в рассматриваемых условиях он близок к единице $\varepsilon = 1.04$.

Последнее уравнение, которое будет решаться, это уравнение баланса нормальных атомов, являющееся суммой уравнений (3) и (4):

$$Q_{\rm II} = K_{01} n_e n. \tag{5}$$

Его можно получить также из следующих соображений. Стационарному состоянию плазмы отвечает нулевой результирующий поток диффузии. В бинарной смеси, какой можно считать данную среду, рассматривая ее как смесь ионов и атомов, это означает, что поток амбиполярной диффузии должен уравновешиваться встречным потоком диффузии атомов с периферии плазмы, где их температура ниже, а плотность много выше, чем на оси. Поскольку это единственный поток, который приводит к появлению атомов в центре дуги и тем самым уравновешивает поток их возбуждения электронным ударом, то приходим к уравнению (5).

Несмотря на кажущуюся простоту представленной кинетической модели, она отражает всю совокупность неупругих *e*–*a*-процессов заселения и расселения атомных уровней и с высокой точностью согласуется с экспериментальными данными (см. ниже).

Остановимся на двух важных для последующих выкладок вопросах.

Первый — соотношение электронной и атомной температур. Преобладание заряженных частиц обусловливает преобладание электронной теплопроводности в энергетике плазмы [9–12]. Ионная и атомная ($n \le n_e$) теплопроводность, ответственная за упругие потери и, следовательно, за отрыв T_e от T_a , в ~(M/m_e)^{0.5} ~ 100 раз слабее. Вследствие этого разность температур в рассматриваемых условиях не более ~0.1 эВ. Поскольку средняя температура в центре стационарной дуги велика (3.5 эВ [5]), такая незначительная разность означает изотермическое равновесие плазмы $T_e \approx T_a = T$.

Второй – неизобарность процесса диффузии в стационарном состоянии плазмы. Кинетическое решение с данными проведенного авторами эксперимента, как будет видно из дальнейшего, обнаруживает радиальный перепад давления (~0.2 атм) между центром и периферией дуги, который следует пояснить. Этот перепад обуслов-

¹ При наличии существенного рекомбинационного потока $Q_{\text{рек}}$ под $Q_{\text{ст}}$ следует подразумевать разность $Q_{\text{ион}} - Q_{\text{рек}}$.

лен газодинамикой дуги, связанной со способом подачи рабочего тела в плазменный канал. Гелий поступает в катодную область горения дуги с закруткой, проходя через узкое горло диаметром 4 мм в расширяющийся анодный канал с углом раскрытия 12° [13]. Расстояние от острия катода до оптической оси – не более 1 мм, так что наблюдается участок дуги диаметром не более 2 мм, стабилизируемый круговым газовым вихрем и расширяющимся каналом с холодной стенкой диаметром 4-4.5 мм. Для прокачки плазменного потока, нагреваемого дугой длиной 10-15 мм до температуры $T_{cp} \ge 20000$ K, необходимо было обеспечить избыточное давление в катодной области ≥0.5 атм. При таких условиях незначительные радиальные перепалы давления, компенсирующие газодинамические потоки, главным образом быстрое вращение плазмы на периферии, неизбежны.

УРАВНЕНИЕ ДИФФУЗИИ

Прежде чем приступить к решению уравнения диффузии (5), следует отметить, что определяющая его амбиполярная диффузия в низкотемпературной плазме анализировалась в ряде монографий и учебников (см., например, [11, 12, 14, 15] и цитируемую там литературу) применительно к слаботочной разрядной плазме низкого давления. Диффундирующие заряженные частицы рассматривались как малая примесь в разреженной среде, что неприменимо к условиям исследуемой в данной работе плотной сильноионизованной плазмы с преобладанием заряженных частиц (электронов и ионов He⁺).

Для решения общей задачи о диффузии в бинарной смеси газов необходимо воспользоваться кинетической теорией процессов переноса в равновесных газах [16—18]. Метод Чепмена—Энскога с использованием разложения по полиномам Сонина позволяет из решения уравнения Больцмана в первом приближении вывести законы переноса вещества и энергии и найти соответствующие им коэффициенты переноса, включая диффузию. Для бинарной смеси массовые потоки диффузии газов равны между собой и выражаются в виде [16]

$$m_1 n_1 V_1 = -m_2 n_2 V_2 =$$

$$= -[m_1 m_2 N^2 / (m_1 n_1 + m_2 n_2)] D \operatorname{grad}(n_1 / N),$$
(6)

где m_i – атомные массы; n_i – плотности; V_i – скорости диффузионных потоков газов, $i = 1, 2; N = n_1 + n_2; D$ – коэффициент диффузии атомов, который зависит от тепловой скорости и длины пробега между упругими столкновениями атомов 1 и 2 друг с другом [16].

=

Здесь не приведены термодиффузионный член и градиент давления, несущественные в рассматриваемых условиях. По авторским оценкам, они не превышают 6–10% от главного диффузионно-

го потока, ослабляя его. При этом термодиффузия носит сложный характер, уменьшаясь с ростом r до нуля на границе центральной зоны $(r \sim 0.5 \text{ мм})$ и далее меняя знак, так что она почти компенсирует линейную зависимость коэффициента диффузии D от скорости, которая, напротив, ослабляет диффузионный поток с ростом r. Поэтому в дальнейшем эта зависимость тоже не будет учитываться. Не учтены в (6) также внешние силы и радиальные газодинамические потоки, которыми можно пренебречь с еще большей точностью.

Применим уравнение (6) к исследуемой плазме, в которой один из диффундирующих газов включает в себя две неразрывные составляющие ионы и электроны, так что общая плотность среды равна

$$N = n + 2n_e$$
.

В силу пренебрежимо малой массы электронов, атомная масса ионно-электронного газа равна половине массы атома (иона) гелия M/2, а общая плотность массы среды составляет $(m_1n_1 + m_2n_2) =$ $= M(n + n_e)$. Подставив эти выражения в (6) и сократив массы, получаем потоки диффузии частиц

$$nV = -n_eV_e = -[N^2/2(n+n_e)]Dgrad(n/N).$$

При этом по определению $grad(n/N) = -grad(2n_e/N)$. Удвоение здесь концентрации электронов равносильно удвоению коэффициента диффузии, что является особенностью амбиполярной диффузии [11, 14, 15]. Однако это удвоение компенсируется отношением масс и в окончательное выражение для потока не входит. В неизотермической плазме двойка в числителе заменяется величиной $1 + (T_e/T_a)$.

Учитывая только радиальный градиент долей плотности газа и дифференцируя их по радиусу *r*, окончательно получаем для потока диффузии

$$nV = -n_e V_e = -D_0 (n_e n' - nn'_e) / (n + n_e)^2.$$
(7)

Здесь штрихом обозначена производная по радиусу, $D_0 = C_V / \sigma$ – не зависящая от плотности часть коэффициента диффузии, $v = (2T/m)^{0.5}$ – скорость атома (иона). $\sigma \approx 3 \times 10^{-15}$ см² – транспортное сечение рассеяния атома на ионе (и наоборот), основной вклад в которое вносит резонансная перезарядка ионов на атомах [11, 14, 19] и малый - поляризационное взаимодействие атомов и ионов [11] (по оценкам ~15%). Вкладом электронов пренебрегаем из-за малости соотношения масс, поэтому $D = D_0/(n + n_e)$, а не D_0/N . Постоянная $C \approx 3^{1.5} \pi^{0.5} / 16 \approx 0.58$ рассчитана в соответствии с [14] в первом приближении разложения по полиномам Сонина. Использовалась модель твердых сфер, поскольку σ очень слабо зависит от скорости (это касается и резонансной перезарядки [10], и поляризационного рассеяния при *T* > 4000 К [11]). В первом приближении диф-

2022

фузионный коэффициент бинарной смеси, как видим, определяется взаимодействием ее компонент, но зависит только от суммы их концентраций. Второе и последующие приближения, как и термодиффузия, дают прибавку всего на 2%, но чрезвычайно усложняют выкладки и здесь не рассматриваются.

Теперь можно записать уравнение (5) в конкретном виде, дифференцируя скорость диффузии (7) в цилиндрических координатах [20] для получения объемной скорости появления атомов на оси плазменного канала

$$Q_{\pi} = -\operatorname{div}(nV) =$$

$$= r^{-1} [rD_0(n_e n' - nn'_e)/(n + n_e)^2]' = K_{01}n_e n.$$
(8)

Знак "штрих" по-прежнему означает дифференцирование по *r*.

ДВУКРАТНЫЕ ИОНЫ

В общий поток диффузии малый вклад вносят двукратные ионы гелия (α-частицы). Соответствующая этому вкладу скорость возбуждения однократных ионов $K_{01}^+ n_e^2$ не учтена в правой части уравнения (8) из-за малости константы скорости $K_{01}^+ \sim 10^{-3} K_{01}$ (энергия возбуждения иона $E_1^+ = 40.81$ эВ вдвое больше, чем у атома). Несмотря на малую плотность ($n^{++} \ll n^+ = n_e$), двукратные ионы оказываются важной составляющей сильноионизованной плазмы, поскольку через них идет заселение верхних уровней Не+*, излучающих в диапазоне ультрафиолетовой, видимой и ближней инфракрасной областях спектра, используемых при спектральной диагностике температуры плазмы [5]. Спектральные измерения плотности *n*⁺⁺ невозможны из-за отсутствия электронных уровней. Поэтому вопрос об их концентрации является вопросом кинетики данной плазмы. Ответ на него можно получить из подобного (8) уравнения, записанного для потока амбиполярной диффузии ионов He⁺⁺, в котором в правой части стоит скорость возбуждения ионов $K_{01}^+ n_e^2$.

Левая часть этого уравнения в данном случае малой примеси He^{++} и равенства масс совместно диффундирующих ионов разной кратности ионизации должна быть, как представляется, подобна левой части (8), только пропорциональна n^{++} . Следует отметить, что в общем случае совместной диффузии легких и тяжелых ионов с близкими плотностями вместо (8) получается сложное нелинейное выражение [21].

Тогда из сопоставления этих уравнений для n^+ и n^{++} при $n \sim n_e$ можно получить грубую оценку концентрации двукратных ионов $n^{++}/n_e \sim K_{01}^+/K_{01} \sim 10^{-3}$. Это оценка сверху, так как вследствие втрое меньшего сечения рассеяния на атомах диффузия He^{++} происходит втрое быстрее, чем He^+ . Кроме того, вместе с двукратным ионом диффундируют два электрона, отчего появляется еще численный сомножитель 1.5, так что двукратных ионов будет еще почти впятеро меньше. При этом в равновесии по Саха между основными состояниями ионов He^+ и He^{++} получаются на ~2 порядка большие n^{++} во всем объеме приосевой плазмы.

В силу ничтожно малой концентрации этими ионами в дальнейшем будем пренебрегать.

РАДИАЛЬНЫЕ РАСПРЕДЕЛЕНИЯ ПАРАМЕТРОВ

Рассмотрим зависимости от r, входящие в уравнение (8): измеренные $n_e(r)$, $T_e(r)$ и искомую n(r). Сразу оговорим, что интерес представляет главная приосевая область плазмы, для которой получены приведенные экспериментальные данные. Радиальные распределения концентрации и температуры электронов приведены на рис. 1 и 2. При $r \le 0.5$ мм концентрацию электронов с хорошей точностью можно аппроксимировать квадратичной зависимостью от радиуса

$$n_e(x) = n_e^0(1 - x^2),$$
(9)

где $x = r/\rho$; $\rho \approx 0.8-0.85$ мм — характерный радиус плазменного канала; а $n_e^0 = (8.66-9.39) \times 10^{16}$ см⁻³ плотность электронов в центре разряда для исследовавшихся токовых режимов дуги 200–400 A [4–8]. Здесь и далее верхним индексом 0 отмечаются параметры при x = 0.

При r > 0.5 мм начинается зона периферийной плазмы, в которой экспериментальные кривые $n_e(r)$ становятся слабо спадающими функциями

Рис. 1. Концентрация электронов в плотной сильноионизованной дуговой плазме Не при токах 200 (*1*, *3*) и 400 A (*2*, *4*): сплошные кривые – эксперимент, штриховые – аппроксимация (9) с $\rho = 0.8$ мм (200 A) и 0.85 мм (400 A).

(рис. 1). Температура электронов ведет себя более сложным образом (рис. 2). При r > 0.1 мм она линейно связана с r, но в окрестности r = 0 описывается квадратичной зависимостью. Следует полагать, что в области $r \le 0.5$ мм и концентрация атомов, как второй участник взаимосвязанного диффузионного процесса, подчиняется квадратичной зависимости от r. При этом специфика уравнения диффузии (8) такова, что возможности использования других аппроксимаций ограничены. Например, если подставить в него степенные зависимости *n* = $= n(r^{\eta})$, то левая часть уравнения (8) при r = 0 будет равна либо нулю ($\eta > 2$), либо бесконечности $(\eta < 2)$. Поэтому степенные зависимости с $\eta < 2$ неприемлемы, а с $\eta > 2$ могут применяться только как поправка к квадратичным аппроксимациям типа (9), не дающая вклада при x = 0.

Функция n(r), в отличие от остальных, растущая, причем этот рост должен быть сильнее, чем спад $n_e(r)$, чтобы в процессах диффузии скомпенсировать преобладание заряженной компоненты над нейтральной в центре дуги и охлаждение газа с ростом *r*. Учитывая все вышесказанное, будем искать решение уравнения (8) в виде

$$n(x) = n^{0} \left[1 + (\xi - 1) x^{2} \right], \tag{10}$$

где ξ > 1 — важная физическая постоянная дуги данного типа, зависящая, как увидим далее, только от параметров плазмы на оси.

РЕШЕНИЕ УРАВНЕНИЯ ДИФФУЗИИ

Таким образом, в уравнении (10) есть две неизвестные величины — плотность атомов n^0 при x = 0 и постоянная ξ , которые надо найти из уравнения диффузии (8). Это сложное дифференциальное уравнение, которое можно лишь свести к общему уравнению Риккати, не имеющему в данном случае решения [22], удается тривиально решить благодаря известному из эксперимента радиальному профилю (9) и зависимости (10). Подставляя их в уравнение (8), после первого дифференцирования получаем

$$\frac{2n_e^0 n^0 \xi}{x \rho^2} D_0 \frac{d}{dx} \left\{ \frac{x^2}{\left[n(x) + n_e(x) \right]^2} \right\} = K_{01} n_e n.$$

Здесь в связи с компенсацией термодиффузией (см. пояснение к уравнению (б)) зависимостью коэффициента диффузии от скорости пренебрегаем. После второго дифференцирования получаем

$$\frac{4n_{e}^{0}n^{0}\xi D_{0}}{\rho^{2}\left[n(x)+n_{e}(x)\right]^{2}} \times \\ \times \left[\frac{n_{e}^{0}+n^{0}-x^{2}\left(n^{0}\xi-n_{e}^{0}\right)}{n_{e}^{0}+n^{0}+x^{2}\left(n^{0}\xi-n_{e}^{0}\right)}\right] = K_{01}n_{e}n$$
(11)

и, полагая x = 0 (выражение в квадратных скобках равно единице), находим главный параметр зада-

Рис. 2. Температура электронов в плотной сильноионизованной дуговой плазме Не: 1, 2 -экспериментальные данные из [5] при токах 200 и 400 A соответственно; 3, 4 -расчет по (13) при значениях T, соответствующих r = 0 и 0.5 мм; наибольшее отклонение +1% при r = 0.25 мм и токе дуги 400 A.

чи, определяющий радиальный рост концентрации атомов в уравнении (10)

$$\xi = K_{01}^0 (n^0 + n_e^0)^2 \rho^2 / 4D_0.$$
 (12)

Он зависит только от осевых характеристик плазменного канала: суммарной концентрации атомов и ионов, а также отношения константы скорости электронного возбуждения (1) к коэффициенту радиальной диффузии (2). Поэтому фактор ξ можно назвать ионизационно-диффузионным регулятором *n* (возбуждение атомов при данных *T* фактически означает их ионизацию). Он является достаточно универсальной величиной. При введении в (10) поправки более высокой степени x^{η} ($\eta > 2$) выражение (12) не изменяется. Не изменяется оно также и при уменьшении области определения аппроксимации (9) вплоть до самых минимальных размеров.

Из (11), (12) окончательно получаем выражение, связывающее концентрации и температуры при $r \le 0.5$ мм и r = 0:

$$\frac{K_{01}n_en}{K_{01}^0n_e^0n^0} = \frac{1-\xi^*x^2}{\left(1+\xi^*x^2\right)^3},\tag{13}$$

где правая часть записана с использованием уменьшенной модификации ионизационно-диффузионного регулятора

$$\xi^* = \xi n^0 / (n^0 + n_e^0) - 1 =$$

$$= (K_{01}^0 (n^0 + n_e^0) n^0 \rho^2 / 4D_0) - 1.$$
(14)

ПЛОТНОСТЬ АТОМОВ И СОСТОЯНИЕ ПЛАЗМЫ

Теперь, зная температуру электронов в двух точках – r = 0 и $r \le 0.5$ мм (рис. 2), по уравнению

2022

(13) можно рассчитать искомую концентрацию атомов в центре дуги n^0 .

Выбирая крайнюю точку области определения аппроксимации (9) r = 0.5 мм, для токов дуги 200–400 А численным решением уравнения (13) получаем $n^0 = (7.7-4.9) \times 10^{16}$ см⁻³, что всего в 1.1–2 раза меньше $n_e^0 = (8.66-9.39) \times 10^{16}$ см⁻³ (в равновесной плазме при прочих равных условиях *n* меньше n_e на три порядка²). Тогда из (12) $\xi =$ = 3.5-5.2. Подставляя эти значения ξ в (10), видим, что зависимость n(x) действительно сильнее, чем $n_e(x)$ из (9). Обе эти зависимости приведены на рис. 3. Если $n_e(x)$ в пределах области определения аппроксимации падает в ~1.5 раза, то n(x) растет в 2–2.5 раза. При r = 0.5 мм *n* становится уже в два–три раза больше n_e .

Данные расчетов приведены в таблице, где указаны измеренные (T_e и n_e) и рассчитанные (n и ξ) параметры для r = 0 и 0.5 мм. Несмотря на удвоение тока дуги изменение большинства параметров плазмы невелико (только n и ξ изменяются в ~1.5 раза).

Погрешность данного метода вычисления параметров плазмы определялась сравнением результатов расчета, полученных для разных пар *r*. Самые большие отклонения от приведенных выше значений, рассчитанных для пары r = 0 и 0.5 мм, получаются по (13) при выборе пары r = 0 и 0.25 мм. При этом погрешность определения ξ , n^0 и *n* с током дуги 200 А ничтожна (~0.1%), а с током дуги 400 А составляет 5–11%, что не превышает ошиб-

Рис. 3. Распределение по радиусу концентраций частиц плазмы при разных токах дуги; общая концентрация плазмы *N*: *1* – импульсный нагрев, *2* – 200 A, *3* – 400; концентрация электронов n_e : *4* – импульсный нагрев, *5* – 400 A, *6* – 200; концентрация атомов *n*: 7 – 200 A, *8* – 400, *9* – импульсный нагрев.

ки эксперимента и, скорее всего, порождена этой ошибкой.

Погрешность расчетных значений температуры определялась с использованием полученных выше параметров для r = 0 и 0.5 мм. Результаты расчета температурного распределения по уравнению (13) приведены на рис. 2. Они практически совпадают с экспериментальным распределением. Максимальное отклонение составляет всего 1% и тоже имеет место при r = 0.25 мм и токе дуги 400 А.

Зная плотность атомов и электронов, можно найти общую плотность среды $N = n + 2n_e$ и ее радиальную зависимость N(r). Рассчитанные при разных r и приведенные в таблице значения Nпрактически совпадают (рост N с радиусом составляет ~3%). То же постоянство общей плотности плазмы видим и на рис. 3, где показаны радиальные зависимости всех трех плотностей N, n и n_e . Для расчета n при r > 0.5 мм предполагалось, что независимость N от радиуса сохраняется (штриховые линии).

Полученный результат проверялся на устойчивость варьированием как характеристик процессов (K_{01} и D_0), так и параметров плазмы (n_e и T) в больших, даже маловероятных пределах (рассматривались изменения в несколько раз). Решение уравнения (13) при этом давало слабые изменения перепада давления, сопровождающиеся сильными изменениями давления на оси, вплоть до физически невероятных результатов (например, изобарическое равновесие в стационарной дуге получалось при p = 4 атм).

Таким образом, экспериментально-теоретически обнаружено постоянство общей плотности N = const, которое является важной особенностью радиального распределения частиц плазмы, позволяющей упростить его анализ и получить доказательство правильности параболического решения (10). Рассмотрим это подробней.

Равенство N = const с учетом аппроксимации (9) приводится к виду, подобному уравнению (10)

$$n(x) = n^0 \left[1 + 2(n_e^0/n^0) x^2 \right],$$

т.е. той же параболической зависимости от x. Здесь фактор ξ становится отношением N^0/n^0 , подтверждая свой физический смысл регулятора концентраций. Связанный с ним параметр уравнения (13) в соответствии с (14) принимает вид

$$\xi^* = n_e^0 / (n^0 + n_e^0).$$

Полученные выражения показывают, что для данных $n^0 < n_e^0$ параметр ξ^* изменяется слабо, в пределах 0.5–1 при любом росте тока (при токах 200–400 A $\xi^* = 0.65-0.77$), а фактор $\xi \sim 1/n^0$ имеет большой диапазон изменений, как и n^0 .

Поскольку условие N = сопst выявлено в обоих токовых режимах, следует полагать, что оно свой-

ДИФФУЗИЯ И ПЛОТНОСТЬ АТОМОВ

<i>I</i> , A	200		400		Импульс	
<i>r</i> , мм	0	0.5	0	0.5	0	0.5
<i>Т</i> , эВ	3.3	2.9	3.6	2.9	4.2	3.0
$n_e, {\rm cm}^{-3}$	8.7×10^{16}	5.4×10^{16}	9.4×10^{16}	6.2×10^{16}	1.5×10^{17}	1.3×10^{17}
<i>n</i> , см ⁻³	7.7×10^{16}	1.5×10^{17}	4.9×10^{16}	1.2×10^{17}	7×10^{15}	4×10^{16}
<i>N</i> , см ⁻³	2.5×10^{17}	2.6×10^{17}	2.4×10^{17}	2.4×10^{17}	3×10^{17}	3×10^{17}
р, атм	1.3	1.1	1.4	1.2	2.1	1.4
α	0.06	0.06	0.05	0.07	0.1	0.4
ξ	3.5		5.2		42	
ρ, мм	0.8		0.85		1.5	

Параметры дуговой плазмы Не при разных энерговкладах в двух точках канала

Примечание. *Т* и *n_e* – экспериментальные данные; *n*, ξ и α – из формул (10), (12) и (15) соответственно; параметр α рассматривается в последнем разделе статьи.

ственно прикатодной области сильноточной гелиевой дуги в узком канале с системой закрученного впуска газа. Это будет использовано ниже для анализа плазмы с дополнительным импульсным нагревом. Какого-то особого физического смысла, как представляется, оно не несет, просто N растет с радиусом немного медленнее, чем при изобарическом равновесии так, что давление, в соответствии с уравнением состояния, слабо спадает пропорционально температуре (на ~15%).

Параметры газа на оси канала в рассматриваемом диапазоне токовых режимов дуги $T^0 = 3.31-3.61$ эВ, $N^0 = (2.5-2.37) \times 10^{17}$ см⁻³ соответствуют давлению $p^0 = 1.31-1.36$ атм. Вдоль радиуса дуги давление падает до 1.1-1.2 атм при r = 0.5 мм, так что перепад давления между центром и границей приосевой плазмы катодной зоны ~0.2 атм. Оценки показывают, что силы сжатия собственным магнитным полем [23–25] в стационарных дугах атмосферного давления при исследованных токах 200–400 А незначительны.

РОСТ ТЕМПЕРАТУРЫ ПРИ ИМПУЛЬСНОМ ПОДОГРЕВЕ

Представляет интерес вопрос о концентрации атомов при увеличении температуры. В работах [6–8] описывается способ и результаты дополнительного импульсного подогрева рассматриваемой здесь стационарной плазмы килоамперным импульсом длительностью 1 мс до температуры электронов на оси $T^0 = 4.2$ эВ [5]. Концентрация электронов при этом достигала величины $n_e^0 = 1.47 \times 10^{17}$ см⁻³ [6–8]. Радиальные профили T и n_e при импульсном разряде в [6–8], к сожалению, измерить не удалось. Следует полагать, что они подобны изображенным на рис. 1 и 2, только с

бо́льшим характерным радиусом ρ , поскольку в стационарной плазме рост тока приводил к росту ρ (см. рис. 1 и таблицу). Уравнение (13) при этом содержит три неизвестных величины: T(r), n^0 и ρ . Полагая, что полученное выше условие N = const распространяется и на рассматриваемый случай, исключаем одно из неизвестных. Для решения уравнения (13) этого недостаточно.

Найдем оценочное решение данного уравнения на основе анализа полученных выше результатов и характера взаимозависимостей искомых величин. Для этого сначала решим (13) с минимально возможным $\rho = 1$ мм. При r = 0.5 мм находим T = 2.86 эВ. Такая же температура получается в стационарной плазме при минимальном токе 200 А (см. таблицу и рис. 2). Это заниженное значение, поскольку даже при 400 A имеем T = 2.94 эB, не говоря уже о дополнительном импульсном подогреве. Но и сверху величину Тограничивает сильная температурная зависимость $K_{01}(T)$, содержащаяся в уравнении (13). Решая его для других о, обнаруживаем, что четырехкратному росту р от 1.5 до 6 мм соответствует малое изменение T от 3 до 3.1 эВ. Дальнейшего роста температуры уравнение (13) не дает, так как зависимость от р в нем исчезает при $\rho \rightarrow \infty (x \rightarrow 0)$. Это позволяет достаточно надежно оценить Т, исходя из того, что большие значения р исключаются из рассмотрения, так как превосходят радиус сопла плазмотрона (~2 мм). Меньшее из рассмотренных значение $\rho = 1.5$ мм находится в допустимых пределах. Отсюда следует, что наиболее вероятной температурой при r = 0.5 мм является T = 3 эВ, превышающая свой аналог в стационарной дуге на ~0.1 эВ.

Приведенные в таблице n_e , n и T при r = 0.5 мм рассчитаны для $\rho = 1.5$ мм. С этим же характерным радиусом на рис. 3 штриховой линией при-

ведены зависимости $n_e(r)$ и n(r), соответствующие (9) и (10). При этом плотность атомов на оси $n^0 =$ = 7 × 10¹⁵ см⁻³ получается на порядок меньше, чем до импульса, который накладывался на стационарный разряд при 400 А, но на два порядка больше равновесного значения (из-за роста n_e^0 и T^0 неравновесность несколько ослабевает). Отметим, что в соответствии с экспериментальными данными (см. рис. 3 и таблицу) плотность электронов на оси при наложении импульса возрастает всего в ~1.6 раза.

Рост n_e^0 и еще в большей степени спад n^0 приближают плазму к состоянию полной ионизации, но это еще далеко не та плазма, которая рассматривается в [10]. Большая степень ионизации (95%) локализована в малой окрестности оси разряда, куда идет мощный радиальный поток диффузии атомов, дающий начало развитой кинетике их возбуждения и ионизации. Уже на расстоянии 0.5 мм от оси говорить о полной ионизации плазмы не приходится.

Из таблицы видно, что при импульсном подогреве регулятор ξ увеличивается в ~10 раз и $n(x) \approx n^0(1 + 41x^2)$ становится очень сильной функцией. При r = 0.5 мм концентрация n(x) вырастает в ~6 раз. Так же сильно (от 0.05 до 0.3) изменяется отношение n/n_e , характеризующее степень ионизации плазмы.

СОПОСТАВЛЕНИЕ ПАРАМЕТРОВ

Приведенные на рис. 3 радиальные зависимости плотностей электронов и атомов для трех рассмотренных случаев показывают, что чем больше T^0 и n_e^0 в центре дуги, тем меньше n^0 , но тем круче функция n(x), так что во всех случаях при $r \ge 0.5$ мм плотность атомов достигает значительной величины (см. также таблицу).

При наложении импульса общая плотность плазмы в центре канала $N^0 = 3 \times 10^{17}$ см⁻³ почти на 98% определяется заряженными частицами, поэтому давление практически не зависит от $n^0 - p^0 \approx 2$ атм. Из-за этого дальнейшее увеличение T^0 может, по-видимому, приводить к уменьшению n_e^0 , а не увеличению давления. Перепад давления между катодной зоной и атмосферой, а также по радиусу дуги в этом случае весьма значителен (см. таблицу).

Таким образом, главными следствиями повышения температуры рассматриваемой плазмы являются снижение плотности атомов, сопровождающееся усилением ее радиального роста и повышением давления. Кроме этого, сравнение параметров плазмы в трех рассматриваемых токовых режимах дуги (см. рис. 1-3 и таблицу) показывает, что с ростом энерговклада абсолютные величины *T*, n_e и *p* растут, *n* уменьшаются, а *N* проходят через минимум. При этом ослабляется только одна зависимость от радиуса $n_e(r)$, а зависимости T(r), n(r) и p(r) усиливаются.

ТРОЙНАЯ РЕКОМБИНАЦИЯ

В заключение используем полученные значения *n* для расчета отношения скоростей диффузии и тройной рекомбинации, чтобы подтвердить сделанный в [4] вывод о несущественности последней. Константу скорости тройной рекомбинации для возбужденных уровней атома рассчитаем с помощью МДП [9]

$$\alpha_{\rm T} = 5.4 \times 10^{-27} T_e^{-4.5} W / \chi (I_1 / T_e) =$$

= 1.1 × 10⁻²⁸ W m³/c.

Здесь $T_e = 3.5 \ \text{эB}$, $I_1 = 3.8 \ \text{эB}$ – энергия ионизации первого объединенного уровня He*; $\chi(I_1/T_e) = 0.175$ – его ионизационная недонаселенность в диффузионном приближении [9]; $W \approx 0.1$ – коэффициент неидеальности, учитывающий вероятностное существование уровней в ионном микрополе плазмы [26–31]. Этот коэффициент требует дополнительных пояснений (см. [4]).

Разрушение уровней квазистатическими плазменными микрополями приводит к замедлению тройной рекомбинации и ступенчатой ионизации, которые носят аддитивный характер. О подавлении столкновительной рекомбинации в разных средах как проявлении неидеальности плазмы сообщалось в работе [31]. Численные оценки такого ослабления рекомбинации и ионизации связаны с решением кинетической задачи о заселении разрушаемых верхних уровней. Здесь сделаем простые оценки на основании очевидной связи между уменьшением числа возбужденных состояний и суммарной скоростью тройной рекомбинации (каждое состояние является отдельным каналом рекомбинации).

При резком ионизационном спаде населенностей высоковозбужденных уровней атома Не, обнаруженном в [4, 5, 26] и показанном на рис. 4, можно применить модель ступеньки, учитывая в первом приближении только уровни ниже порога разрушения $I^* \sim 1$ эВ и считая, что в переходную область $0-I^*$ рекомбинация не идет, так как уровни там не реализуются. Распределения населенностей на оси стационарной дуги с $n_e^0 \approx 9 \times 10^{16}$ см⁻³, приведенные на рис. 4, характеризуются величиной $I^* \approx 0.8$ эВ. Ниже этого порога насчитывается k = 30уровней, включая уровни с главным квантовым числом 4 [32].

При импульсном подогреве дуги распределение населенностей, подобное изображенному на рис. 4, не измерялось. Оценим порог I^* следующим образом. В соответствии с зависимостью вероятности сохранения уровней в плазменном микрополе от n_e и главного квантового числа [28–30] порог разрушения уровней зависит только от концентрации электронов: $I^* \sim n_e^{1/3}$. Тогда, отталкиваясь от полученной выше величины I^* на рис. 4, для максимальной рассматриваемой здесь концентрации $n_e \approx 1.5 \times 10^{17}$ см⁻³ (при импульсном подогреве) из отношения концентраций находим порог $I^* \approx 1$ эВ. Ниже его насчитывается k = 16 уровней. Общее число уровней атома в идеальной плазме было бы $k_0 = 302$. Столько уровней насчитывается до порога дебаевского экранирования [9], который в рассматриваемых условиях равен 0.031–0.035 эВ (главное квантовое число 20).

При данных высоких $T_e = 3.3-4.2$ эВ все возбужденные состояния Не, включая нижние ($I_1 = 3.6-3.8$ эВ), относятся к разряду легкоионизуемых, т.е. вносят примерно равный вклад в потоки ионизации и рекомбинации. Пренебрегая энергетическим расположением и другими индивидуальными различиями уровней, оценим величину W по отношению $W = k/k_0$, так как при сохранении всех k_0 уровней атома тройная рекомбинация не подавляется. Тогда в диапазоне $I^* \approx 0.8-1$ эВ получаем W = 0.1-0.053. Большее значение отвечает стационарной дуге, меньшее – дуге с наложением импульса.

Теперь можно рассчитать вклад тройной рекомбинации в баланс электронов. Скорости возбуждения и диффузии атомов равны (см. уравнение (5)), поэтому можно сопоставить скорость тройной рекомбинации со скоростью возбуждения атомов:

$$\alpha = \alpha_{\rm T} n_e^2 / (K_{01} n) = 0.05 - 0.06.$$
(15)

Указаны численные значения α в центре стационарной дуги, для которой $W \approx 0.1$. Видим, что тройная рекомбинация действительно незначительна на оси разряда, причем основную ответственность за это несет рассмотренная неидеальность плазмы.

При импульсном подогреве $\alpha \approx 0.1$, т.е. вклад тройной рекомбинации, оставаясь по-прежнему несущественным, возрастает в два раза, несмотря на уменьшение константы скорости рекомбинации с ростом *T* и почти двукратное уменьшение $W \approx 0.053$, обусловленное ростом n_e . Это связано как с десятикратным уменьшением плотности атомов, так и с возрастанием частоты рекомбинации с ростом n_e . Значения α приведены в таблице.

Интерес представляет также сравнение оценок α для разных *r*, приведенных в таблице. С ростом *r* концентрация атомов стремительно растет и уже при *r* = 0.5 мм достигает величины (1.1–1.5) × 10¹⁷ см⁻³ (см. также рис. 3). Это обусловливает слабую радиальную зависимость α в стационарной дуге, компенсируя усиление рекомбинации из-за спада температуры. Значения α остаются примерно в том же диапазоне 0.06–0.07. Надо полагать, что на далекой периферии плазмы

Рис. 4. Распределение населенностей верхних уровней атома Не в сильноионизованной плазме на оси стационарной дуги: цифры – длины волн спектральных линий HeI (нм), по интенсивностям которых определялись населенности; штриховая прямая – ионизационное равновесие при n_e^0, T_e^0 ; вертикальные прямые с наклонными штрихами – порог разрушения уровней I^* (а) и порог ионизации атома Не в идеальной плазме (б).

тройная рекомбинация будет играть заметную роль (α возрастет).

В плазме с дополнительным импульсным подогревом бурный радиальный рост n(r) компенсируется сильным уменьшением T(r), так что вклад тройной рекомбинации втрое возрастает (см. таблицу). При дальнейшем уменьшении T на периферии плазмы тройная рекомбинация будет, повидимому, преобладать.

ЗАКЛЮЧЕНИЕ

Кинетическая модель сильноионизованной неравновесной плазмы Не в узком дуговом канале [4] дополнена ионизационно-диффузионным балансом атомов, регулирующим отношение n/n_e и поддерживающим высокий уровень $n \sim n_e$, в ~500 раз превышающий равновесные значения. Приближенно решена задача о диффузии атомов в бинар-

ной газовой смеси с учетом амбиполярной диффузии электрон-ионного газа как второго компонента смеси. В результате с использованием измеренных зависимостей $n_{a}(r)$ и T(r) найдены концентрация атомов в центре дуги и функция n(r), определяемая параметрами плазмы при r = 0 и сильно растушая в радиальном направлении. особенно при мощном импульсном подогреве дуги. В двух рассмотренных стационарных токовых режимах по радиусу дуги выявлены изохорические условия. Оценена также неравновесная плотность двукратных ионов $n^{++1}/n_e \sim 10^{-3}$. Показано, что вследствие высокой концентрации атомов и разрушения уровней квазистатическими микрополями плазмы тройная рекомбинация в десятки раз слабее альтернативного процесса исчезновения заряженных частиц – амбиполярной диффузии.

Спектроскопические измерения выполнены при поддержке гранта РНФ 21-79-10281 "Спектроскопия высокого разрешения для диагностики приповерхностной плазмы при взаимодействии мощных потоков неравновесной замагниченной плазмы со стенкой", разработка теоретического описания плазмы поддержана Министерством науки и высшего образования РФ в рамках госзадания № 075-01056-22-00.

СПИСОК ЛИТЕРАТУРЫ

- Botticher W., Roder O., Wobig K.H. Messung der Übergangswahrschein, Halbwertsbreiten und Verschiebungen von HeI-Linien // Z. Phys. 1963. Bd. 175. № 5. S. 480.
- 2. Uhlenbusch J., Fischer E., Hackmann J. Experimentelle und Theoretische Untersuchungen von Nichtgleichgewichtseffekten an stationären Heliumplasmen unter Normaldruck // Z. Phys. 1970. Bd. 238. № 5. S. 404.
- Jonkers J., van der Mullen J.A.M. The Excitation Temperature in (Helium) Plasmas // JQSRT. 1999. V. 61. № 5. P. 703.
- 4. *Коршунов О.В., Чиннов В.Ф., Кавыршин Д.И.* Сильноионизованная дуговая плазма Не. Неравновесность, неидеальность и кинетика // ТВТ. 2019. Т. 57. № 2. С. 164.
- 5. Коршунов О.В., Чиннов В.Ф., Кавыршин Д.И. Сильноионизованная дуговая плазма Не. Определение температуры в условиях неравновесности и влияния плазменных микрополей // ТВТ. 2019. Т. 57. № 3. С. 338.
- Исакаев Э.Х., Чиннов В.Ф., Саргсян М.А., Кавыршин Д.И. Неравновесность сильноионизованной гелиевой плазмы атмосферного давления // ТВТ. 2013. Т. 51. № 2. С. 163.
- Chinnov V.F., Kavyrshin D.I., Ageev A.G., Korshunov O.V., Sargsyan M.A., Efimov A.V. Study of Spatial Distributions of Highly Ionized Nonequilibrium Helium Plasma at Atmospheric Pressures // J. Phys.: Conf. Ser. 2016. V. 774. 012200.
- Korshunov O.V., Chinnov V.F., Kavyrshin D.I., Ageev A.G. Spectral Measurements of Electron Temperature in Nonequilibrium Highly Ionized He Plasma // J. Phys.: Conf. Ser. 2016. V. 774. 012199.

- 9. Биберман Л.М., Воробьев В.С., Якубов И.Т. Кинетика неравновесной низкотемпературной плазмы. М.: Наука, 1982. 376 с.
- Спитцер Л. Физика полностью ионизованного газа / Пер. с англ. Под ред. Левина М.Л. М.: Мир, 1965. 212 с.
- 11. *Райзер Ю.П.* Физика газового разряда. Долгопрудный: Интеллект, 2009. 736 с.
- 12. Елецкий А.В., Палкина Л.А., Смирнов Б.М. Явления переноса в слабоионизированной плазме. М.: Атомиздат, 1975. 336 с.
- Исакаев Э.Х., Синкевич О.А., Тюфтяев А.С., Чиннов В.Ф. Исследование генератора низкотемпературной плазмы с расширяющимся каналом выходного электрода и некоторые его применения // ТВТ. 2010. Т. 48. № 1. С. 105.
- 14. *Смирнов Б.М.* Свойства газоразрядной плазмы. СПб.: Изд-во Политехн. ун-та, 2010. 363 с.
- 15. Лифшиц Е.М., Питаевский Л.П. Физическая кинетика. М.: Наука, 1979. 528 с.
- Ферцигер Дж., Капер Г. Математическая теория процессов переноса в газах / Пер. с англ. Под ред. Зубарева Д.Н. М.: Мир, 1976. 554 с.
- Силин В.П. Введение в кинетическую теорию газов. М.: Изд-во Физ. ин-та им. Лебедева РАН, 1998. 338 с.
- 18. Попов П.В. Диффузия. М.: МФТИ, 2016. 94 с.
- Мак-Даниэль Й., Мэзон Э. Подвижность и диффузия ионов в газах / Пер. с англ. Под ред. Смирнова Б.М. М.: Мир, 1976. 422 с.
- 20. *Корн Г., Корн Т.* Справочник по математике. Изд. 4-е. М.: Наука, 1977. 832 с.
- 21. Рожанский В.А., Цендин Л.Д. Столкновительный перенос в частично ионизованной плазме. М.: Энергоатомиздат, 1988. 248 с.
- 22. Камке Э. Справочник по обыкновенным дифференциальным уравнениям. М.: Наука, 1976. 576 с.
- 23. Голант В.Е., Жилинский А.П., Сахаров С.А. Основы физики плазмы. М.: Атомиздат, 1977.
- 24. *Арцимович Л.А.* Элементарная физика плазмы. 3-е изд. М.: Атомиздат, 1969. 189 с.
- 25. Левич В.Г. Курс теоретической физики. Т. 1. М.: Наука, 1969.
- 26. Дьячков Л.Г., Кавыршин Д.И., Коршунов О.В., Чиннов В.Ф. Особенности распределения заселенностей атомных уровней в сильноионизованной дуговой плазме гелия // ТВТ. 2018. Т. 56. № 4. С. 631.
- Дьячков Л.Г. Энциклопедия низкотемпературной плазмы. Вводн. т. І / Под ред. Фортова В.Е. Разд. III.2.5. Непрерывные спектры. М.: Наука, 2000. С. 391.
- 28. Дьячков Л.Г. К расчету вероятности разрушения связанных состояний атома в плазменных микрополях // ТВТ. 1997. Т. 35. № 5. С. 823.
- Гаврилов В.Е., Гаврилова Т.В. Растворение спектральных линий сложных атомов в слабонеидеальной плазме // Опт. и спектр. 1987. Т. 63. Вып. 4. С. 727.
- Гаврилова Т.В. Анализ экспериментальных данных по вероятностям переходов в атомах инертных газов // Опт. и спектр. 1992. Т. 73. Вып. 3. С. 449.
- Lankin A., Norman G. Density and Nonideality Effects in Plasmas // Contrib. Plasma Phys. 2009. V. 49. № 10. P. 723.
- 32. Радциг А.А., Смирнов Б.М. Параметры атомов и атомных ионов. М.: Энергоатомиздат, 1986. 344 с.