УДК 544.31.031:546.881.5

ТЕРМОДИНАМИКА ИСПАРЕНИЯ ТРИХЛОРИДА СКАНДИЯ В ФОРМЕ МОЛЕКУЛ ScCl₃ И Sc₂Cl₆

© 2022 г. Е. Л. Осина^{1, *}, С. Б. Осин²

¹Объединенный институт высоких температур РАН, Москва, Россия ²Московский государственный университет, химический факультет, Москва, Россия *E-mail: j-osina@vandex.ru

Поступила в редакцию 14.02.2022 г. После доработки 12.03.2022 г. Принята к публикации 07.06.2022 г.

Выбраны значения молекулярных постоянных и рассчитаны термодинамические функции Sc₂Cl₆ в результате критического анализа экспериментальных и теоретических данных по структуре и частотам колебаний димерной формы молекул трихлорида скандия. На их основе выполнены расчеты состава пара трихлорида скандия в интервале температур 800–1240 К. Получены термохимические характеристики Sc₂Cl₆ и уточнены для ScCl₃.

DOI: 10.31857/S0040364422050222

введение

Данная статья является продолжением работы по пополнению базы данных ИВТАНТЕРМО, развиваемой в Объединенном институте высоких температур РАН. Речь идет о получении термодинамических характеристик процессов парообразования тригалогенидов подгруппы скандия. Эти величины недавно получены и опубликованы для тригалогенидов иттрия [1–4]. В работе [5] рассчитаны значения энтальпий сублимации и образования для всех тригалогенидов скандия. Однако авторами не было учтено содержание в паре полимерных молекул и, прежде всего, димерных, хотя литературные данные свидетельствуют об их наличии. Авторы [5] учли их присутствие, увеличив погрешность рекомендованных величин энтальпий сублимации.

В связи с этим целью настоящей работы являются уточнение значений энтальпий сублимации и образования трихлорида скандия, определение термохимических характеристик димера трихлорида скандия, а также расчет температурной зависимости отношения парциальных давлений димера и мономера P_{π}/P_{M} , так как следует ожидать его существенного повышения с ростом температуры. Необходимые для этого значения термодинамических функций ScCl₃(кр.) и ScCl₃ опубликованы недавно в [6] и [5], а Sc_2Cl_6 представлены раньше и рассчитаны по оцененным молекулярным постоянным на основе закономерностей их изменений в рядах аналогов (MX_3 , M_2X_6 , M = Al, Ga) [7]. В настоящее время в литературе появились расчетные данные по структурным параметрам, частотам

колебаний, которые дают возможность получить более надежные величины термодинамических функций Sc₂Cl₆.

ТЕРМОДИНАМИЧЕСКИЕ ФУНКЦИИ Sc₂Cl₆

Строение димерной молекулы трихлорида скандия исследовалось методом газовой электронографии экспериментально и в теоретических расчетах, выполненных DFT-методом (GAUSSIAN 94, BPW91, с базисом 6-311G*) [8]. Установлено, что молекула Sc_2Cl_6 , так же как и Sc_2F_6 , имеет конфигурацию с плоским четырехчленным циклом симметрии D_{2h} . Произведение моментов инерции молекулы Sc₂Cl₆ рассчитано с учетом следующих геометрических параметров: $r_g(\text{Sc-Cl}_{\text{кон}}) = 2.275 \pm 0.01 \text{ Å},$ $r_g(\text{Sc-Cl}_{\text{MOC}}) = 2.46 \pm 0.02 \text{ Å}, \angle \text{Cl}_{\text{KOH}} - \text{Sc-Cl}_{\text{KOH}} =$ $= 114.9^{\circ} \pm 3^{\circ}, \angle Cl_{MOC} - Sc - Cl_{MOC} = 86.0^{\circ} \pm 2^{\circ}.$ Большие погрешности приведенных молекулярных постоянных объясняются тем, что, согласно данным авторов, количество димера в молекулярном пучке невелико и составляет не более 10%. В связи с этим авторы не смогли уточнить все четыре геометрических параметра, описывающих структуру молекулы. Величина валентного угла ∠Cl_{кон}-Sc-Cl_{кон}, а также разница межъядерных расстояний мономера и концевого расстояния в димере $r_g(\text{Sc-Cl}) - r_g(\text{Sc-Cl}_{\text{кон}})$ были фиксированы на значениях, полученных в DFT-расчете с ба-LANL2DZ. Значения $r_g(Sc-Cl_{MOC})$ зисом $= 2.46 \pm 0.02$ Å и \angle Cl_{мос} - Sc-Cl_{мос} $= 86.0^{\circ} \pm 2^{\circ}$ хорошо согласуются с соответствующими расчетными величинами: 2.475 Å и 86.6. Погрешность

ТЕРМОДИНАМИКА ИСПАРЕНИЯ ТРИХЛОРИДА СКАНДИЯ

$I_A I_B I_C \times 10^{117}, r^3 cm^6$	ν_1	v_2	V ₃	ν_4	v ₅	ν_6	v ₇
127.9×10^5	474	465	438	412	319	287	273

Таблица 1. Молекулярные постоянные Sc_2Cl_6 ($\sigma = 4, p_x = 1$) (v в см⁻¹)

Примечание. σ – число симметрии, p_x – статистический вес основного состояния; $v_8 = 237$, $v_9 = 151$, $v_{10} = 109$, $v_{11} = 94$, $v_{12} = 81$, $v_{13} = 73$, $v_{14} = 71$, $v_{15} = 58$, $v_{16} = 56$, $v_{17} = 36$, $v_{18} = 12$.

Таблица 2. Коэффициенты полиномов, аппроксимирующих значения $\Phi^{\circ}(T)$ для молекулы Sc₂Cl₆

Интервал температур, К	ϕ_1	ϕ_2	$\phi_3 imes 10^{-4}$	$\phi_4 imes 10^{-1}$	φ ₅	φ ₆	φ ₇
298.15-1500	972.8538	179.7717	-66.3809	20.16793	31.44259	-80.30695	110.2013
1500-3000	959.206	170.7162	228.4819	7.820438	51.84626	-53.36844	28.12183

произведения моментов инерции оценена в $5 \times 10^{-112} \, r^3 \, cm^6$.

Колебательный спектр молекулы Sc_2Cl_6 экспериментально не исследовался. Величины частот колебаний, приведенные в табл. 1, приняты по результатам теоретического расчета [8].

Энергии возбужденных электронных состояний Sc_2Cl_6 не учитывались при расчете термодинамических функций в рассматриваемом интервале температур 298.15—3000 К.

Термодинамические функции Sc₂Cl₆(г) рассчитаны в приближении "жесткий ротатор—гармонический осциллятор". Погрешности в рассчитанных значениях термодинамических функций определяются в основном неточностью принятых величин молекулярных постоянных. Суммарная погрешность составляет 9, 18 и 24 Дж K⁻¹ моль⁻¹ для приведенной энергии Гиббса $\Phi^{\circ}(T)$ при T == 298.15, 1000, 3000 соответственно.

Ранее термодинамические функции $Sc_2Cl_6(r)$ были рассчитаны авторами [7]. Значения функций приведены в [7] до 1000 К. Все молекулярные постоянные были оценены. Различия в значениях $\Phi^{\circ}(T)$, рассчитанных в настоящей работе и приведенных в [7], велики и растут от 44 до 56 Дж K⁻¹ моль⁻¹ в интервале температур 298.15–1000 К. Они обусловлены в основном различием в принятых значениях частот колебаний (43–54 Дж K⁻¹ моль⁻¹).

Результаты расчетов термодинамических функций представлены полиномами

$$\Phi^{\circ}(T) = \varphi_1 + \varphi_2 \ln X + \varphi_3 X^{-2} + \varphi_4 X^{-1} + \varphi_5 X + \varphi_6 X^2 + \varphi_7 X^3,$$

где $X = T \times 10^{-4}$.

Для увеличения точности аппроксимации значений термодинамических функций температурный интервал 298.15—3000 К разбивался на два подынтервала: 298.15—1500 и 1500—3000 К. При этом отклонение рассчитанных и аппроксимированных значений приведенной энергии Гиббса $\Phi^{\circ}(T)$ в каждом интервале не превышало 0.001 Дж моль⁻¹ K⁻¹.

Коэффициенты полиномов даны в табл. 2. В табл. 3 приведены значения термодинамических функций молекулы Sc_2Cl_6 при нескольких температурах.

COCTAB ПАРА ScCl₃

Для определения состава пара над ScCl₃ в широком интервале температур необходимы данные о полном давлении, отношение парциальных давлений $P_{\rm A}/P_{\rm M}$ при некоторой температуре, а также значения термодинамических функций ScCl₃(кр.), ScCl₃(г) и Sc₂Cl₆(г). Величины термодинамических функций взяты из [6], [5] и данной работы соответственно. Значения полных давлений приведены в [9–13]. В работе [9] авторы представили температурные зависимости парциальных давлений мономерных и димерных форм насыщенного

Т, К	$C_p^{\circ}(T)$	$\Phi^{\circ}(T)$	$S^{\circ}(T)$	$H^{\circ}(T) - H^{\circ}(0)$
298.15	166.815	402.407	530.235	38.112
1000	181.244	580.870	743.670	162.800
1240	181.823	616.292	782.724	206.376
2000	182.494	697.390	869.827	344.875
3000	182.728	768.039	943.876	527.510

Таблица 3. Термодинамические функции $Sc_2Cl_6(\Gamma)$ (Дж K^{-1} моль⁻¹)

ТЕПЛОФИЗИКА ВЫСОКИХ ТЕМПЕРАТУР том 60 № 6 2022

пара трихлоридов лантанидов, скандия и иттрия. Подробности получения этих зависимостей и температурные интервалы исследования в [9] отсутствуют. В связи с этим данные работы [9] в дальнейшем не принимаются во внимание. Следует отметить, что в случае ScCl₃ авторы делали вывод, что димерные молекулы являются основным компонентом насыщенного пара трихлорида скандия.

Авторы [10] измерили давление насыщенного пара тремя тензиметрическими методами: эффузионным, точки кипения и статическим с кварцевым нуль-манометром в интервале температур 873-1233 К. В работе получено уравнение температурной зависимости для общего давления, а также уравнения, описывающие процессы сублимации ScCl₃ в виде мономерных и димерных молекул. Обработка ланных [10] лля общего лавления. выполненная в [5], показала существенное расхождение значений энтальпии сублимации, полученных по II и III законам термодинамики $(\Delta = 40 \text{ кДж моль}^{-1})$, что свидетельствует о ненадежности результатов [10]. В связи с этим они не приняты во внимание в расчетах [5] и в данной работе. В [11] эффузионным методом измерено давление насыщенного пара трихлорида скандия только при трех температурах – 888, 916, 929 К, и далее пересчитано на весь температурный диапазон исследования методом Инграма. Сделан вывод, что в интервале 726-930 К состав паровой фазы соответствует димерной форме Sc₂Cl₆, для которой приведено уравнение температурной зависимости давления пара. Погрешности коэффициентов уравнения в работе не приведены. Эта информация не согласуется с приведенной в [10]. Более надежные измерения общего давления насыщенного пара трихлорида скандия выполнили авторы [12, 13] статическим методом с кварцевым нуль-манометром, что позволило повысить температуру исследования до 1218 К [12] и 1227 К [13] и тем самым повысить точность полученных значений давления. Во всех приведенных работах по измерению давления пара результаты представлены в виде уравнений. В работах [12, 13] в отличие от [11] приведены погрешности коэффициентов уравнений, причем меньшие величины получены в [13], данные которой предполагаются наиболее надежными. В [13] авторы обработали методом наименьших квадратов 88 точек. Следует отметить, что в работах [12–15] обнаружены также тримерные молекулы. В связи с их малым количеством и незначительным вкладом в общее давление пара в настоящей работе они не обсуждаются. Данные по полному давлению пара [11–13] ранее использовались в [5] для расчета энтальпии сублимации трихлорида скандия. Однако наличие в паре димерных молекул авторами [5] не учтено.

В данной работе поставлена задача уточнения энтальпии сублимации трихлорида скандия с учетом присутствия димерных молекул в паре над ScCl₃. Кроме того, представляет интерес получение термодинамических характеристик димерных молекул по имеющимся в литературе экспериментальным данным по общему давлению пара. Для решения этих задач необходима информация об отношении давлений мономера и димера при определенных температурах. Требующиеся данные получены по интенсивностям ионных токов масс-спектров в работах [8, 11, 14] и с помощью электронографического исследования [8], в котором состав пара над ScCl₃ являлся варьируемым параметром.

В масс-спектральном исследовании [14], выполненном при температуре 772 К, для отношения парциальных давлений P_{Π}/P_{M} получено значение 0.147 в предположении отношения сечений ионизации, равного единице. В работах [8, 11] состав пара измерен при близких и более высоких температурах (900 и 870 К соответственно), что повышает надежность полученных авторами значений P_{II}/P_{M} . В [8, 11] величины P_{II}/P_{M} равны 0.087 и 0.128 соответственно. Принятые авторами отношения сечений ионизации составляли 2 [8] и 1.5 [11]. Для единообразия, а также в связи с тем, что общепринятой величиной отношения сечений ионизации является значение 1.5 [16], данные по составу пара из [8, 11, 14] пересчитаны на это значение. В результате пересчета получены значения $P_{\rm II}/P_{\rm M}$, равные 0.116 [8], 0.128 [11] и 0.098 [14].

Перечисленные величины, а также данные по общему давлению [11, 13] использованы для расчета уточненной энтальпии сублимации ScCl₃(кр.) с учетом наличия в паре димерных молекул, а также энтальпии сублимации ScCl₃(кр.) в форме димера Sc₂Cl₆. Результаты расчетов приведены в табл. 4 и 5.

Как отмечалось, наиболее надежными данными по общему давлению пара приняты результаты, полученные в [13]. Однако дополнительно обработаны и данные [11], чтобы посмотреть, как при этом изменится величина энтальпии сублимации ScCl₃.

Методика расчета величин, приведенных в табл. 4, 5, подробно описана ранее (например, в [2]). Из данных табл. 4 и 5 следует, что значения $\Delta_s H^{\circ}(0)$ для ScCl₃ в виде мономера и димера мало меняются с изменением данных по общему давлению [11, 13] и отношению давлений $P_{\rm A}/P_{\rm M}$ [8, 11, 14]. Наибольшее расхождение наблюдается для $\Delta_s H^{\circ}$ (ScCl₃, 0) в работе [14], что, вероятно, связано с более низкой температурой измерения интенсивностей ионных токов и как следствие с меньшей точностью измерений. Следует также отметить достаточно существенное уточнение величины энтальпии сублимации ScCl₃(кр.) при учете наличия димерных молекул.

Общее давление Р*	$P_{\rm g}/P_{\rm m}$	$\Delta_{\!s} H^{\circ}(0),$ данная работа	$\Delta_{s}H^{\circ}(0)$ [5]	Δ^{**}
	0.116 [8]	256		6
$\lg P = -(13470/T) + 13.61, [13]$	0.128 [11]	257	250 ± 2	7
	0.098 [14]	261		11
$\lg P = -(13520/T) + 13.89, [11]$	0.116 [8]	253		2
	0.128 [11]	253	251 ± 3	2
	0.098 [14]	254		3

Таблица 4. Значения энтальпии сублимации ScCl₃ (Дж K⁻¹ моль⁻¹)

* Размерности давления в уравнениях – мм рт. ст.

** Разность значений $\Delta_{s} H^{\circ}(0)$ из данной работы и из [5].

С учетом приведенного выше анализа литературных данных по общему давлению пара и отношению парциальных давлений в настоящей работе в качестве значений энтальпии сублимации ScCl₃(кр.) в форме мономера и димера приняты средние величины, полученные по данным работ [8, 11, 13] (кДж моль⁻¹):

$$\begin{split} & \mathrm{ScCl}_{3}(\mathrm{Kp.}) = \mathrm{ScCl}_{3}(\mathrm{\Gamma}), \\ & \Delta_{s}H^{\circ}(\mathrm{ScCl}_{3}, \mathrm{Kp.}, 0 \mathrm{K}) = 257 \pm 5, \\ & \Delta_{s}H^{\circ}(\mathrm{ScCl}_{3}, \mathrm{Kp.}, 298.15 \mathrm{K}) = 257 \pm 5; \\ & 2\mathrm{ScCl}_{3}(\mathrm{Kp.}) = \mathrm{Sc}_{2}\mathrm{Cl}_{6}(\mathrm{\Gamma}), \\ & \Delta_{s}H^{\circ}(2\mathrm{ScCl}_{3}, \mathrm{Kp.}, 0) = 329 \pm 10, \\ & \Delta_{s}H^{\circ}(2\mathrm{ScCl}_{3}, \mathrm{Kp.}, 298.15) = 330 \pm 10. \end{split}$$

Погрешности принятых энтальпий сублимации приведены с учетом как воспроизводимости измерений общего давления пара, погрешности отношения P_{π}/P_{M} , так и неточности использованных в вычислениях термодинамических функций ScCl₃(кр.), ScCl₃(г) и Sc₂Cl₆(г).

Комбинация принятых значений $\Delta_s H^{\circ}(0)$ с энтальпией образования ScCl₃(кр.) $\Delta_f H^{\circ}($ ScCl₃, кр., 298.15) = -944.8 ± 0.8 кДж моль⁻¹ [6] дает следующие значения энтальпий образования молекул ScCl₃ и Sc₂Cl₆ (кДж моль⁻¹):

Таблица 5. Значения энтальпии сублимации $ScCl_3$ в форме Sc_2Cl_6 (Дж K^{-1} моль⁻¹)

Общее давление	$P_{\rm g}/P_{\rm m}$	$\Delta_{\!s} H^{\circ}(0),$ данная работа
	[8]	329
[13]	[11]	328
	[14]	326
	[8]	326
[11]	[11]	324
	[14]	326

$\Delta_f H^0(\text{ScCl}_3, \Gamma, 298.15) = -688 \pm 6,$
$\Delta_f H^{\circ}(\operatorname{ScCl}_3, \Gamma, 0) = -687 \pm 6;$
$\Delta_f H^{\circ}(\mathrm{Sc}_2\mathrm{Cl}_6, \mathrm{r}, 298.15) = -1559 \pm 12,$
$\Delta_f H^{\circ}(\mathrm{Sc}_2\mathrm{Cl}_6, \Gamma, 0) = -1559 \pm 12.$

С использованием принятых величин энтальпий образования мономера и димера трихлорида скандия получено значение энергии диссоциации Sc₂Cl₆ D_0 (Sc₂Cl₆ = 2ScCl₃) = 185 кДж моль⁻¹.

Приведенные значения энтальпий сублимации и образования $ScCl_3$, Sc_2Cl_6 рекомендованы в настоящей работе, как наиболее надежные термохимические характеристики мономера и димера трихлорида скандия.

Аb initio-расчет энтальпий образования ScCl₃ и Sc₂Cl₆ недавно опубликован в [17]. Расчет проведен методом DLPNO–CCSD(T) с учетом поправок на скалярные и спин-орбитальные релятивистские эффекты, поправки на нулевые колебания, а также ошибки, возникающей в результате использования приближения DLPNO–CCSD(T) по сравнению с CCSD(T). Полученные авторами энтальпии образования мономера и димера находятся в хорошем согласии с результатами, приведенными в данной работе. Расхождение для мономера составляет 5, а димера – 11 кДж моль⁻¹. Погрешности рассчитанных величин в [17] оценены в 3 и 6 кДж моль⁻¹ соответственно.

Отношения парциальных давлений ScCl₃ и $Sc_2Cl_6 P_{\rm A}/P_{\rm M}$ по наиболее надежным данным работ [8, 11] составляют 0.116 и 0.128 при температурах 900 и 870 К соответственно. Эти величины являются константой равновесия реакции

$$\operatorname{ScCl}_{3}(\kappa p.) + \operatorname{ScCl}_{3}(\Gamma) = \operatorname{Sc}_{2}\operatorname{Cl}_{6}(\Gamma)$$
 (1)

и дают возможность рассчитать по методу третьего закона термодинамики [16] энтальпию данной

реакции $\Delta H_r^{\circ}(0)$, равную разности энтальпий сублимации трихлорида скандия в форме димерных и мономерных молекул. Значения энтальпии реакции (1) получены равными 73 и 71 ± 15 кДж моль⁻¹

для [8, 11] соответственно. Погрешность этих величин обусловлена погрешностью принятого отношения $P_{\rm II}/P_{\rm M}$ и погрешностью термодинамических функций участников реакции (1). Найденные величины $\Delta H_r^{\circ}(0)$ дают возможность рассчитать температурную зависимость отношения $P_{_{\rm II}}/P_{_{\rm M}}$ в любой температурной точке. В случае данных [8] значения P_{Π}/P_{M} возрастают от 0.04 до 1.52, для данных [11] изменяются от 0.05 до 1.89 в температурном интервале 800-1240 К (температура плавления ScCl₂(кр.)). Полученные результаты достаточно хорошо согласуются и свидетельствуют о существенном увеличении количества димерных молекул в насыщенном паре над ScCl₃. В температурном интервале 800-1100 К мономера в паре больше, а начиная с 1200 К содержание димера становится больше.

ЗАКЛЮЧЕНИЕ

Проведен анализ литературных данных для молекул димера трихлорида скандия. Выбраны значения молекулярных постоянных, и выполнен расчет термодинамических функций Sc₂Cl₆. Рассчитан состав пара над ScCl₃. Установлено, что отношение давлений $P_{\rm A}/P_{\rm M}$ существенно возрастает в интервале температур 800–1240 К. Получены значения энтальпий сублимации и образования ScCl₃ и Sc₂Cl₆ при учете наличия димерных молекул в паре над ScCl₃. Энтальпии образования conoctaвлены с результатами теоретических расчетов [17].

СПИСОК ЛИТЕРАТУРЫ

- 1. *Горохов Л.Н., Осина Е.Л., Ковтун Д.М.* Термодинамика испарения трифторида иттрия в форме молекул YF₃ и Y₂F₆ // ЖФХ. 2018. Т. 92. № 11. С. 1676.
- Осина Е.Л., Горохов Л.Н., Осин С.Б. Термодинамика испарения трихлорида иттрия в форме молекул YCl₃ и Y₂Cl₆ // ЖФХ. 2019. Т. 93. № 5. С. 650.
- 3. Осина Е.Л., Горохов Л.Н., Ковтун Д.М. Термодинамика испарения трибромида иттрия в форме молекул YBr₃ и Y₂Br₆ // TBT. 2020. Т. 58. № 1. С. 76.
- Осина Е.Л., Горохов Л.Н., Осин С.Б. Термодинамика испарения трииодида иттрия в форме молекул YI₃ и Y₂I₆ // ТВТ. 2020. Т. 58. № 5. С. 764.

- Осина Е.Л., Гусаров А.В. Термодинамические функции и энтальпии образования молекул тригалогенидов скандия // ТВТ. 2015. Т. 53. № 6. С. 858.
- Аристова Н.М., Белов Г.В. Термодинамические свойства тригалогенидов скандия. II. Термодинамические характеристики трихлорида и трибромида скандия в конденсированном состоянии // ЖФХ. 2015. Т. 89. № 7. С. 1053.
- Гурвич Л.В., Ежов Ю.С., Осина Е.Л., Шенявская Е.А. Строение молекул и термодинамические свойства галогенидов скандия // ЖФХ. 1999. Т. 73. № 3. С. 401.
- Haaland A., Martinsen K.-G., Shorokhov D.J., Girichev G.V., Sokolov V.I. Molecular Structure of Monomeric Scandium Trichloride by Gas Electron Diffraction and Density Functional Theory Calculations on ScCl₃ and Sc₂Cl₆ // J. Chem. Soc. Dalton Trans. 1998. № 17. P. 2787.
- 9. Дудчик Г.П., Поляченок О.Г., Новиков Г.И. Термодинамика процессов парообразования трихлоридов редкоземельных элементов, иттрия и скандия. Минск, 1970. Деп. № 2343-70.
- Патрикеев Ю.Б., Морозова В.А., Дудчик Г.П., Поляченок О.Г., Новиков Г.И. Давление насыщенного пара трихлорида скандия // ЖФХ. 1973. Т. 47. № 1. С. 266.
- Ратьковский И.А., Новикова Л.Н., Прибыткова Т.А. Масс-спектрометрическое исследование ScCl₃. М., 1974. 11 с. Деп. в ВИНИТИ. 17.06.74. № 1624-74.
- Поляченок Л.Д., Дудчик Г.П., Поляченок О.Г. Тензиметрическое исследование термохимических свойств парообразных галогенидов, взаимодействующих с кварцевым стеклом // ЖФХ. 1976. Т. 50. № 2. С. 387.
- Поляченок Л.Д., Дудчик Г.П., Назаров К., Поляченок О.Г. Тензиметрическое исследование трихлорида скандия // Изв. АН БССР. Сер. Хим. наук. 1977. № 3. С. 113.
- Schafer H., Binnewies M. Die Stabilität gasförmiger Dimerer Chloridmolekeln // Z. Anorg. allg. Chem. 1974. Bd. 410. S. 251.
- Wagner K., Schafer H. Die Gasmolekeln Sc₂Cl₆ und Sc₃Cl₉, und Ihre Stabilität // Z. Anorg. allg. Chem. 1977. Bd. 430. S. 43.
- Гурвич Л.В., Вейц И.В., Медведев В.А. и др. Термодинамические свойства индивидуальных веществ. Т. 1. М.: Наука, 1978.
- Minenkova I., Osina E.L., Cavallo L., Minenkov Y. Gasphase Thermochemistry of MX₃ and M₂X₆ (M = Sc, Y; X = F, Cl, Br, I) from a Composite Reaction-based Approach: Homolytic versus Heterolytic Cleavage // Inorg. Chem. 2020. V. 59. № 23. P. 17084.