УДК 544.3

ТЕРМОДИНАМИЧЕСКОЕ СОГЛАСОВАНИЕ ПАРАМЕТРОВ ТОЧКИ ПЛАВЛЕНИЯ ДЛЯ ОСМИЯ

© 2023 г. Л. Р. Фокин, Е. Ю. Кулямина*, В. Ю. Зицерман

Объединенный институт высоких температур РАН, Москва, Россия *E-mail: kulyamina.elena@gmail.com Поступила в редакцию 15.06.2022 г. После доработки 10.08.2022 г.

Принята к публикации 13.10.2022 г.

С учетом большого объема новых данных пересмотрен расчет кривой плавления осмия совместно с определением его теплоты плавления. Новые результаты заметно лучше согласуются с данными квантово-механического расчета. Существенно, что параметр наклона для кривой плавления совместим с новой оценкой теплоты плавления, которая оказалась примерно вдвое меньше принятого в справочной литературе значения. Показано, что детальный анализ Периодической системы Менделеева подтверждает сделанный выбор энтропии и теплоты плавления.

DOI: 10.31857/S0040364423010064

введение

В [1] предложена априорная оценка кривой плавления Os практически в отсутствие каких-либо термодинамических данных в точке плавления. Даже сведения о плотности твердой фазы в 2015 г. были доступны лишь до температуры 1300 К [2]. В известной степени интерес к проблеме был связан с возможностью опираться на результаты обширных исследований калорических свойств металлов платиновой группы (проведенных в 70-е годы прошлого века в ИВТАНе [3]), что внушало надежду извлечь из них параметры кривой плавления посредством согласования разнородных данных.

И действительно, при анализе всей совокупности данных авторы нашли необходимую для этих целей корреляцию [4]

$$C_p/\beta = f\left(H_T^0 - H_0^0\right),\tag{1}$$

где C_p , β – теплоемкость и объемный коэффициент теплового расширения (КТР); $H_T^0 - H_0^0$ – инкремент энтальпии, табулированный в [3]; f(x) – линейная функция. Основанная на (1) экстраполяция позволила рассчитать КТР и объем твердой фазы в точке плавления и далее с использованием ряда термодинамических тождеств выйти на оценку кривой плавления. Далекая экстраполяция (примерно на 2000 К в отсутствие данных о КТР при T > 1300К), а также включение процедуры [5, 6] в схему расчета теплоты и энтропии плавления существенно ограничили точность и надежность результата [1]¹.

За прошедшие с момента публикации [1] годы общая картина с доступностью и объемом необходимых для прогнозирования данных заметно изменилась. Прежде всего, опубликованы [9] результаты прецизионных дилатометрических измерений в интервале 1600-2600 К, заметно приближенном к точке плавления, что существенно повышает надежность экстраполяции. Во-вторых, появилась ясность с возможным интервалом значений начального наклона кривой. Первопринципный подход на основе так называемого Z-метода расчета фазового равновесия в рамках квантовой молекулярной динамики [7] дал для этой величины значение 49.5 К/ГПа, а выполненный спустя четыре года методом алмазных наковален эксперимент – 58.0 К/ГПа [8]. Наконец, в работе [10] показано, что принятая в справочной литературе величина 58 кДж/моль для теплоты плавления Os, согласующаяся с корреляцией [5, 6], чуть ли не вдвое завышена, если учесть связь между этой величиной и доступными экспериментальными данными о поверхностном натяжении жидкой фазы. Дополнительным аргументом к уменьшению справочной величины для Os послужило измерение теплоты плавления Re, давшее значение 34 кДж/моль, что именно вдвое меньше, чем прогнозируемая, согласно [5, 6], величина 69 кДж/моль. Очевидно, что пересмотр значений теплоты плавления требует аналогичного пересмотра энтропии плавления ΔS_m .

¹ Полученная цифра 40 К/ГПа для начального наклона кривой плавления хотя и занижена, отличается не столь значительно от доступных сейчас значений: ~50 К/ГПа из квантово-механического расчета [7] и ~60 К/ГПа из эксперимента [8].

В целом существенное расширение и пересмотр доступных данных делают актуальным ревизию метода и результатов работы [1]. При этом, помимо прогнозирования наклона кривой плавления, здесь решается проблема согласования этой величины с энтропией плавления и рассматривается обоснованность перехода к новой оценке теплоты и энтропии плавления Os [10].

ЭКСТРАПОЛЯЦИЯ ТЕРМИЧЕСКИХ ДАННЫХ

Первым этапом расчета кривой плавления, как и в прежней работе [1], служит использование данных по КТР для определения объема твердой фазы во всем интервале вплоть до точки плавления. В данной работе в качестве исходных приняты результаты дилатометрии [9], представленные в виде средних значений линейного КТР

$$\overline{\alpha} = \alpha_0 + \kappa \Delta T, \tag{2}$$

где $\alpha_0 = 3.958 \times 10^{-6}$ K⁻¹, $\kappa = 1.138 \times 10^{-9}$ K⁻², $\Delta T = (T - 293)$ K, и КТР определен по данным о длине образца l_T, l_0 при температурах T, T_0 , $\Delta T = T - T_0$:

$$\overline{\alpha} = \frac{l_T - l_0}{l_0 \Delta T}.$$

Здесь и далее принято, что $T_0 = 293$ К. Формула (2), приведенная в работе [9], аппроксимирует данные измерений в интервале 1600–2600 К. От этих величин нетрудно перейти к данным для объемного КТР

$$\beta = 3 \frac{\overline{\alpha} + \kappa \Delta T}{1 + \overline{\alpha} \Delta T},\tag{3}$$

где

$$\beta = V^{-1} \frac{dV}{dT} = \frac{d\ln V}{dT}$$

 – объемный КТР (причем истинное, а не среднее значение).

Далее, следуя намеченной в [1] линии, рассчитанные данные [9] экстраполируются на температуры T > 2600 К и вплоть до точки плавления $T_m = 3320$ К². Как и в [1], использован метод Цагарейшвили [4], основанный на связи КТР с калорическими свойствами:

$$\frac{C_p}{\beta} = A - B \left(H_T^0 - H_0^0 \right).$$
 (4)

Константы A > 0, B > 0 в уравнении (4) находятся из обработки данных в интервале 1600—2600 К, где имеются одновременно значения КТР [9] и энталь-

пии [3]. Значения параметров в уравнении (4) $A = 1542.925 \text{ кДж моль}^{-1}$, B = 2.425. Используя найденные значения КТР при T > 2600 K, можно рассчитать объем твердой фазы вплоть до точки плавления

$$V_T = V_{2600} \left[1 + \int_{2600}^T \beta(x) \, dx \right]$$

где в качестве опорной принята температура 2600 К, для которой объем вычислен по данным дилатометрии [9]. Итоговые результаты расчета, полученные методом [4], приведены в табл. 1. Приближенные оценки в точке плавления: $\beta_m = 31.82 \times 10^{-6}$ K⁻¹, $V_m = 8.987 \times 10^{-6}$ м³ моль⁻¹. Для КТР оценка получена по (3), а для объема с помощью экстраполяции данных дилатометрии $V_T = V_{293} [1 + 3\overline{\alpha} (T - 293)].$

Полученную экстраполяцией оценку КТР уместно сопоставить со значением, которое дает так называемый критерий Пиктэ, прогнозирующий примерное постоянство произведения $\beta_m T_m$ для разных веществ. В [12], где подробно рассмотрен этот вопрос, показано (со ссылкой на Грюнайзена), что критерий должен включать среднее значение КТР в интервале от нуля до точки плавления. Там же приведена для группы металлов, включая Os, оценка $\overline{\beta_m}T_m = 0.053 - 0.055$. Если среднее значение КТР определить, экстраполируя результаты измерений [9] до точки плавления, можно получить значение $\overline{\beta_m}T_m = 0.074$. Подобное расхождение для метода, предложенного еще в 1879 г., представляется вполне допустимым, тем более что в исходной форме критерий дает значение $\beta_m T_m = 32.67 \times 10^{-6} \times 3320 = 0.108$, практически совпадающее с принятой на то время оценкой.

СКАЧОК ОБЪЕМА И НАЧАЛЬНЫЙ НАКЛОН КРИВОЙ ПЛАВЛЕНИЯ

Для дальнейшего анализа потребуются два параметра из предыдущего расчета – β_m и V_m . Кроме них, в качестве определяющего параметра принимается энтропия плавления ΔS_m , вариация которой, помимо определения кривой плавления, позволит сделать выбор между возможными значениями: оценкой по методу Чеховского–Каца [5, 6] или предложенным в работе [10].

Поскольку наклон линии плавления определяется из уравнения Клаузиуса-Клапейрона

$$\left(\frac{dT}{dp}\right)_m = \left(\frac{\Delta V_m}{\Delta S_m}\right)_{p\to 0},$$

ключевую роль в анализе играет функциональная зависимость между скачками энтропии и объема при плавлении $\Delta S_m(\Delta V_m)$, нахождению которой

² Это значение нужно для согласования с данными [3], более точное значение 3400 К принято в [11].

	1				
<i>Т</i> , К	$H_T^0 - H_0^0,$ кДж моль $^{-1}$	${C_p},$ Дж моль $^{-1}~{ m K}^{-1}$	$C_p/eta,$ кДж моль $^{-1}$	$\beta \times 10^6$, K ⁻¹	$V_m imes 10^6$, м ³ моль ⁻¹
1600	40.769	30.11	1458.111	20.65	8.602
1700	43.809	30.71	1441.107	21.31	8.620
1800	46.912	31.35	1426.296	21.98	8.639
1900	50.081	32.04	1415.194	22.64	8.658
2000	53.320	32.75	1406.183	23.29	8.678
2100	56.633	33.49	1398.330	23.95	8.699
2200	60.020	34.25	1391.711	24.61	8.720
2300	63.483	35.02	1386.382	25.26	8.741
2400	67.023	35.79	1381.320	25.91	8.764
2500	70.640	36.55	1376.130	26.56	8.787
2600	74.334	37.31	1371.187	27.21	8.811
2700	78.102	38.06	1353.567	28.12	8.835
2800	81.944	38.79	1344.252	28.86	8.860
2900	85.859	39.50	1334.760	29.59	8.886
3000	89.843	40.19	1325.101	30.33	8.913
3100	93.896	40.86	1315.274	31.07	8.940
3200	98.014	41.51	1305.290	31.80	8.967
3300	102.196	42.13	1295.151	32.53	8.996
3320	103.040	42.25	1293.105	32.67	9.001

Таблица 1. Термодинамические свойства твердой фазы, рассчитанные с экстраполяцией до точки плавления

Примечание. Экстраполированные данные выделены курсивом.

посвящена обширная литература [13–17]. Начиная с работы Стишова и др. [13] и его последователей (подробная библиография приведена в [14, 15]), признано, что в пределе $\Delta V_m \rightarrow 0$ энтропия плавления не зависит от природы вещества и определяется простой формулой $\Delta S_m = R \ln 2$. Более того, в пределах группы однотипных веществ (например, в пределах группы элементов таблицы Менделеева) имеет место линейная зависимость

$$\Delta S_m = R \ln 2 + \xi \Delta V_m \tag{5}$$

с параметром наклона ξ , который можно отыскать из экспериментальных данных в пределах данной группы. В частности, линейная зависимость $\Delta S_m (\Delta V_m)$ среди 3*d*-элементов в таблице Менделеева использовалась в [18] для оценки скачка объема ΔV_m при плавлении титана.

Существенный шаг в применении корреляции Стишова [13, 14] сделал Андерсон [17], выразив наклон ξ линии (5) через физические характеристики твердой фазы:

$$\Delta S_m = R \ln 2 + \beta_m B_m \Delta V_m,$$

где введен новый параметр $B_m = -V \left(\frac{\partial p}{\partial V}\right)_T^m - изо-$ термический модуль упругости при температуре

ТЕПЛОФИЗИКА ВЫСОКИХ ТЕМПЕРАТУР том 61 № 1

плавления. При комнатной температуре его измерения проводились неоднократно. В [19], помимо собственных данных, приведена сводка полученных ранее результатов в интервале от 395 до 462 ГПа. В [19, 20] измерения проведены в широком диапазоне температур вплоть до 3000 К. Относительно слабый температурный ход B_T позволил представить его линейной зависимостью

$$B_T = B_{T=300} + \frac{dB}{dT}(T - 300)$$

с параметрами, приведенными в табл. 2. В точке плавления модуль B_m определен с довольно высокой точностью. При среднем значении $B_m = 262$ ГПа отклонения достигают ±8 ГПа или примерно 3%.

Поэтому наклон линии плавления (начальный наклон при $p \to 0$), определяемый по соотношению

$$\left(\frac{dT}{dp}\right)_m = \frac{1 - R \ln 2 / \Delta S_m}{B_m \beta_m},\tag{6}$$

зависит в основном от принятого значения энтропии плавления, так как оба параметра в знаменателе рассчитаны с хорошей точностью.

2023

Источник	<i>B</i> _{<i>T</i>=300} , ГПа	$\frac{dB}{dT}$, ΓΠα/Κ	<i>B_m</i> , ГПа
[20]	435	-0.06	254
[19]	421	-0.05	270

Таблица 2. Изотермический модуль упругости – температурная зависимость

Помимо параметра (6), интерес представляет и относительная величина скачка объема, определяемая соотношением

$$\frac{\Delta V_m}{V_m} = \frac{\Delta S_m}{V_m} \left(\frac{dT}{dp}\right)_m = \frac{\Delta S_m}{B_m \beta_m V_m} \left(1 - \frac{R \ln 2}{\Delta S_m}\right).$$
(7)

Хотя эта величина недоступна из эксперимента, хорошо установлен "коридор" ее возможных значений — примерно от 3 до 7% [21], что дает дополнительную возможность контроля термодинамической согласованности.

СОГЛАСОВАНИЕ ТЕРМОДИНАМИЧЕСКИХ ДАННЫХ

После выбора значений КТР, объема и модуля упругости соотношения (6), (7) позволяют выявить влияние принятых значений энтропии плавления. Из результатов, приведенных в табл. 3, можно сразу сделать ряд качественных выводов. Прежде всего, при значении $\Delta S_m = 9.8 \, \text{Дж моль}^{-1} \, \text{K}^{-1}$, рекомендованном в [10], соответствующая оценка наклона (6) дает величину, исключительно близкую к результату первопринципного расчета [7]. Вполне реалистичной оказывается и оценка скачка объема [21]. Следует отметить, что принятое в расчете исходное значение ΔS_m получено в работе [10] только на основе данных о поверхностных свойствах, т.е. без всякого учета возможных характеристик плавления.

Напротив, приняв значение $\Delta S_m = 19 \, \text{Дж} \, \text{моль}^{-1} \, \text{K}^{-1}$, что соответствует общепринятой оценке теплоты плавления 57.85 кДж моль⁻¹, приходим к существенному завышению наклона кривой плавления и абсолютно нереальному значению скачка объема. Этот результат в сочетании с представленными ранее заключениями [10] убедительно подтверждает необходимость пересмотра справочной величины.

Приведенные в табл. 3 данные позволяют оценить и возможный диапазон значений ΔS_m , который ранее [10] был оценен в 30%, примерно от 7 до 13 Дж моль⁻¹ K⁻¹. Значению $\Delta S_m = 7$ Дж моль⁻¹ K⁻¹ соответствует величина наклона 22.4 К/ГПа, что вдвое меньше прежней оценки [1], не говоря уже о достаточно надежных данных [8, 9]. Подобное значение примерно в 20 К/ГПа приводилось ранее в работе [22], где в расчете применялся метод функционала плотности. Однако столь малое значение, как показано авторами [7], связано с ошибкой в определении параметра Грюнайзена, использованного при переходе от теоретических расчетов уравнения состояния к построению кривой плавления.

Можно отклонить также значение $\Delta S_m = 8 \ \text{Дж} \text{ моль}^{-1} \ \text{K}^{-1}$, которое дает существенное занижение наклона, и $\Delta S_m = 13 \ \text{Дж} \text{ моль}^{-1} \ \text{K}^{-1}$, которое дает нереальное завышение скачка объема в 10%. В качестве приемлемых значений ΔS_m оправдано считать лишь 9 и 11 $\text{Дж} \text{ моль}^{-1} \ \text{K}^{-1}$. Первое из них дает примерно то же значение наклона, что и в [1], а второе приходится на середину интервала между данными эксперимента [8] и квантово-механического расчета [7]. Тем самым удалось заметно сузить неопределенность оценки [10] до величины 10%.

Принятые значения параметров: $B_m = 262$ ГПа, $\beta_m = 32.7 \times 10^{-6} \text{ K}^{-1}, V_m = 9.001 \text{ см}^3 \text{ моль}^{-1}.$

В итоге принятое значение $\Delta S_m = 9.8 \ \text{Дж моль}^{-1} \ \text{K}^{-1}$ делает необходимым пересмотр справочной величины теплоты плавления: вместо 57.85 кДж моль⁻¹ следует принять заметно сниженное значение 32 кДж моль⁻¹ при оценке неопределенности в 10%.

Дополнительный фактор, обычно учитываемый при выборе термохимических констант, это положение элемента в Периодической таблице, позволяющее опираться на данные для других элементов. Так, в работе [10] необходимость в пересмотре ΔH_m (Os) была инициирована новыми результатами, полученными для Re, соседнего с Os элемента в таблице Менделеева. В отсутствие экспериментальных данных принималась величина ΔH_m (Re) = 69 кДж моль⁻¹ на основе той же корреляции [5, 6]. Последующие измерения ме-

Таблица 3. Оценка параметров кривой плавления в зависимости от принятого значения ΔS_m

ΔS_m , Дж моль ⁻¹ К ⁻¹	7	8	9	9.8	11	13	19
$\left(\frac{dT}{dp}\right)_m$, К/ГПа	20.6	32.7	42.0	48.1	55.6	65.0	81.4
$\Delta V_m/V_m$, %	1.6	2.9	4.2	5.2	6.8	9.4	17.2

Энтропия плавления элементов таблицы Менделеева по данным [15] в пределах Z = 1-90; не указаны положения Tc, Pr, Nd, Eu, Dy, Ho, Er.

тодом левитационной калориметрии дали вдвое меньшее значение (34.4 кДж моль⁻¹), что породило сомнения в универсальности корреляции и в конечном итоге привело авторов к новой оценке и для ΔH_m (Os). По сути, эта аналогия оправдана, если принять равенство или близость энтропий плавления обоих элементов. Для Re c учетом его температуры плавления (3458 К) значение ΔS_m (Re) $\approx 10 \ \text{Дж}$ моль⁻¹ K⁻¹, что почти совпадает с оценкой для Os [10].

7

2

1

0

Арбластер в недавней работе [23], скорректировав всю систему термодинамических данных для Os. постарался обосновать противоположный вывод об отсутствии какой-либо связи между элементами седьмой и восьмой групп в таблице Менделеева и принял значение $\Delta H_m(\text{Os}) = 68 \text{ кДж моль}^{-1}$, близкое к оценке [1]. Разрешить это противоречие может детализация зависимости $\Delta S_m(Z)$ (где Z – порядковый номер элемента), которая носит достаточно сложный характер из-за выраженной периодичности теплоты и температуры плавления. В грубом приближении (правило Кромптона) для всех элементов значение $\Delta S_m = 2$ э.е.³, или 8.37 Дж моль⁻¹ К⁻¹, хотя в действительности эта величина в пределах таблицы Менделеева варьируется заметно и может достигать 7 э.е.

Приведенная в монографии [15] функциональная зависимость $\Delta S_m(Z)$ (рисунок), помимо больших осцилляций, одновременно воспроизводит участки с малым изменением величины. Так, в интервале изменения Z от 55 до 82 (часть шестого периода от Cs до Pb) точки на кривой попадают в узкий интервал от 1.7 до 2.5 э.е. Именно в этом интервале оказываются и точки для Os (Z = 76) и Re (Z = 75), что оправдывает перенос значений ΔS_m . Кроме того, сами значения оказались близки к 2 э.е., т.е. к 8 Дж моль⁻¹ К⁻¹, что в свою очередь близко к новым значениям 10 Дж моль⁻¹ К⁻¹. В то же время наличие единой зависимости $\Delta S_m(Z)$ позволяет достаточно уверенно принять оценку $\Delta S_m(Os)$ с пересмотром справочной величины теплоты плавления. Разумеется, приведенные аргументы, основанные на ходе энтропии плавления в пределах таблицы Менделеева, лишь подтверждают выполненные расчеты, согласующие термодинамические данные Os в точке плавления.

Z

ЗАКЛЮЧЕНИЕ

В работе проанализирован и согласован большой объем данных для термодинамических свойств осмия, включая тепловое расширение, калорические свойства твердой фазы, параметры точки плавления. В результате совместной обработки удалось получить достаточно надежные оценки наклона кривой плавления и теплоты плавления. Оценка наклона хорошо согласуется с данными эксперимента и квантово-механического расчета. Что же касается теплоты плавления, проведенный анализ показал необходимость пересмотра принятой на сегодняшний день справочной величины [10].

2023

³ Под энтропийной единицей (э.е.) понимается величина, равная кал/(мол К), что соответствует 4.184 Дж/(моль К).

СПИСОК ЛИТЕРАТУРЫ

- 1. Кулямина Е.Ю., Зицерман В.Ю., Фокин Л.Р. Осмий кривая плавления и согласование высокотемпературных данных // ТВТ. 2015. Т. 53. № 1. С. 141.
- Arblaster J.W. Crystallographic Properties of Osmium // Platinum Metals Rev. 2013. V. 57. № 3. P. 177.
- 3. *Чеховской В.Я., Раманаускас Г.Р.* Калорические свойства осмия, иридия, родия и рутения в диапазоне температур 0 К-*T*_{пл} // Обзоры по теплофизическим свойствам веществ. 1989. № 4(78). С. 47.
- Цагарейшвили Д.Н. Методы расчета термических и упругих свойств кристаллических неорганических веществ. М.: Мецниереба, 1977. 262 с.
- Katz S.A., Chekhovskoi V.Ya. Entropies of Fusion of Metallic Elements // High Temp. – High Press. 1979. V. 11. № 6. P. 629.
- Кац С.А., Чеховской В.Я. Закономерности изменения энтропии плавления металлов // ЖФХ. 1980. Т. 54. № 3. С. 768.
- Burakovsky L., Burakovsky N., Preston D.L. Ab initio Melting Curve of Osmium // Phys. Rev. B. 2015. V. 92. № 17. 174105.
- Patel N.N., Sunder M. High Pressure Melting Curve of Osmium up to 35 GPa // J. Appl. Phys. 2019. V. 125. № 5. 055902.
- 9. *Онуфриев С.В.* Термодинамические свойства рутения и осмия // ТВТ. 2021. Т. 59. № 5. С. 668.
- 10. Фокин Л.Р., Кулямина Е.Ю., Зицерман В.Ю. Новая оценка теплоты плавления осмия // ТВТ. 2019. Т. 57. № 1. С. 61.
- 11. Arblaster J.W. The Thermodynamic Properties of Osmium on ITS-90 // Calphad. 1995. V. 19. № 3. P. 349.
- 12. Путилов К.А. Термодинамика. М.: Наука, 1971. 376 с.

- Stishov S.M., Makarenko I.N., Ivanov V.A., Nikolaenko A.M. On the Entropy of Melting // Phys. Lett. A. 1973. V. 45. № 1. P. 18.
- Стишов С.М. Энтропия, беспорядок, плавление // УФН. 1988. Т. 154. № 1. С. 93.
- Регель А.Р., Глазов В.М. Периодический закон и физические свойства электронных расплавов. М.: Наука, 1978. 307 с.
- 16. Скрипов В.П., Файзуллин М.З. Фазовые переходы кристалл-жидкость-пар и термодинамическое подобие. М.: Физматлит, 2003. 160 с.
- Anderson O.L. Equations of State of Solids for Geophysics and Ceramic Science. N.Y.: Oxford University Press, 1995. 432 p.
- Кулямина Е.Ю., Зицерман В.Ю., Фокин Л.Р. Согласование термодинамических свойств на линии плавления титана: проблемы, результаты // ЖТФ. 2018. Т. 88. № 3. С. 380.
- Armentrout M.M., Kavner A. Incompressibility of Osmium Metal at Ultrahigh Pressures and Temperatures // J. Appl. Phys. 2010. V. 107. № 9. 093528.
- Voronin G.A., Pantea C., Zerda T.W., Wang L., Zhao Y. Thermal Equation-of-state of Osmium: A Synchrotron X-ray Diffraction Study // J. Phys. Chem. Sol. 2005. V. 66. № 5. P. 706.
- Станкус С.В. Измерение плотности элементов при плавлении. Методы и экспериментальные данные. Препринт № 247-91. Новосибирск: Ин-т теплофизики СО РАН, 1991. 79 с.
- 22. Joshi K.D., Gupta S.C., Banerjee S. Shock Hugoniot of Osmium up to 800 GPa from First Principles Calculations // J. Phys. Condens. Matter. 2009. V. 21. 415402.
- Arblaster J.W. A Re-assessment of the Thermodynamic Properties of Osmium. Improved Value for the Enthalpy of Fusion // Johnson Matthey Technol. Rev. 2021. V. 65. № 1. P. 54.