———— НОВАЯ ЭНЕРГЕТИКА ——

УДК 621.352.6:621.165

ТЕРМОДИНАМИЧЕСКОЕ И ФИЗИЧЕСКОЕ МОДЕЛИРОВАНИЕ ВЫСОКОТЕМПЕРАТУРНОГО ТОПЛИВНОГО ЭЛЕМЕНТА С ПРОТОННО-ОБМЕННОЙ МЕМБРАНОЙ

© 2022 г. П. П. Иванов*

Объединенный институт высоких температур РАН, Москва, Россия *E-mail: peter-p-ivanov@yandex.ru Поступила в редакцию 03.10.2021 г. После доработки 03.10.2022 г. Принята к публикации 13.10.2022 г.

Для упрощения термодинамического моделирования гибридных энергетических установок разработана нуль-мерная модель топливного элемента. Она может служить также интерфейсом между физической моделью топливного элемента и остальной частью энергетической установки. В качестве примера рассмотрен высокотемпературный топливный элемент с протонно-обменной мембраной с утилизацией генерируемого тепла в цикле Ренкина. Тепловой баланс гибридной энергетической установки рассчитывается с помощью суммарных *TQ*-диаграмм для источников и стоков тепла.

DOI: 10.31857/S0040364422060102

ВВЕДЕНИЕ

Нуль-мерная модель топливного элемента в литературе присутствует под синонимами "0-D", "опероіпt" или "thermodynamic model". Она используется при исследовании гибридных энергетических установок с топливным элементом [1, 2] каждый раз с указанием ее недостатков и ограничений. Ее использование оправдывается соображениями экономии времени. Однако рост вычислительной мощности на столе и упаковка хорошо описанных процессов в топливном элементе в стандартные процедуры делают данные недостатки менее критичными, и установившимся трендом является использование для одних и тех же целей все более сложных многомерных моделей топливного элемента [3, 4].

Данная тенденция усиливает разницу между уровнями абстракции при описании устройств, преобразующих энергию. В то время как турбины и компрессоры описываются в терминах внутреннего КПД по отношению к изоэнтропическому процессу на *iS*-диаграмме (энтальпия в функции энтропии) рабочего тела, в модели топливного элемента можно оперировать пористостью и извилистостью пор электродов, составляющими поляризации и многими другими сложными вещами. Создание для топливного элемента модели того же уровня абстракции, что имеется для турбин, может превратить виртуальную *iS*-диаграмму рабочих тел в основной или даже единственный инструмент термодинамического анализа гибридных энергетических установок. Речь в данном случае идет не только о снижении трудоемкости, но и о воспроизводимости получаемых в исследованиях результатов. Что касается виртуальной *iS*-диаграммы, то она обеспечивается наряду со множеством других услуг при работе в среде баз данных типа ИВТАНТЕРМО [5] или Aspen Plus [6].

В рамках решения упомянутой выше задачи в настоящей работе разработана нуль-мерная модель высокотемпературного топливного элемента с протонно-обменной мембраной (HT PEMFC). Такой топливный элемент наряду с электричеством генерирует довольно много тепла при температуре, достаточной для утилизации паротурбинным утилизационным блоком. Модель использована для параметрического исследования гибридной энергетической установки с топливным элементом и паровой турбиной.

Для расчета теплового баланса установки используются суммарные TQ-диаграммы для источников и стоков тепла [7]. Такие диаграммы представляют собой полезную абстракцию, слегка завышающую КПД установки, но теоретически реализуемую путем мелкой сегментации теплообменных поверхностей. Оптимизация параметров установки производится с соблюдением условия, что минимальный температурный напор между суммарными TQ-диаграммами должен быть не меньше 35 К.

ТЕРМОДИНАМИЧЕСКАЯ МОДЕЛЬ НТ РЕМГС

Расчетная схема, соответствующая нуль-мерной термодинамической модели высокотемпературного топливного элемента с протонно-обменной мембраной (HT PEMFC), показана на рис. 1.

Рис. 1. Расчетная схема НТ РЕМГС.

Рабочие тела — топливо и окислитель на входе в топливный элемент (позиции 4, 3), остаток топлива и воздух, разбавленный продуктами окисления (позиции 5, 6, в простейшем случае, когда топливо — водород, это водяной пар), — характеризуются расходом, температурой, давлением, энтальпией, энтропией и составом:

$$W \equiv \{m, T, p, h, s, [\text{coctab}]\}.$$
 (1)

В рассматриваемой простой модели давление во всех точках схемы одинаково, температура равна рабочей температуре во всех точках, прилегающих к топливному элементу 3–7, и равна температуре окружающей среды в точках 1, 2, 8, отделенных от топливного элемента теплообменниками.

Закон сохранения массы реализуется следующими соотношениями:

$$W_m^3 = \alpha \sigma W_m^4, \tag{2}$$

$$W_m^{\rm H_2} = k_F W_m^4, (3)$$

$$W_m^{O_2} = \frac{M^{O_2}}{2M^{H_2}} W_m^{H_2}, \qquad (4)$$

$$W_m^{\rm H_2O} = W_m^{\rm H_2} + W_m^{\rm O_2}, \tag{5}$$

$$W_m^5 = (1 - k_F) W_m^4, (6)$$

$$W_m^6 = W_m^3 - W_m^{O_2} + W_m^{H_2O}.$$
 (7)

Здесь верхние индексы обозначают рабочие тела в соответствующих точках схемы, исключение – виртуальные (обменные) рабочие тела, обозначенные формулами молекулы. Нижний индекс *m* обозначает расход соответствующего рабочего тела. Другие идентификаторы: α – коэффициент избытка окислителя, σ – стехиометрический коэффициент, k_F – коэффициент использования топлива, M^{O_2} , M^{H_2} – молекулярные веса.

Закон сохранения энергии реализуется в определениях энтальпийного и энтропийного эффектов электрохимической реакции (ΔH и ΔS) и эффекта по функции Гиббса ΔG :

$$\Delta H = W_m^5 W_h^5 + W_m^6 W_h^6 - W_m^3 W_h^3 - W_m^4 W_h^4, \qquad (8)$$

$$\Delta S = W_m^5 W_s^5 + W_m^6 W_s^6 - W_m^3 W_s^3 - W_m^4 W_s^4, \qquad (9)$$

$$\Delta G = \Delta H - T \Delta S. \tag{10}$$

Если известна величина коэффициента нагрузки *k*, определяющего выходную электрическую мощность реакции по формуле

$$P^{\rm el} = -k\Delta G,\tag{11}$$

то уравнений (1)-(11) и определения тепловой мощности реакции

$$Q = \Delta H - P^{\rm el} \tag{12}$$

достаточно для расчета термодинамической эффективности процессов преобразования энергии в гибридных схемах, частью которых может являться схема топливного элемента типа HT PEMFC (рис. 1). В этой ситуации термодинамический КПД η_T и электродвижущая сила (ЭДС) электрохимической реакции E_0 непосредственно в расчетах не участвуют:

$$\eta_T = \frac{\Delta G}{\Delta H}, \quad E_0 = \frac{-\Delta G M_{\rm H_2}}{2Fk_F W_m^3}.$$
 (13)

Естественный источник получения информации о коэффициенте нагрузки k — это экспериментальные работы, где обязательно приводятся вольт-амперные характеристики конкретного типа топливного элемента, из которых можно выбрать характерные значения плотности тока *j* и рабочего напряжения ячейки V_c . В этой ситуации по ЭДС определяется

$$k = V_c / E_0$$

и проводится термодинамический анализ с помощью уравнений (1)—(12). Открывается возможность для экономического анализа, так как по плотности тока можно найти рабочую площадь топливного элемента A, которая и определяет в основном стоимость:

$$A = \frac{P^{\rm el}}{i_c V_c}.$$

В некоторых экспериментальных работах дается эффективное сопротивление мембранноэлектродного узла R_{MEA} . В этом случае k определяется по формуле

$$k = 1 - \frac{i_c R_{MEA}}{E_0}.$$

Значение коэффициента нагрузки *k* для выполнения термодинамического анализа по изложенному алгоритму может быть получено также с помощью физического моделирования топливного элемента.

ФИЗИЧЕСКАЯ МОДЕЛЬ НТ РЕМГС

Высокотемпературный топливный элемент с протонно-обменной мембраной (HT PEM) является примером источника низкопотенциального тепла в диапазоне температур 393–473 К.

Одномерная модель электрохимического процесса в направлении течения топлива в подводящем канале приемлема в рамках термодинамического моделирования энергетической установки [8]. Вариант системы одномерных уравнений для топливного элемента с протонно-обменной мембраной (PEM) в предположении параллельного течения топлива и окислителя может выглядеть так:

 выражение для определения рабочей поверхности

$$\frac{dA}{dx} = L,\tag{14}$$

уравнения сохранения для компонентов

$$\frac{dM_i}{dx} = N_i L, \ i \in \{H_2, O_2, H_2 O\},$$
(15)

 выражение для определения электрической мощности

$$\frac{dP^{\rm el}}{dx} = V_c i_c L, \tag{16}$$

 выражение для определения производства тепла

$$\frac{dQ}{dx} = -\Delta h N_{\rm H_2} L - \frac{dP^{\rm el}}{dx}.$$
 (17)

Здесь x — координата вдоль потока рабочих тел, м; L — ширина ячейки, м; A — рабочая поверхность элемента, м²; M_i — мольный расход компонентов, моль с⁻¹; N_i — плотность потока компонентов, моль м⁻² с⁻¹; P^{el} — выходная электрическая мощность, Вт; V_c — напряжение ячейки, В; i_c плотность тока в ячейке, А м⁻²; Q — тепловыделение, Вт; Δh — энтальпийный эффект электрохимической реакции, Дж моль⁻¹.

Начальные условия задачи Коши (система дифференциальных уравнений с заданными начальными условиями) для всех фазовых координат, кроме $M_{\rm H_2}$ и $M_{\rm O_2}$, нулевые. $M_{\rm H_2}$ определяет единичную мощность установки, а $M_{\rm O_2} = \alpha M_{\rm H_2}/2$, где α – коэффициент избытка окислителя.

В правой части уравнений системы (14)–(17) плотности потока N_i определяются только плотностью тока:

$$N_{\rm H_2} = -\frac{i_c}{2F}, \ N_{\rm O_2} = -\frac{i_c}{4F}, \ N_{\rm H_2O} = \frac{i_c}{2F}.$$
 (18)

Напряжение ячейки V_c в упрощенном виде (например, [9]) рассчитывается как

$$V_c = E_R - \eta_{\rm Ohm} - \eta_C, \tag{19}$$

где E_R — обратимый ЭДС ячейки; $\eta_{Ohm} = i_c R_{int}$ — омическая поляризация, R_{int} — внутреннее сопротивление, Ом м² [9]; η_C — катодная поляризация. Обратимый ЭДС ячейки определяется формулой Нернста

$$E_{R} = E_{0}(T) + \frac{RT}{2F} \ln\left(\frac{p_{H_{2}}p_{O_{2}}^{0.5}}{p_{H_{2}O}}\right),$$

$$E_{0}(T) = -\frac{1}{2F}(h_{H_{2}O} - h_{H_{2}} - 0.5h_{O_{2}} - (20))$$

 $-T(s_{\rm H_{2}O}(T) - s_{\rm H_{2}}(T) - 0.5s_{\rm O_{2}}(T))).$

Парциальные давления связаны с мольными концентрациями в зоне реакции, которые явля-

ются решением задачи Коши на катодном газодиффузионном слое:

$$p_i = C_i \frac{RT}{101300},$$
 (21)

$$\frac{dC_i}{dy} = \frac{N_i - \varepsilon_c C_i u}{\varepsilon_c D_i^{\text{eff}}}, \quad i \in \{O_2, H_2O\}, \quad u = \frac{\sum N_i}{\sum C_i}.$$
 (22)

Начальные условия для уравнений (22) на границе катод—канал подвода кислорода определяются молярными расходами компонентов:

$$C_i = \frac{pM_i}{RT\sum M_j}.$$
(23)

Активационная поляризация на катоде η_c рассчитывается в зависимости от плотности тока и концентраций компонентов в реакционной зоне

$$i_{c} = i_{0} \left(\frac{C_{O_{2}}}{C_{O_{2}}^{\text{ref}}} \right)^{\gamma_{c}} \left[\exp\left(\frac{\alpha_{c} F \eta_{c}}{RT} \right) - \exp\left(\frac{\alpha_{a} F \eta_{c}}{RT} \right) \right]$$
(24)

со следующими константами: $i_0 = 0.2$, $\gamma_c = 1$, $\alpha_c = 1$, $\alpha_a = 0.5$, $C_{O_2}^{\text{ref}} = 3.39$ (используются для уравнения (1) в [9]).

Дифференциальные уравнения (22), включенные в расчет правых частей (14)–(17), приводят размерность задачи к 1D + 1D. Задача становится одномерной, если воспользоваться аппроксимационной процедурой, разработанной в [10]:

$$V_c = E_R - b \ln\left(\frac{f_\lambda i_c}{j_*}\right) + b \ln\left(1 - \frac{f_\lambda i_c}{j_{\lim}}\right) - Ri_c,$$
$$f_\lambda = -\alpha \left(1 - \frac{1}{\alpha}\right).$$

Для данного уравнения в [10] предложены следующие константы: b = 0.048, $j_{\text{lim}} = 1.34 \times 10^4$, $j_* = 0.15$, $R = 0.26 \times 10^{-4}$. Они достаточно хорошо имитируют функциональность уравнений (19)–(24).

ПАРАМЕТРИЧЕСКИЕ ИССЛЕДОВАНИЯ ФИЗИЧЕСКОЙ МОДЕЛИ

В качестве свободного параметра изложенной модели можно рассматривать рабочую температуру в физических пределах 393—473 К и плотность тока в достигнутых в эксперименте пределах – до 0.5 А/см².

На рис. 2 представлена зависимость коэффициента нагрузки, вычисленного в рамках физической модели по формуле $k = -P^{\rm el}/\Delta G$, от площади рабочей поверхности A при вариации плотности тока в диапазоне 0.1–0.5 А/см² и следующих параметрах модели:

- температура реакции T = 433 K;
- давление *p* = 0.1 МПа;
- расход водорода $M_{\rm H_2} = 1$ моль/с;
- окислитель воздух;

2022

- стехиометрический коэффициент $\sigma = 34.2;$
- коэффициент избытка окислителя *a* = 3.

Рис. 2. Зависимость коэффициента нагрузки k от площади рабочей поверхности A.

Переменная по оси абсцисс рис. 2 — площадь рабочей поверхности A — отражает стоимостную характеристику мембранно-электродного узла топливного элемента, а переменная по оси ординат k прямо пропорциональна мощности. В экономических терминах эта кривая представляет собой зависимость прибыли от затрат. Приближенно она аппроксимируется ломанной из двух участков: 2 — быстрый рост, 3 — медленный рост. Принцип здравого смысла в оптимизации говорит, что затраты следует ограничивать точкой перегиба.

Найдены таким образом приближенные точки перегиба кривых k = f(A) для трех значений рабочих температур. Значения А в этих точках отличаются слабо (≈61 м²) и соответствуют плотности тока 0.3008 A/см^2 при T = 463 K и 0.2995 при 403 К. Похоже, что этой вариацией можно пренебречь и принять в качестве оптимальной плотности тока для всех температур 0.3 А/см². В табл. 1 приведены характеристики топливного элемента для рассмотренных трех значений рабочей температуры. Здесь коэффициент нагрузки k является интерфейсом между физической и термодинамической моделями, значения электрической и тепловой мощности топливного элемента могут быть определены по k и с помощью нуль-мерной термодинамической модели.

Данные табл. 1 демонстрируют снижение электрической мощности с ростом рабочей температуры. Причиной является некоторое снижение ЭДС (13), но в основном это результат увеличения

Таблица 1. Характеристики топливного элемента при вариации рабочей температуры

<i>Т</i> , К	<i>Р</i> ^{еl} , кВт	<i>Q</i> , кВт	k
403	126.8	104.2	0.58
433	120.1	111.2	0.55
463	113.3	118.3	0.52

активационной поляризации на катоде η_C (20). Снижение электрической мощности сопровождается ростом тепловой мощности Q, что является дополнительным поводом обратить внимание на утилизацию этой мощности.

УТИЛИЗАЦИЯ ГЕНЕРИРУЕМОГО ТОПЛИВНЫМ ЭЛЕМЕНТОМ ТЕПЛА

Согласно табл. 1, рассматриваемый топливный элемент преобразует в электричество не более половины располагаемого энтальпийного эффекта электрохимической реакции. И если для низкотемпературных топливных элементов типа PEMFC генерируемое тепло просто записывается в разряд потерь вследствие слишком низкой температуры (по крайней мере, с точки зрения производства электроэнергии), то поступать так же в случае НТ PEMFC было бы непростительным расточительством и вредительством с точки зрения борцов с глобальным потеплением.

Расчетная схема HT PEMFC (рис. 1) показывает теплообменники на линиях подвода топлива и окислителя -2-4, 1-3. Они получают тепло от охлаждения продуктов сгорания в теплообменнике 7-8. Выше рассмотрены модели при постоянной температуре, поэтому температура топлива и окислителя на входе в ячейку должна быть равна рабочей температуре реакции. Это значит, что температура продуктов сгорания на входе в теплообменник 7 должна быть выше рабочей температуры на величину больше минимального температурного напора. Расчеты показывают, что минимальный температурный напор 35 К обеспечивается снижением коэффициента использования топлива от 1 до ~0.95 и дожиганием остатка топлива при смешении в точке 7 с потоком окислителя.

Опыт подсказывает, что в диапазоне температур 393—473 К оптимальный утилизационный цикл надо искать в классе циклов Ренкина, но для простоты можно ограничиться хорошо знакомым и надежно моделируемым паротурбинным блоком на водяном паре без перегрева. Имеются хорошие программы аппроксимации теплофизических свойств воды и водяного пара, необходимых для расчета цикла Ренкина [11].

На рис. 3 приведены суммарные TQ-диаграммы источников и стоков тепла в гибридной энергетической установке с топливным элементом и паровой турбиной для рабочих температур 403 и 463 К. Источников тепла два: топливный элемент, отвечающий за горизонтальную часть диаграммы, и теплообменник 7—8, отвечающий за наклонные части. Левые наклонные части диаграмм практически эквидистантны по температуре. Это объясняется тем, что здесь происходит передача тепла от продуктов сгорания к реагентам при небольшой разнице по теплоемкости. Горизонтальная часть диаграммы стоков соответствует испарению воды рабочего тела цикла Ренкина. Правая наклонная

Рис. 3. Суммарные *ТQ*-диаграммы источников (*1*, *I*') и стоков (*2*, *2*) тепла для рабочих температур 403 и 463 К.

Таблица 2. Характеристики гибридной энергетической установки — топливный элемент с утилизационным циклом Ренкина при вариации рабочей температуры

<i>Т</i> , К	$\eta_{\rm el}$	η_{ST}	η_{s}	$P^{\rm el}$	P^{ST}	P^{S}
403	0.522	0.110	0.570	126.8	11.7	138.5
433	0.494	0.159	0.568	120.1	18.1	138.2
463	0.465	0.200	0.564	113.3	24.1	137.4

Примечание.
еl — топливный элемент, ST-паровая турбина,
 S-сумма.

реагентов и воды до точки кипения. Здесь производные диаграмм сильно различаются, и минимальный температурный напор между диаграммами образуется в правой нижней части рисунка в процессе управления абсциссами диаграммы стоков с помощью расхода рабочего тела турбины.

КПД η и мощность *P* гибридной энергетической установки — по отдельным генерирующим элементам и в сумме — представлены в табл. 2 для трех значений рабочей температуры. КПД топливного элемента снижается с ростом температуры, что очевидно в связи со снижением электрической мощности в табл. 1. КПД и мощность паро-

турбинного блока (η_{ST} и P^{ST}) увеличиваются в два раза при увеличении температуры от 403 до 463 К, но этого оказывается недостаточно, чтобы переломить падающую тенденцию суммарной мощности.

ЗАКЛЮЧЕНИЕ

Нуль-мерная термодинамическая модель топливного элемента оказалась вполне приемлемой для моделирования гибридных энергетических установок с различными генерирующими элементами. Ее интерфейс с физической моделью топливного элемента может сводиться к единственному параметру — коэффициенту нагрузки — отношению электрической мощности к энергии Гиббса электрохимической реакции.

С помощью термодинамической и физической моделей определены характеристики высокотемпературного топливного элемента с протонно-обменной мембраной (HT PEMFC) в диапазоне температур 403—463 К, а также характеристики гибридной энергетической установки с утилизацией тепла от топливного элемента паровой турбиной.

КПД и мощность топливного элемента падают с ростом температуры. По-видимому, для этого типа топливного элемента оптимальны минимальные температуры, сохраняющие идентичность типа, т.е. чтобы электрохимическая реакция шла с образованием пара, а не воды.

КПД и мощность паротурбинного блока увеличиваются в два раза с ростом температуры в пределах рассмотренного диапазона. Однако этого недостаточно для повышения суммарных характеристик. Возможно, этого можно достичь выбором оптимального рабочего тела для цикла Ренкина.

СПИСОК ЛИТЕРАТУРЫ

- Kivisaari T., Bjornbom P., Sylwan C. Studies of Biomass Fuelled MCFC Systems // J. Power Sources. 2002. V. 104. P. 115.
- Li M., Rao A.D., BrouwerJ., Samuelsen G.S. Design of Highly Efficient Coalbased Integrated Gasification Fuel Cell Power Plants // J. Power Sources. 2010. V. 195. P. 5707.
- 3. *Chan S.H., Ho H.K., Tian Y.* Modelling of Simple Hybrid Solid Oxide Fuel Cell and Gas Turbine Power Plant // J. Power Sources. 2002. V. 109. P. 111.
- Leucht F., Bessler W.G., Kallo J., Friedrich K.A., Müller-Steinhagen H. Fuel Cell System Modeling for Solid Oxide Fuel Cell/Gas Turbine Hybrid Power Plants. Part I: Modeling and Simulation Framework // J. Power Sources. 2011. V. 196. P. 1205.
 Белов Г.В., Иориш В.С., Юнгман В.С. Моделирова-
- 5. Белов Г.В., Иориш В.С., Юнгман В.С. Моделирование равновесных состояний термодинамических систем с использованием ИВТАНТЕРМО для Windows // ТВТ. 2000. Т. 38. № 2. С. 191.
- Aspen Plus[®] AspenTech. aspentech.com/products/aspen-plus.aspx
- Bartlett M. Developing Humidified Gas Turbine Cycles. Doct. Thesis. Stockholm: Royal Institute of Technology, 2002.
- Иванов П.П. Термодинамическое моделирование энергетических установок с твердооксидным топливным элементом // ТВТ. 2011. Т. 49. № 4. С. 627.
 Hu J., Zhang H., Zhai Y., Liu G., Hu J., Yi B. Perfor-
- Hu J., Zhang H., Zhai Y., Liu G., Hu J., Yi B. Performance Degradation Studies on PBI/H₃PO₄ High Temperature PEMFC and One-Dimensional Numerical Analysis // Electrochimica Acta. 2006. V. 52. P. 394.
- Kulikovsky A., Oetjen H.-F., Wannek Ch. A Simple and Accurate Method for High-temperature PEMFuel Cell Characterisation // Fuel Cells. 2010. V. 10. P. 363.
- Александров А.А., Григорьев Б.А. Таблицы теплофизических свойств воды и водяного пара. М.: Издво МЭИ, 1999.